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Abstract

Three differently defined classes of two-symbol sequences, which we call the two-distance se-
quences, the linear sequences and the characteristic sequences, have been discussed by a number
of authors and some equivalences between them are known. We present a self-contained proof
that the three classes are the same (when ambiguous cases of linear sequences are suitably in-
terpreted). Associated with each sequence is a real invariant (having a different appropriate
definition for each of the three classes). We give results on the relation between sequences with
the same invariant and on the symmetry of the sequences. The sequences are closely related
to Beatty sequences and occur as digitized straight lines and quasicrystals. They also provide
examples of minimal word proliferation in formal languages.
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1. Introduction and preliminaries

The sequences discussed in this paper are formed from two symbols, which
we take to be a and b, and are infinite in both directions. Throughout
the paper we shall regard a sequence as being a linear ordering of symbols
with no particular origin. In other words, if ¢, =5, , then {s5,} and {¢,},
although translates of each other, are the same sequence.

DEFINITIONS. A word of a sequence is a finite string of consecutive symbols
from the sequence. The length of a word is the total number of symbols it
contains. The weight (or b-weight) of a word is the number of b’s it contains.
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21 Two-distance sequences 199

A sequence is two-distance if for every length / at most two weights occur
for words of length /.

A trivial example of a two-distance sequence is the sequence (ab)™ of
alternating a’s and b’s. The weight of a word of length n is n/2,if n is
even, and (n+1)/2,if n is odd. A non-trivial example can be derived from
the Beatty sequence

& = {[nt]: ne€Z}
=...,-10,-9,-7,-5,-4,-2,0,1,3,4,6,8,9,...,

where 7 = (v/5 + 1)/2 is the golden ratio. (A definition of Beatty sequence
is given in Section 5.) The characteristic function of this sequence, defined
by
) { b ifne#,
s(n) =
a ifn¢#,

is the sequence
S =...bbababbababbabbababb ...,

where the underlined term is s(0).

Equivalently, this sequence can be obtained from the straight line y = tx
by marking an a where the line meets vertical lines of the integer grid and
a b where it meets horizontal lines of the grid (with an ab at the origin).
This is because there is an a between the b’s on consecutive horizontal grid
lines y=n and y = n+1 ifand only if [(n+1)/7] =[n/7]+1 which, since
T=1+1/7, occurs if and only if [(n + 1)1} = [n7] + 2. The sequence S is
thus exhibited as a “linear sequence”, defined at the beginning of Section 3.
Linear sequences also occur in the literature under the names “mechanical
sequences” [16], “spectra” [2], [3] and “chain codes” [4], [5].

Table 1 lists the words in S of length up to 5, together with their weights.

TABLE 1
Length Words Weights
1 a,b 0,1
2 ab, ba, bb 1,2
3 aba, abb, bab, bba 1,2
4 abab, abba, baba, babb, bbab 2,3
5 ababb, abbab, babab , babba , bbaba, bbabb 3,4
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The complete sequence S has a proportion 7t of b’s to a’s and a word
of length / has weight either [//7] or [//7] + 1 (facts which follow easily
from the definition of S as a linear sequence). The sequence S, and related
sequences with proportion 7 of b’s to a’s, occur in Penrose tilings in a
geometrical guise (see [17], [11] and [9, Section 10.6]) and are variously
known as “worm sequences”, “musical sequences”, “Fibonacci sequences” or
“Wythoff sequences”. As well as being the characteristic function of %,
the sequence S can also be generated by iterating the substitution a — ba,
b — bba, starting from ab. (Essentially because the linear transformation
X Xx+y, y— x+2y fixes the line y = 7x.) The sequence is therefore
invariant under this substitution and hence also under the reverse operation
ba — a, bba — b. An operation of the latter kind is called a “derivation”
in the literature. Since it does not change S it can be repeated indefinitely,
and consequently S is what is known as a “characteristic” sequence, defined
in detail at the beginning of Section 2.

In their Penrose tiling context, worm sequences arise as sequences of inter-
vals of two different lengths in the ratio 7 to 1. Intervals are one-dimensional
vectors, so we define a geometric sequence to be a sequence of vectors (it cor-
responds to an infinite piecewise-linear path in the space the vectors belong
to) and say that a geometric sequence is two-distance if for each / there are at
most two values for the sum of / consecutive vectors in the sequence. (It was
with this situation in mind that we chose the name “two-distance™.) It is eas-
ily seen that the two-distance geometric sequences are precisely the sequences
obtained by assigning distinct vectors to the two symbols of a two-distance
sequence of symbols.

The main object of this paper is to give a self-contained, accessible proof
that the three classes of sequences mentioned above, namely

(i) two-distance sequences (defined vig the spelling of words),
(ii) linear sequences (defined via 2-dimensional geometry),
(ii1) characteristic sequences (defined via successive substitution),

are the same. In particular, knowing that the two-distance sequences are the
characteristic ones gives a convenient test for the two-distance property.
Each of Sections 2-4 is a link in the triangle of implications that does this.
We exploit the geometry as far as we can, particularly in the characteristic-
to-linear implication of Section 4. The final five sections give the historical
background to these results, describe the alternative “cut-and-project” con-
struction for two-distance sequences (familiar from quasicrystal theory), clas-
sify the “species” of locally-identical two-distance sequences, investigate the
symmetry of two-distance sequences and suggest further questions.
Although we have not seen the three-way equivalence described above
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stated as a unified result, it cannot be said to be new: M. Morse and G. A.
Hedlund [16] show that two-distance sequences and linear sequences (in a
different guise) are the same, while C. Series [18] defines “cutting sequences”
(essentially the same as our linear sequences) and shows they are character-
istic.

