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ON A GENERALIZATION OF THE CATENOID
DAVID E. BLAIR

It is a classical result that the only surface of revolution in Euclidean space
E3 which is minimal is the catenoid. Of course the surface is conformally flat,
but if M", n = 4, is a conformally flat hypersurface of Euclidean space E"+!,
then M™ admits a distinguished direction [2] (‘‘tangent to the meridians’’).
Thus we seek to characterize conformally flat hypersurfaces of E"*! which
are minimal. Specifically we prove the following

THEOREM. Let M", n = 4, be a conformally flat, minimal hypersurface
immersed in E"t1. Then M™ is either a hypersurface of revolution S*' X M*
where S*! is a Euclidean sphere and M* is a plane curve whose curvature k as a
function of arc length s is given by k = —(n — 1)a,@ = —1/v* and

‘- f Ty
= {Ay2n—2 — I}Q
where A is a constant, or M™ is totally geodesic.

In section 1 we give some preliminaries and in section 2 prove the theorem.
The author expresses his appreciation to his colleague Professor B.-Y. Chen
for many valuable conversations.

1. Preliminaries. Let (,) denote the usual Riemannian metric on
(n + 1)-dimensional Euclidean space E**! and D its Riemannian connexion.
Let « : M®— E™! be an n-dimensional hypersurface immersed in E**! and
let g denote the induced metric and V its Riemannian connexion. Then the
Gauss-Weingarten equations are

DquwY = L*VXY + h(Xy Y)N
DuxN = —oHX

where N is a unit normal, # the second fundamental form and H the corre-
sponding Weingarten map. The hypersurface M" is said to be quasi-umbilical
[1; 2], if there exist on M™ two functions «, 8 and a unit vector field U with
covariant form « such that

1.1) h=og+ Bu @ u.

In [2], B.-Y. Chen and K. Yano showed that if M*, n = 4 is a conformally
flat hypersurface of a space form, then it is quasi-umbilical. If the space form
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has constant curvature k, the curvature tensor of M" is
g(RxyZ, W) = (k4 o) (g(X, W)g(V,2Z) — g(X, Z)g(Y, 2))
+ Ba(g(X, W)u(Y)u(Z) — g(¥Y, Wu(X)u(Z)
+ g(Y, 2)u(X)u(W) — g(X, Z)u(Y)u(W))
by virtue of (1.1) and the Gauss equation, where Rxy denotes the curvature
transformation [V, Vy] — Vix.y;- The Ricci tensor S and the scalar
curvature p are then given by
(12) S=(n—-1)(k+a®) +aB)g+ (n — 2)aBu ® u,
p=n(n—1)k + a?) + 2(n — 1)aB.

Thus the tensor

Il

_ S g
L= = T3 s Dm =9

becomes
L= —%k+a*)g —ofu ® u.
Now as M™" is conformally flat, we have
(VxL)(Y,Z) — (VyL)(X,Z2) =0
and moreover we have the Codazzi equation
(Vxh)(Y,Z) — (Vyh)(X,Z) = 0.
Thus, differentiating
L+ ah = 3(a® — k)g
we find that
(1.3) B(da A u) = 0.

We now discuss briefly a problem in the theory of submanifolds of codimen-
sion 2. Let D denote the Riemannian connexion of the ambient space, V' the
Riemannian connexion of the induced metric g’, ¢+ the differential of the
immersion, and Cj, Cs unit normals orthogonal to each other with 4’, ' the
corresponding second fundamental forms and / the third fundamental form.
Suppose k' = ag’, k' = bg’, | = 0 where a and b are constants on the sub-
manifold; in particular the submanifold is umbilical. The Gauss-Weingarten
equations are

DyuxeY = ¢=V'xY + ag' (X, Y)C1 + bg' (X, Y)Cy,
DyuxCr = —aynX, Dy,xCy = —byuX.

Then setting

C_GC1+bC2 C—_é_(é*dCz
=@y G @ Ty
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we have
Dyux¥n ¥ = ¢V’ Y + (a® + 02}/ (X, V)G,

as well as, of course,

D\hxcl = —(112 + b2)%‘r’/*Xy D‘I/*XC2 = 0.

2. Proof of the Theorem. As pointed out in section 1, the conformal
flatness of M™, n = 4, implies that M" is quasi-umbilical and so by (1.1) the
Weingarten map is given by

H=o0al +Bu® U,

where I denotes the identity. Since M"™ is minimal, we have ##H = 0 and
hence 8 = —na, that is

H=o0oal —nou ® U.

Now by (1.3) we have either 8 = 0 on M" or da = yu for some function y
on M" B = 0 implies « = 0 and hence 2 = 0, that is M" is totally geodesic
in E™1 the exceptional case of the theorem (M" is a hyperplane and could
of course, be thought of as M™1 X M! where M! is a line and M"~! a space
of constant curvature zero). Thus we consider the case da = yu.

