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1. Introduction. The function n(z, 0, a) defined by 

(1.1) /x(s,/3fa) = f°° /?(*, / )* , 
«Jo 

where 
(1.2) F(s, 0 = s«+^/r( /3 + l )T(a + * + 1) 

plays an important role in Volterra's theory of convolution-logarithms, and also 
in the Paley-Wiener inversion formula for the Laplace transformation. These 
and other properties of pi are briefly described in (3). 

Our aim in this paper is to find the asymptotic behaviour of \x as \z\ —» oo, a 
result which, as far as we are aware, has not been obtained. I t is of interest to 
note that the procedure to be used also gives, with some minor modification, 
the asymptotic behaviour of /* as z —> 0, a result that is well known (3, p. 219). 
When this behaviour becomes known, it becomes possible to write a significant 
generalization of Watson's Lemma. 

In 1906, Barnes (1) published a significant paper containing many asymp­
totic results of major importance. I t is of passing interest to note that this paper 
contains a general theorem from which the result of Watson's Lemma, 
published in 1918, can easily be obtained. I t would seem that this latter result 
is misnamed in mathematical literature, and might well be called Barnes' 
Lemma. From a very broad point of view, the pattern of the present paper will 
follow the pattern set by Barnes. However, the details of proof will differ so 
significantly from those used by Barnes that no detailed use will be made of the 
work of Barnes. 

The paper mentioned above obtains the complete asymptotic behaviour of a 
function defined by 

(1.3) Gfi(z,a) = £ zn/nl(n + af, 

a function that is not the same as fx(zf/3,a). However, their asymptotic 
behaviours are closely related. 

2. General considerations. In (3, p. 222), the Laplace transformation of 
/x(z, /3, a) is given by 

/•oo 

(2.1) n{z, 13, a)exp(-sz) dz = s^Qog s)"* -1, 
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with Re a > —1 and Re s > 1. The usual inversion formula yields: 

Hexp(sz)ds, 
C—ica 

where H = s~~a_1(log s)~^_1, and c is an arbitrary real number exceeding 1. 
In (2.2), z is real and positive. 

I t is possible to use Cauchy's Theorem to deform the path of integration in a 
variety of ways. The symbol L will be used as a generic symbol to denote paths 
of integration that begin and end at the point at infinity with the direction of 
approach to infinity being restricted to the third and fourth quadrants of the 
complex s-plane. The contour L must loop around the origin in a counter­
clockwise direction so that both 5 = 0 and 5 = 1 are contained within the 
region bounded by L, and the contour must not cross any cuts placed in the 
5-plane in order to make s_ a - 1(log s ) - ' 3 - 1 single-valued functions of s. The main 
purpose of the deformation is to find an integral representation of fx(z, /3, a) in 
which the restriction Re a > — 1 can be removed, and the requirement that z 
be real and positive may be relaxed. An appeal to the principle of analytic 
continuation allows one to identify the function of (2.2) with the function 
defined when the path of integration becomes L. 

Suppose that sz is replaced by s, and M is defined by a suitable path of integra­
tion L, then 

(2.3) n(z,p,a) = (27r*rV* J ^ " ^ l o g -J \xp(s) ds. 

If s is now allowed to be complex, there are three possibilities that must be 
considered when choosing the contour L. 

If A denotes an arbitrarily small fixed positive number, the paths of integra­
tion and cuts in the s-plane will be illustrated only for the case 

(2.4) 0 = arg z = TT - 2A, 

(2.5) - | T T - A = arg 5 = ^ + A. 

In this range, arg(s/s) = arg 5 — arg z, and log(s/z) = log 5 — log z. Since 
(JL(Z, /3, a) = /z(z, £, a) , no other range of arg z need be considered. The choice 
of L and the cuts in the s-plane are illustrated below (Figures 2.1-2.3). 