We end this section with a simple lemma.

LEMMA 1. Let S be an infinite sequence of a’s and b’s.

(1) If S is two-distance then for every length | there is a number w(l) such
that every word in S of length | has weight either w(l) or w({l)+1.

(ii) If S is not two-distance then there exist | and w such that there are
words in S of length | with weights w and w+ 2.

Proor. The weights of two words of the same length in S with adjacent
starting points differ by at most one. Hence, for given /, the weights of
words of length / in S form a convex set of non-negative integers (that is,
the set contains all integers intermediate between any two in the set). Both
parts of the lemma follow.

2. Two-distance sequences are characteristic

The a-extension, Sa, of a sequence S of a’s and b’s is the sequence
obtained by replacing each » in S with ab. Only two sequences are in-
variant under o: the sequence with no b’s and the sequence with just one
b. Similarly the b-extension of S, Sf, is obtained by replacing each a in
S with ba, and only two sequences are invariant under . We are prin-
cipally interested in the inverse operations a~' and ﬂ_l . For a sequence
S without consecutive b’s the a-reduction of S, Sa™', is the sequence ob-
tained by removing the ¢ immediately preceding each ». For a sequence
S without consecutive a’s the b-reduction of S, Sp -1 , is defined similarly.
The sequences invariant under o' and ﬂ‘l are precisely those invariant
under o« and A . Finally, a sequence S is characteristic if there is an in-
finite descending chain of reductions starting from §. Those characteristic
sequences whose reductions eventually stabilize to one of the four reduction-
invariant sequences form a sub-class whose behaviour is exceptional in many
respects. The only sequence to contain neither consecutive a’s nor consec-
utive . b’s is the sequence (ab)™ of alternate a’s and b’s, which a-reduces
to b> and b-reduces to a™. So the chain of reductions associated with
a given characteristic sequence is uniquely determined except for those se-
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quences (other than a> and b™ themselves) whose reductions eventually
stabilize to a® or ™. The exceptional chains bifurcate when the sequence
(ab)™ is reached from which point the chain can continue either with the
reductions a ﬂ ﬂ_lﬂ .. orwith g~ o la7la™t L

This definition of a characterlstlc sequence is presented slightly differently
from that given by Series in [18], but the effect is the same. Suppose the
chain of reductions associated with a characteristic sequence S starts with
n ﬂ_l’s followed by an o~ (which we shall denote by ﬂ_"a_l) . Then the
b’s in SB™" are isolated, and hence every block of consecutive b’s in §
has length either n or n+ 1. Such an S is described in [18] as “almost
constant” with “value” n, and SB™" is called its “derived sequence” (it
differs only marginally from the derived sequence as defined by Morse and
Hedlund [16, Section 8]). Consequently, if we write the complete chain of
operations associated with S as f~™a Mp~"2... (where all n, are > 1,

except that n, is allowed to be 0 when the first operator is a_l) then we can
read off the successive values of S and its derivatives as ny, n,, n,, ....
In fact (as noted in [18]) [n,, n,, n,, ...] is the regular continued fraction
expansion of the proportion of b’s to a@’s in S. This sequence of successive
values is either infinite or terminates with the value oo, according as the
proportion of b’s to a’sin S is irrational or rational. When § is associated
with two different chains of operations the corresponding sequences of values
terminate with ..., n+ 1,00 and ..., n, 1, co, which represent the two
regular continued fraction expansions of the same rational number.

LEMMA 2. Every two-distance sequence is characteristic.

PROOF. A two-distance sequence S either has no consecutive a’s or no
consecutive b’s. (This is the case / = 2 of Lemma 1(i).) So S can be
reduced, and we can suppose, without loss of generality, that it can be a-
reduced. Suppose also that Sa~! is not two-distance. Then by Lemma 1(ii)
there are two words, W, and W,, of length / in Sa~! with weights w and
w + 2. Corresponding to W, there is a word of length / +w +1 in S with
weight w + 2 (obtained by inserting an extra a between each pair of b’s in
W,) and corresponding to W, there is a word of the same length / +w + 1
in § with weight w (obtained by inserting an extra a between each pair of
b’s and also to the left of the leftmost b and to the right of the rightmost
b). By Lemma 1(i) this is inconsistent with S being two-distance. Hence
every two-distance sequence S has a reduction which is also two-distance.
So S can be reduced indefinitely and is characteristic.
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3. Linear sequences are two-distance

For the classes of linear and characteristic sequences to coincide exactly
some minor (and fairly natural) modifications are needed to the definition
given in [18] of linear sequence in cases when the associated line passes
through an integer point.