Differentiating H we have

(VxH)Y = V(@Y — nau(Y)U) — aVxV 4+ nau(VxY)U
= Xa)Y — n(Xa)u(Y)U — na(Vxu)(Y)U

and so using da = yu, the Codazzi equation becomes

21) 0= (VxH)Y — (VyH)X = Xa)Y — n(Xa)u(Y)U
— na(Vxu)(Y)U — nau(Y)VxU — (Ya)X + n(Ya)u(X)U
4+ na(Vyu)( X)U + nou(X)V U
= yu(X)Y — 2n0du(X, Y)U — nou(Y)VxU — yu(¥V)X
+ nau(X)VyU.
Taking the inner product of (2.1) with U we have du = 0; thus the distribu-
tion defined by # = 0 is integrable and so M" is locally the product in the sense
of separating coordinate systems of M"! and M! where U is tangent to M!
and M"!is an integral submanifold of the distribution orthogonal to U.
Note that da = yu implies that v = Ua and Xa = 0 for X orthogonal to U.
Moreover since du = 0 we have dy A u = 0 giving dy = (Uy)u and Xy = 0
for X orthogonal to U.
Now since du = 0 and U is unit we have

g(VyU, X) =g(VxU,U) =0,
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that is the integral curves of U are geodesics on M™. Setting ¥ = U in (2.1)
we have

2.2) 7naVxU = —vX 4+ yu(X)U.

We have already noted the case o = 0 everywhere on M". We now show
that if a does not vanish identically, then a is nowhere zero. Suppose a = 0
at a point P € M but not identically zero on any neighborhood of P. Taking
X to be any vector orthogonal to U at P in (2.2) we have that y = 0 at P.
On the other hand differentiating (2.2) with respect to ¥ with X orthogonal
to U we have

n(Ya)VxU + naVyVxU = — (Yy)X — yVX

and hence Yy = 0 at P. Differentiating successively we find that all derivatives
of a vanish at P. Now as M" is minimal in E**!, the coordinate functions are
harmonic and hence « is real analytic on M". Thusif @ = 0 at P, a = 0 every-
where, and for the non-totally geodesic case we have

A 2
23) VxU=~Lx+Lux)v.

We now focus our attention on the manifold M*!. Consider M* ! as a
submanifold of codimension 2 in E**! immersed first in M", that is
Mn—lf)Mn—L) En+l

Let V'’ denote the induced connexion and %’ the second fundamental for ¢
corresponding to the unit normal U, that is

VeaxerY = oV'xY + (X, Y)U
for X, Y tangent to M™ 1. Now by (2.3)

Y
wU = — & X,
V eux na‘p

and hence

DL*(['*XL*U = — %1 L*¢tX + h(go:-X, U)N = - n—’):x L*(th.

Also
D'.W*XN = —LtH(th = —aLuth.

Thus the Weingarten maps for M*! in E**! are H' = (y/na)l and K’ = al.

But as Xa = 0 and Xy = 0 for X orthogonal to U, « and v are constant on

M"1, hence M™! is umbilical in E**! and therefore a Euclidean sphere S* 1.
Next we show that M! is a plane curve. Since VyU = 0 we have

(24) D.yuwU = h(U, UN = —(n — 1)aN.
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Similarly
D“UN = —uwHU = (n - l)auU.

Now let X be any vector field in E*+! defined along an integral curve of U
and orthogonal to both «U and N. Then

(DwuX,wU) = (X, (n — 1)aN) = 0,
(DouvX, N) = —(X, (n — DauU) = 0,

and therefore M! is a plane curve in the plane spanned by U and N which
are normals to M™! in E™1, Hence the centers of the M"~!'s lie in this plane.

Now two such planes will intersect in either a point (the M"'s would be
concentric) or a line (giving M" as a hypersurface of revolution). It remains
to show that M" is indeed a hypersurface of revolution and to identify the
curve M1 For both tasks we will need a differential equation for the function a.

For X a unit vector orthogonal to U we compute the sectional curvature
of a plane section containing U. Using (2.3) we have

g(VUVxU - VXVUU - VIU,X]U»X)

It

(ol - 2x) + L x) - o= 1) + 2

ha

It

1 1)y’
——Uyr+ @‘i—rz)—y .
na na
Now by (1.2) the Ricci curvature in the direction of U is —a?(n — 1)? and
therefore

(n — 1)(;}& Uy — (—”fz;ﬁl’—) = —a*(m — 1)%

Thus letting s denote arc length along an integral curve of U we have

1d <n_+_u(«1q

2 2 2
no ds na ds

(2.5) ) +(m—1a"=0

along the integral curve.
We now show that M” is a hypersurface of revolution. Let

C = (v/na)ulU + aN C, = aulU — (v/na)N

1 {aZ + 72/112(12}’ y 2 {a2 + 72/71«2“2}} .
Then C, is a unit normal to an M"~!in a hyperplane E” and C; is a unit normal
to E” in E*!. Now a straightforward computation using (2.5) shows that

DuUC2 = 0;

that is the E™'s form a parallel family of hyperplanes and hence the planes of
the integral curves of U intersect in a line.
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A}

Finally let V be a unit parallel vector field in E**! in the direction of C; (i.e.
parallel to the line of centers) and let (V, «U) = cos 6 choosing the orienta-
tion such that (V, N) = — sin 8. Then

WUV, WU = (V,N)g—i

and using (2.4),
WUV, uU) = — (n — 1)a(V, N).

Thus the curvature x = df/ds of M is given by
k= —(n— 1a,

but « as a function of s is given by (2.5). Setting & = 1/»*, (2.5) becomes

d’

Eﬂ— (n—1) 2,,_ = 0.
Integrating once we have

dl‘ 2n—2 3

e = 1y + A}

where A4 is a constant. Hence the plane curve M! is given by its curvature
k(s) = —(n — 1)a(s) wherea = —1/v" and

n_ldv
§ = { Ay 1A =2 _ 113

completing the proof.

Remark. For n = 3, the conformal flatness of M™ does not yield quasi-
umbilicity. If however we assume that M?® is a minimal, quasi-umbilical
hypersurface of E%, then the conclusion of the theorem also holds with the
same proof.
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