Although three cases are listed, permitting the possibility that arg a = 0 
allows the analysis to be accomplished in two steps. In every case it is necessary 
to discuss the asymptotic behaviour of 

(2.6) F(z,P,a) = (2TÎ)-1 f y - 1 

The path of integration, Lx, is divided into two parts Li = A + B, where A is 
that portion of L1 contained within \s\ = |s|s for a fixed 8 in 0 < 8 < 1. 
Clearly, as \z\ —* oo , A will include all of the circular portion of Li and part of 
the straight line parts of L\. Under these circumstances, B will always consist of 
two disjointed straight line portions of Li. 

log - | exp (s) ds. 

https://doi.org/10.4153/CJM-1969-112-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1969-112-4


M 0, 13, a) 1015 

\-K + Ai < |TT + A/ ^ arg 2 ^ TT - 2AX 

5-plane 

FIGURE 2.1 

a r g w S |.og0 VII log ;ll + kDi 
On i3, log(s/z) satisfies the inequalities 

(2.7) 

Since \arg(s/z)\ is uniformly bounded away from zero, |log(s/s)| is similarly 
uniformly bounded away from zero. Although |log(s/s)| becomes unbounded 
on B, it is either bounded by log|s| or by log|s|, depending on which is the 
larger. An easy estimate yields, for |s| ^ \z\8, that a fixed e > 0 must exist for 
which 

(2.8) l K l 0 g 
,Z/J 

exp(s) ds = 0(exp( — e|z|5)), 

as z —» 00, with a, 0 unrestricted. The order relation holds uniformly. 
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0 ^ a r g z ^ \TT — A2 

5-plane 

FIGURE 2.2 

On the part 4̂ of the path of integration, 

0-i 
(2.9) 5~ log1 

z/ J 
= 5 " X[log 5 - log Z] 

f 1 \—/3—1 —a—1; 

= ("logs) 5 

-0-1 

logs 

= (-logs)-*-1*-

= (- log.)^-V 

w=0 

-18-1 

log s J 

(j8 + i )»aog5r 
»! (logz)M 

X E ^ 
( | 8+ l ) . ( l og5 )» 

\(iog*)"+7j (iog2f
 + 0V(iogsr

+i ' 
as 2 —> co, for every fixed integer N 2: 0. Since Jz,1 5

_a_1(log s)Mexp(s) ds exists 
as an absolutely convergent integral for each fixed integer M ^ O , one must have 

(2.10) (2W)-1 J s ~ l l o z l \ exp(5)rf5 

= (-log«)•*•{ t ^ T ^ ? ë Ç f *— W ^ e x p ^ ' 
L w=o w: ^lOg z ; *J A 

+ o V(logS)"+1A as z —» co . 
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+ A3 < JT + A4 

5-plane 

FIGURE 2.3 

However, by the same argument used to obtain (2.8), 

(2.11) (2iri)-1 f s~a-\logs)nexp(s)ds 
J A 

= {2iri)~l I ^"""^(log s)nexp(s) ds + 0(exp( —e|s|5)), a s2 -> 00 , 
J L 

and therefore 

(2.12) (27ri)~1 f ^ ( l o g ^ e x p ^ ) ^ 

= (-l)*Dn[T-\a + 1)] + 0(exp(-e | s | s ) ) , 

as z —* 00, where Z> = d/da. These results coupled together yield: 

(,13, n,^~i-^±^xVt+1)]' 
as z —» 00 in 0 ^ arg z ^ ? r - 2Ai. Further, this implies that 

(2.4) ,fe A., ~ A - „ . , -g tf+1Jg!2;+»' 
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providing z —> oo in \-K + A/ ^ arg z ^ T — 2Ai, a result that automatically 
implies the formula holds if 

— 7T + 2Ai ^ arg s ^ — \ir — A/. 

I t is of passing interest to note that, with minor modification, the same proof 
can be used to prove that (2.14) holds when z —» 0 in an unrestricted manner, 
a result obtained in a different way in (3, p. 219). 