Consider the square grid of vertical and horizontal lines through integer
points in the plane. On an arbitrary line L of non-negative slope mark the
points where it crosses the grid lines and label them a for a vertical grid line
and b for a horizontal one. This gives a two-way infinite sequence of a’s
and b’s. A sequence that can be obtained from a line L in this way is called
linear. We need to consider what sequences to assign to a line L that passes
through an integer point, thus crossing two grid lines at once. We distinguish
three cases.

Case 1: the line L passes through only one integer point. In this case we
associate with L both the sequences that arise from the two interpretations
ab or ba of the integer point.

Case 2: the line L passes through two integer points but is not parallel to
either axis. In this case L has rational slope and passes through an evenly
spaced infinite sequence of integer points. Clearly the finite sequence of
a’s and b’s between each successive pair of integer points is the same. We
associate three sequences with L.

(i) The sequence got by interpreting every integer point as ab. This is
the same as the sequence we would get by displacing L downwards slightly
without changing its slope. On displacing L further downwards the sequence
of a’s and b’s does not change until the next line of integer points is encoun-
tered. Since this line of integer points is congruent to the original one but
is approached from above, it follows that if we had interpreted each integer
point as ba instead of ab we would have obtained the same sequence (up to
translation). It is also the same as the sequence arising from any line parallel
to L that avoids integer points. It is periodic.

(ii) The sequence got by interpreting all integer points south-west of a
certain point as ab and all north-east of that point as ba. (Altering the
change-over point between ab’s and ba’s merely translates the sequence.)
In view of (i), this sequence is the result of joining two one-way infinite
sequences with the same period but whose ends do not match. In fact (ii)
is (i) with a finite block of terms removed. It is not itself periodic because
no translation of a periodic sequence can leave all except finitely many terms
unchanged (as translation by the period of (i) does for this sequence).

(iii) The sequence got by interpreting all integer points south-west of a cer-
tain point as ba and all north-east of that point as ab. The same comments
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apply as to (ii), although (ii) and (iii) are different sequences (see below).

Case 3: the line L passes through an integer point and is parallel to an axis.
If L is parallel to the x-axis we associate with it (i) the sequence consisting
entirely of a’s and (ii) the sequence with only one b. If it is parallel to the
y-axis we associate with it (i) the sequence consisting entirely of b’s and (ii)
the sequence with only one a.

We have seen that (i) of Case 2 is the result of a small translation of L.
The sequences (ii) and (iii) of Case 2 can be interpreted as the results of
infinitesimal rotations of L (in opposite directions). (The rotations must
be infinitesimal since a finite rotation, no matter how small, changes the
sequences fundamentally outside a finite region.) Alternatively, (i), (ii) and
(iii) are limits of linear sequences associated with lines that tend to L in
three different ways while avoiding integer points. A uniform description of
(i), (ii) and (iii) is that they are the “convex” interpretations of the integer
points on L : whenever two integer points on L have the same interpretation
all intermediate integer points have this interpretation too. One way of seeing
that none of these three sequences is a translate of either of the others is to
scan the sequences from left to right looking for the first failure of periodicity.
With (i) there is no failure, with (ii) the first failure is a b (that would need
to be an a to maintain periodicity) and with (iii) the first failure is an a.
(Theorem 2(ii) of Section 7 provides another proof that they are different,
based on the weights of words whose length is the period length.)

Likewise the sequences (i) and (ii) of Case 3 can be regarded as resulting
from an infinitesimal translation or rotation, respectively, of L. They are
also limits of linear sequences associated with lines that tend to L either by
translation or rotation.

LemMA 3. Every linear sequence is two-distance.

PRrROOF. Let S be a linear sequence associated with the line L in the plane.
Let W beawordin .S of length / and weight w and let M be the segment
of the line L whose end-points are the points corresponding to the first and
last symbols of W . If u is the length of the projection of M on the x-axis
then

l—-w—-1<u<l-w+1

with equality possible on the right only when both end-points of M are
integer points with the first corresponding to an ab in M and the second to
a ba, in which case S must be a sequence of type 2(ii). Similarly, if v is
the length of the projection of m on the y-axis then

w-1<v<w+1
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with equality possible on the right only when S is a sequence of type 2(iit).
Dividing these inequalities gives

w-—1
—_— <
l—w+17~ A,
where A is the slope of L and equality is possible only when S is of type
2(ii), and
w+1
—_— >
l—-w-17~ A

provided w # [, with equality possible only when S is of type 2(iii). (The
last inequality must be charitably interpreted when w =/-1.)

Suppose now that S has words of weights w, and w, with the same
length /, where w, < w, . Then

ol o wHl
[-w,+1 l—w -1
with strict inequality on the left unless S is of type 2(ii) and on the right
unless it is of type 2(iii). Since S cannot be of both these types, we have
w, — 1 w, +1
< )
l—w,+1 " l—-w -1

which simplifies to
w, <w, +2.

Thus the conclusion of Lemma 1(ii) is impossible for S, so S is two-
distance.

4, Characteristic sequences are linear

We start by observing that the concepts of extension and linearity can be
defined for words as well as for infinite sequences.

The a-extension, Wa, of aword W is the word got by replacing each b in
W by ab, and the b-extension, W § , is the word got by replacing each a by
ba. (For words in which every b is preceded by an a a-reduction could be
defined too, but we shall not need that concept.) If an infinite sequence S of
a’s and b’s is decomposed into words, S =...W,_ W,W,, ..., then Sa =
(W _ja)(Wa)(W,,,a)... (and similarly for #). A word is linear if it can
be obtained from a finite line segment in the plane with non-negative slope
by labelling with a’s and b’s the points where it meets vertical and horizontal
integer grid lines. With words it is not necessary to use line segments that
pass through integer points, because a small enough displacement of a finite
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line segment does not change the order of its simple intersections with grid
lines.

We shall show that every word of a characteristic sequence is linear, from
which the linearity of the complete sequence will follow by a simple com-
pactness argument.

LEMMA 4. If the word W is linear then so are Wa and WB.

PROOF. Let M be the line segment that gives rise to W . Since a small
displacement of M does not change W, we can suppose that the complete
line of which M is a part has strictly positive slope and does not pass through
any integer point. The linear mapping ¢ defined by (x, y)¢ = (x,y + x)
maps vertical lines to themselves but increases the slope of other lines by 1.
So the word derived from the line segment M¢ has the same number of a’s
as W but an extra b between each pair of neighbouring a’s. Furthermore
if W starts with an a then M¢, extended slightly to the south-west if
necessary, gives rise to a b before this a. Hence W # is linear. A similar
argument, with the role of the axes reversed, shows that Wa is also linear.

The next lemma is mentioned in [18] without proof.
LEMMA 5. Every word of a characteristic sequence is linear.

PROOF. Let S be a characteristic sequence with descending chain of reduc-
tions yl_', yz_l, y3_1, ..., where each y, is o or #, and let W be a word
of S. Since each y; ! can be regarded as an operation of deleting certain
symbols, S, = Syl_l , S, = Slyz_l s Sy = S2y3_1 , ... is a descending chain
of subsequences of S. The corresponding chain of subsequences of W is
W, =8SnNW, W,=8,nW, W, =5,nW, ..., andbeing a descending chain
of finite sequences it must eventually stabilize to a subsequence W, of W
which is unchanged by 7, +11 and later y~"s. The possibilities for W, (apart
from being empty, which is the commonest occurrence) are aa...a, baa...a
and the complementary sequences obtained by interchanging a and b. (It
cannot contain ab and ba, nor can it contain aab—making y,,, = a which
would change W,—or bba.) We denote by W; the word of S, consisting
of W, and its two neighbouring terms. Then the possibilities for Wn‘ (apart
from aa, ab, ba and bb) are aa...a,abaa...a, baa...a and their com-
plements. (The right-hand neighbour of W, cannot be a b unless W, =a
and the left-hand neighbour is also a b; the left-hand neighbour cannot be
a b when W, starts with b.) Each of these possibilities is a subword of a
word of the form aa...abaa...a orits complement. But this word is linear,
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since it can be obtained from a long line segment with small slope that meets
one horizontal grid line. Repeated application of Lemma 4 now shows that
W , which is a subword of W,'y,7,_,...7,, is also linear.

Note that W, is empty unless S is one of the exceptional characteristic
sequences whose reductions eventually stabilize.

LEMMA 6. Every characteristic sequence is linear.

ProoF. Let S be a characteristic sequence. Choose a term ¢ of S to
be the central term, and choose a sequence W,, W,, W;, ... of words with
ceW, CW,C W,C ... whose union is §. By Lemma 5 each W, arises
from some finite line segment M, , and by translating M, by an integer vector
we can suppose that the point of M, corresponding to the central term lies
on the y-axis between y =0 and y = 1. Let y; be the y-intercept of M,
and 4, its slope. Being bounded, the pairs (y;, 4,) have at least one point
of accumulation (y, 4). It remains to show that S is the linear sequence
obtained from the line L through the point (0, y) with slope A (or one of
the linear sequences obtained from L, in the ambiguous case when L passes
through an integer point).

First suppose that L passes through no integer points, and let S’ be the
sequence associated with L. Consider any W,, and suppose it has at most
n, symbols each side of the central term. There is some j > i such that
M f is so close to the central segment of L that the central 2n, + 1 symbols

of Wj are the same as the corresponding symbols of S’ . It follows that S’

contains W, as a central segment. This is true for all i, and hence s'=s.

If L passes through an integer point but is not parallel to either axis
then, similarly, for each W, we can find an M f (not passing through integer
points) whose central segment is sufficiently close to the central segment of
L to ensure that W, arises from the central segment of L with a “convex”
interpretation of the integer points in this segment. It follows that S is one
of the linear sequences associated with L (since a choice of interpretations
of integer points that is everywhere locally convex is globally convex).

Finally, suppose that L is an axis, say the x-axis. Then for each W, there
isan M f close enough to the x-axis to ensure that W, has at most one b.
Hence S has at most one b. Similarly when L is the y-axis S has at most
one 4.

We have now proved
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THEOREM 1. For a sequence S on two symbols the following are equivalent:
(i) S is two-distance;

(ii) S is linear,

(iii) S is characteristic.

5. Relation to other work

A. Markoff. Characteristic sequences occur as continued fractions in the
work of A. Markoff on Diophantine approximation [12, 13, 14]. The numbers
below 3 in the Markoff spectrum have continued fraction expansions made
up of pairs of 1’s and pairs of 2’s in the form of a periodic characteristic
sequence (with 1,1 for a and 2,2 for b). For these periodic characteristic
sequences the invariant A, defined in the next section, is rational. See [7] for
a good account of this work.

M. Morse and G. A. Hedlund. In [16] M. Morse and G. A. Hedlund study
in depth two-distance sequences (which they call “Sturmian trajectories™)
and linear sequences (which they call “mechanical sequences” and define
without reference to geometry). Their definition of mechanical sequence
excludes the sequences with no a’s and with only one a (corresponding to
vertical lines). They also define “Sturmian series” and prove ([16, Theorem
7.1]) that they are identical to Sturmian trajectories apart from excluding the
same exceptional sequences. In Sections 4 and 5 they prove that mechanical
sequences and Sturmian series are the same.

In Section 8 a “derivation” operation is defined that can be applied to any
two-distance sequence to produce a new sequence, and the proof of Theorem
8.1 shows that the derived sequence is also two-distance. So Morse and
Hedlund show that two-distance sequences can be derived arbitrarily many
times and hence are characteristic.

C. Series. In [18] C. Series discusses sequences obtained by laying straight
lines across tessellations of Euclidean or hyperbolic space, in particular linear
sequences obtained from the square grid in R? (which she calls “cutting
sequences™). She defines derivation, in a way very similar to Morse and
Hedlund, and calls a sequence “characteristic” if it can be derived arbitrarily
many times. She shows that linear sequences are characteristic but notes some
simple counter-examples to the converse. The purpose of our elaborate (but,
we believe, natural) definition of linear sequence in Section 3, associating
more than one sequence with a line through an integer point, was to be able
to exhibit all characteristic sequences as linear and so remove these counter-
examples.
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Series uses the word “linear” for finite cutting sequences and says that
characteristic sequences are limits of such finite linear sequences. Our proof
of Lemma 6 makes use of this idea.

Beatty sequences. A Beatty sequence is a sequence of the form {[na + £1}
for fixed real numbers o and B . It is also known as a spectrum (homogeneous
if f =0 and nonhomogeneous if f # 0). Beatty sequences are intimately
related to the sequences studied here, since the characteristic function of a
Beatty sequence is a linear sequence, as described in Section 1. (For this
correspondence to be exact in both directions small modifications would be
needed to the definition of Beatty sequence when o and g are rational,
paralleling the definition of linear sequence in Section 3 when the line passes
through an integer point.) A good bibliography of Beatty sequences (up to the
time it was written) can be found in [20]. M. Boshernitzan and A. S. Fraenkel
in [3] give an O(n) algorithm for deciding whether a sequence of » integers
is part of a Beatty sequence and giving ranges for a« and g if so. Their
algorithm thus gives a quick way of checking a finite sequence for the two-
distance property.

The question of covering the integers by a finite number of disjoint Beatty
sequences has been considered by several authors; see [8], [1] and [19].

Computer graphics. Two-distance sequences are identical to the chain-
codes of digitial straight lines, a connexion that is highlighted by the strip
construction described in Section 6. A. M. Bruckstein discusses the effect
of linear transformations on chain-codes in [4] and [5], which contain many
references to other work on the graphical representation of straight lines.

The number of words of length n. Non-periodic two-distance sequences
are characterized by the property that for every n > 0 the words of length
n come in precisely two different weights. (When all words of length n
have the same weight, n is a period.) Another interesting minimal property
they have is that for every n > 0 there are precisely n + 1 different words
of length n. (The fact that n + 1 words of length n is minimal for non-
periodic sequences follows from [15, Theorem 7.3]. For periodic sequences,
by contrast, the number of words of length n is bounded above by the pe-
riod length for all n.) The latter property does not quite characterize non-
periodic two-distance sequences, however, as sequences with the property can
be constructed by joining the left and right halves of certain pairs of distinct
periodic two-distance sequences. E. M. Coven and G. A. Hedlund [6] have
fully determined the class of sequences with the property. Within the class
of one-directional sequences the property does characterize the non-periodic
two-distance ones.
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6. An alternative geometric construction

Another geometric construction for two-distance sequences, related to their
construction as linear sequences, is as particular cases of the “prism patterns™
defined in [17] and [11] (which are themselves particular cases of quasicrystals
constructed by the cut-and-project method). Let 5 be an infinite strip on the
plane that meets the x-axis in an interval of length 1. Then for each integer
n there is just one integer point x, in & with y-coordinate n. There are
just two possibilities for the difference x, , —x, as n varies, namely a =
[1/]e, +e, and b = ([1/A] + 1)e, +e,, where e, , e, are the unit coordinate
vectors and A is the slope of the strip. So {x, , —x,} can be regarded as
a sequence of two symbols and is, in fact, a two-distance sequence. (This
is because for fixed / there are only the two possibilities, [//A]e, + /e, and
([1/A1+1)e,+le,, for x, ,—x, as n varies, and when x, ,—x, is known the
numbers of a’s and b’s that comprise it are known, since a and b are linearly
independent.) If an integer point lies on an edge of the strip then there is
another integer point with the same y-coordinate on the other edge. We use
only one of the integer points from each such pair, the permissible choices
of an integer point from each pair being the “convex” choices analogous to
the permissible interpretations of integer points on the line L described in
Section 3. This construction, unlike the linear sequence one, can be used
to obtain a one-dimensional geometric two-distance sequence directly, by
projecting all the integer points in the strip in the same direction. Any value
(including negative ones) for the ratio of the lengths assigned to the symbols
a and b can be achieved by a suitable choice of the projection direction.

It is not hard to see that the relation between the sequence S’ obtained
from the strip . and the linear sequence S obtained from an edge of
& is that S is obtained from S’ by the “inflation” operation a — a“b ,
b — a“*'b, where k = [1/A]. The reverse operation a“b — a, a**'b - b
by which S’ is obtained from S is very similar to the “derivations” of [16,
Section 8] and [18]. As a consequence, all two-distance sequences except that
consisting entirely of b’s and that with only one a (Morse and Hedlund’s
exceptional sequences) can be obtained from the strip construction.

7. Species

DEerFINITION. Two sequences are of the same species if every word of either
occurs in the other.
We introduced this term in [17] and [11] in the context of quasicrystals;
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though other writers on quasicrystals call this relationship being locally iso-
morphic. In formal language theory a language is a set of words, so a sequence
gives rise to the language consisting of all words that occur in it. In this set-
ting, two sequences are of the same species when they have the same language:
a species is a set of sequences with a common language. The concept extends
to a wider geometric context too and is one of a number of parallels between
geometric patterns and languages.

The simplest non-trivial example of a species is provided by the worm
sequences, mentioned in Section 1, which are the two-distance sequences
with invariant 7. Although there are uncountably many of them that are
not translationally equivalent, Lemma 7(i), below, shows that they comprise
a single species. The species of a periodic sequence, by contrast, consists of
its translates only. As we are not distinguishing between translates we regard
this as a singleton species. Since a sequence that is not two-distance has a
word in which the two-distance property fails, all sequences in the species of
a two-distance sequence are two-distance.

A two-distance cum linear cum characteristic sequence .S has a non-
negative extended real (oo is allowed) invariant 4 = A(S) attached to it
which has a different appropriate definition for each of the three ways of
regarding S. (The definitions are easily seen to be equivalent, of course.)

TWO-DISTANCE DEFINITION. A(S) is the limiting ratio of b’sto a’sin S.
The limit exists and is uniform in the sense that the proportion of b’s to a’s
in a word of length / tends to A uniformly as / — oo.

LINEAR DEFINITION. A(S) is the slope of the line that gives rise to 5.

CHARACTERISTIC DEFINITION. A(S) is the value of the continued fraction
[ny, n,, ny, ...]1 described in Section 2, where n; represents the number of
reductions of the same type performed on S between the ith and (i + l)th
alternations of reduction type.

It is clear from the first of these definitions (and also from the last) that
A is a species invariant: sequences in the same species have the same value
of A. Conversely, irrational values of A determine the species uniquely, as
we shall see. The second definition of A is the most convenient for proving
results in this direction.

LEMMA 7. (i) If A is irrational then the linear sequences with invariant 2
Jorm a single species.

(i) Let S, and S, be linear sequences that differ in a finite number of
terms. Suppose they are given by lines L, and L, such that x, € L, and
X, € L, are grid-crossing points that give rise to corresponding equal terms of

S, and S,. If A(S)) is irrational then x, — X, € z*.
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ProoF. (i) We have already remarked that every sequence in the species
of a two-distance is itself two-distance (and therefore linear) and that linear
sequences of the same species have the same invariant. Let S, and S, be
two linear sequences arising from lines L, and L, of slope A. We need
to show that every word W in S, occurs in S,. By extending W in both
directions, if necessary, there is no loss of generality in assuming that W
begins and ends with an a. (There are infinitely many a’s in S, because,
being irrational, 4 # oo, so L, meets infinitely many vertical grid lines.)
Then the segment M, of L, that gives rise to W has both ends on vertical
grid lines. There is a short interval I such that the translated line segment
M, +(0, t) gives rise to the word W forall ¢ € I. (When there is no integer
point on M, we can take 0 € I and choose I small enough so that the
parallelogram P = {x+ (0, ¢):x € M,, t € I} contains no integer point.
When there is an integer point on M, we can take 0 as the left or right
end-point of I (depending on whether the integer point is interpreted as
ba or ab in S|) and choose I small enough so that P contains no other
integer point. Since L, has irrational slope there cannot be more than one
integer point on M, .) The word W now certainly occurs in S, if there is a
segment M, of L, that is the translate by an integer vector of M, + (0, ?)
for some f € I. This last statement is equivalent to the statement that there
is an integer n such that nA lies in a certain interval modulo 1, and this in
turn is a consequence of the well known result in Diophantine approximation
that the fractional parts {nA} are uniformly distributed modulo 1 when A
is irrational. (In fact Kronecker’s existence result, see [10, Chapter XXIII,
Theorem 438], is enough for our purposes here.)

(ii) If S, and S, differ in only finitely many terms they have the same
invariant (by the two-distance definition) so L, and L, have the same slope
(by the linear definition). Without loss of generality the equal terms of S,
and S, that correspond to x, and x, are both a’s. (If not, reflect the L’s in
the line x = y.) Then x, and x, lie on vertical grid lines. Since translating
a line by an integer vector does not change the corresponding sequence, we
can also suppose, by adding integer vectors to them, that they both lie on the
y-axis between the points 0 (inclusive) and (0, 1) (exclusive). We show
that with this normalization x, = x,. If not, say x, were below x, on
the y-axis, then the Diophantine approximation argument used in (i) would
show that infinitely many vertical grid lines had their intercepts with L, and
L, separated by an integer point and infinitely many did not. Consequently
there would be infinitely many integers i > 0 such that the intercepts of
L, and L, with x = [ were separated by an integer point (i, j) but the
intercepts with x = i —1 were not. For each such i the term of S, that was
i+Jj—1 places to the right of the a arising from x; would be an a, but the
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corresponding term of S, would be a b. These infinitely many mismatches
between S, and S, would contradict the hypothesis of (ii).

We can now classify two-distance sequences into species.

THEOREM 2. (i) For irrational A the two-distance sequences with invariant
A form a single species.

(ii) For rational A # 0 or oo each of the three two-distance sequences with
invariant A forms a singleton species.

(iii) For A =0 or co each of the two two-distance sequences with invariant
A forms a singleton species.

ProoF. Part (i) is the same as (i) of Lemma 7. When A = B/A with
A, B # 0 the three two-distance sequences with invariant A can be shown
to belong to different species by considering the weights of words of length
A+ B. Every word of length 4 + B in the periodic sequence is a complete
period, so has weight B. Every word of length 4 + B in the sequence of
invariant A described in Case 2(ii) of Section 3 also occurs in the periodic
sequence of invariant 4 (so has weight B) except for the word from the b
of the last integer point ab before the change-over point to the b of the first
integer point ba after it. This word has weight B + 1. Similarly, all words
of length 4 + B in the sequence of Case 2(iii) of Section 3 have weight B
except for one with weight B — 1. Consequently the three sequences of (ii)
belong to different species distinguished by whether words of length 4 + B
all have weight B, have weights B and B+1, or have weights B and B—1.
Part (iii) is transparent.

8. Symmetry

This section identifies all symmetries and near-symmetries of two-distance
sequences. We classify mirror symmetries as a-centred, b-centred or gap-
centred (the latter being a symmetry whose centre falls between two terms of
the sequence, which are therefore both a’s or both b’s). We also consider
near-symmetries, where instead of every term in the sequence matching its
mirror image a finite number of mismatches are allowed.

First we look at a two-distance sequence S with irrational invariant. Let
its associated line be L. Clearly the mirror image of S is associated with
—L, the reflexion of L in 0. If S is symmetric or near-symmetric the linear
sequences derived from L and —L differ in at most finitely many terms, so
corresponding grid-crossing points of L and —L differ by an integer vector
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x, by Lemma 7(ii). Hence —L =L —x,so (1/2)x € L. It is also clear that
(1/2)x is the centre of the symmetry on L and that the type of symmetry
S has depends on which of the four possible residue classes modulo Z? this
half-integer point belongs to. Explicitly, if (1/2)x = (0, 1/2) (mod Zz) lies
on a vertical grid line then S is a-centred, if (1/2)x = (1/2, 0) lies on
a horizontal line then S is b-centred, if (1/2)x = (1/2, 1/2) then S is
gap-centred and finally if (1/2)x = (0, 0) is itself an integer point then S
has a gap-centred near-symmetry in which only the central pair of terms fail
to match. Conversely, it is clear that a line with irrational slope through a
half-integer point gives rise to a two-distance sequence of the corresponding
symmetry type. Since lines through points congruent modulo 7’ give rise
to identical sequences and lines of irrational slope cannot pass through two
half-integer points, we have

THEOREM 3. Each species of two-distance sequences with irrational invari-
ant contains precisely three symmetric sequences, one of each symmetry type,
and precisely two near-symmetric sequences. The near-symmetric sequences
are gap-centred and differ only in the central pair of terms which is ab in one
and ba in the other and hence is a mismatch in both sequences. This central
pair is the only mismatch in either sequence. Each of these five sequences has
only one centre of symmetry or near-symmetry.

In [11, Convention, p. 222] we made a case for not distinguishing between
the two near-symmetric sequences.

We now turn to two-distance sequences with rational invariant. Let L
be the line through 0 with rational slope B/A in its lowest terms. The
integer points on L are {(nAd, nB): n € Z} and the half-integer points
are {(n4/2, nB/2): n € Z}. The pattern of grid-crossings between 0 and
(A, B) repeats indefinitely and gives the period of the periodic two-distance
sequence derived from L, so the period has length A+ B with 4 a’sand B
b’s. Since A and B are coprime this is the shortest period. The half-integer
point (A4/2, B/2) lies on a vertical grid line if and only if A4 is even and on
a horizontal one if and only if B is even. Let h be a half-integer point not
congruent to 0 or (4/2, B/2) modulo Z*. Then h+ (A/2, B/2) belongs
to the remaining residue class of half-integer points modulo Z?. The line
L' through h and h+ (4/2, B/2) is parallel to L and contains no integer
points. It gives rise to the same periodic two-distance sequence that L does
(cf., the comments accompanying Case 2(i) in Section 3) and plainly has two
centres of symmetry h and h+(A4/2, B/2) separated by exactly half a period.
There are two corresponding centres of symmetry in every period, of course,
and since the period we have found is minimal there can be no other centres
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of symmetry. A periodic sequence cannot have a near-symmetry since one
mismatch implies an infinity of them, with separations increasing in steps of
twice the period. Since h and h+(4/2, B/2) are distinct modulo 2? from
each other and from (A4/2, B/2), when A is odd one of them is a-centred,
when B is odd one is b-centred and when AB is even one is gap-centred.

The non-periodic sequences derived from L are near-periodic in the sense
that shifting by a period changes only four terms. If 4 # 0 or oo and we
arrange that the change in interpretation of integer points occurs between 0
and (A4, B) then clearly (4/2, B/2) is a centre of exact symmetry and its
translates by multiples of (4, B) are centres of near-symmetry. The points
0 and (A4, B) are special centres of gap-centred near-symmetry with only
the central pair of terms not matching. The other integer points on the line
are also centres of near-symmetry. Since the above centres of near-symmetry
are separated by half a minimum period they comprise all centres of sym-
metry and near-symmetry. (The product of two near-symmetries is a near-
translation by twice the distance between the centres.) The near-symmetry
centres fall into two families. The centres in each family have period spacing
(that is, they are 4 + B terms apart) and are all of the same type. Notice
that owing to the temporary break in periodicity in the vicinity of the exact
symmetry centre the members of a family to the left and right of this centre
nevertheless fall into different places in the period: they fall at symmetrically
opposite places, in fact. The behaviour of the two non-periodic two-distance
sequences with invariants 0 and oo is transparent. We have

THEOREM 4. Let S be a two-distance sequence with rational invariant B/A
(in its lowest terms).

(1) If S is periodic then it is symmetric and has two centres of symmetry
per period. One of these symmetries is a-centred if and only if A is odd, one
is b-centred if and only if B is odd.

(ii) If S is non-periodic and A and B are non-zero then S has one
exact symmetry, which is a-centred if A is even, b-centred if B is even and
gap-centred otherwise (that is, it has whichever of the symmetry types does
not occur in (i)). The centre of this symmetry is one of a family of centres of
near-symmetry of the same type spaced at intervals of A+ B terms throughout
the sequence. Midway between these centres are the centres of a family of gap-
centred near-symmetries. The near-symmetries whose centres are closest each
side of the exact symmetry centre are of the type occurring in Theorem 3, with
only the central pair of terms failing to match.

(iil) The sequence with one a and the sequence with one b have every term
and every gap a centre of near-symmetry. The odd term out is the only centre
of exact symmetry.

https://doi.org/10.1017/51446788700035795 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700035795

216 W._ F. Lunnon and P. A. B. Pleasants [19]

COROLLARY. If S is a two-distance sequence and W is a word of S then
the reverse of W is also aword of S.

Morse and Hedlund noted the symmetry of non-periodic two-distance se-
quences with rational invariant (called by them “skew” Sturmian trajectories)
in [16, Theorem 3.6, Corollary].

9. What sequences are three-distance?

We have made little progress towards classifying f-distance sequences for
any f > 2, but we offer the following observations, omitting proofs (which
are straightforward).

When f > 2 there is a distinction between combinatorial f-distance se-
quences (sequences of symbols such that for each / there are at most f
words of length / such that no two are anagrams) and geometric f-distance
sequences (sequences of vectors or numbers such that for each / there are
at most f possibilities for the sum of / consecutive terms). For f = 2
we noted in Section 1 that these concepts are equivalent provided we assign
different values in the geometric sequence to the two symbols in the combi-
natorial one. (Otherwise the geometric sequence would degenerate to being
one-distance, of course.) For f > 2, however, less trivial relations between
values can cause a combinatorial sequence that is not f-distance to degener-
ate to a geometric one that is. Moreover, the f-distance geometric sequence
may not be obtainable from any f-distance combinatorial one at all. There
is an example in the next paragraph.

For d > 2, aline L in d-dimensional space not lying in any rational
hyperplane gives a linear sequence on d symbols that is not d-distance. In
fact it can be shown not to be f-distance for any f < 27t Probably
it is Zd_l-distance, though we cannot prove it. With the generalization of
the alternative geometric construction described in Section 6, a prism whose
cross-section on one coordinate hyperplane is a fundamental region for the in-
teger lattice in that hyperplane gives rise to a sequence on 277! vectors that
is geometrically 29~!_distance but is not geometrically f-distance for any
f< 2%~! Such a sequence is not combinatorially 2d_]-distance, however.
For example, in R’ if the prism has cross-section {(x,y)|0<x,y <1}
on the (x, y)-plane and axis parallel to (A, u, 1), where 0 < A, u < 1/2,
then the four vectors of which the sequence is composed are a = (0, 0, 1),
b=(1,0,1), ¢=(0,1,1) and d = (1, 1, 1). However, the five pairs of
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vectors aa, ab, ac, ad and bc all occur as adjacent terms in the sequence.
So the sequence is not combinatorially four-distance even though it is geo-
metrically four-distance. (It is the relation a +d = b + ¢ that makes this
possible.)
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