In Figure 2.3, y will now be the portion of L3 which is not part of Li. I t will 
therefore consist of the part encircling s = z, and the two straight lines 
necessary to join y to L\. If we replace s by (1 — s)z, then 

(2.15) (2 i r t ) -y I 5 LlogWJ exp{s)ds 

= (2wi)-1expz f (1 - s r a _ 1 [ l o g ( l - s)rf^1exp(-sz) ds 

with y' as shown below. 
The radius of the circle can still be chosen arbitrarily in 0 < R < 1. 

s-plane 

FIGURE 2.4 

s— 1— a 
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Within and on y\ (1 — 5)~a~1[log(l — s)]~^_1 has a convergent expansion of 
the form 

oo 

(2.16) (1 - s ^ D o g t f - s)-"-1 = (s)"-1 £ an(-s)n, \s\ < 1, 

where 

TIL (2.17) 

Hence 

<^{(1_sr-.[!fc)T»> 

(2.18) (1 - *)—'[logtt - s))-*-1 = ( - * ) " " - ( E an(-s)n + i? J , 

where for any fixed integer N ^ 0, JR# is a regular function of 5 in \s\ < 1, and 

(2.19) \RN\ S K\s\N+\ \s\ < 1, 

for some fixed K > 0. Hence 

(2.20) (2W)"1 f (1 - ^ " "^ [ loga - 5)]- / 3"1exp(-^) ds 

= E ^(27ri)-X f ( - 5 ) ^ " 1 e x p ( ~ ^ ) 

+ ( 2 « ) - 1 f ( - ^ r / S " X e x p ( - 2 5 ) 
%)y> 

ds 

ds. 

If the integer N is chosen so that N — Re(@ — 1) > 0, then the circular part 
of y', for the remainder term only, can be shrunk to zero, leaving only straight 
line segments embracing the line joining s = 0 to s = 1 — a. By using (2.19), 
one obtains 

(2. 21) f (-s)-^1RNexp(-zs)ds\ g 2K f " | s ^ e x p ( - z s ) ds ^ 2K 

2K 
~ \z\N+1~8' 

providing that |arg(se~^)| < %w, or — \-K + 6 < arg s < \-K + 0, and this 
range will embrace the transitional region arg z — \TT. 

Again by an argument used before, 

(2.22) (2Tri)"1 f (-s)n-*-1exp(-zs)ds= (2Tri)"1 { (-sf-^expi-zs) 
Jy' J T, 

ds 

+ 0(exp(-e |z | ) ) , as \z\ -> oo , 
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where L consists of y' and the extension of the straight line portions to infinity 
in the direction arg s = —6. This yields: 

(2.23) (2^)"1 f (-sf-^expi-zs) ds 

Coupling these results together yields: 

(2.24) (2*-;)-1 f (1 - *r a - 1 [ log(l - s)rp~lexp(-zs) 

T ( £ + 1 - n) 

+ 0(exp( — e\z\)), as s —> co­

ds 

a„ 

Hence 
fo r(|8 + 1 -n)zn' 

(2.25) (2TXTV J / ^ I ( * Q exp(s) ds 

/exp(s) z r(/3 + 
On 1 
1 - n)zn\ ' 

as z —» oo in 0 ^ arg z < Jx + 0. The exponential nature of this behaviour 
allows one then to write 

(2.26) n(z,P,a) ~z0exp(z) [t r(/3 + l - »)zn. 

+ *"(-iogs)- ~o »! ( - log 2)" J ' 

as z —> oo in ]arg z\ ^ w — 2A, for any fixed A in 0 < A < %w, a result that is 
uniform in the approach of z —•» oo. The meaning of this result is of course that 
for any fixed integer M ^ 0 and N à 0, 

(2.27) tx(z,(3,a) = /exp(s) [t an 3 + 0 V?+vJ r(/3 + l - w)s" 

. T f , (0 + l)J?"[r-x(a + 1)] / 1 \ ] 
+ , (-logs) [ ^ w!(_ logs)- + OK^zj^Jl' 

as 2 —> oo. Clearly, when |arg z\ ^ %ir — A, the exponential dominates, and 
every term of the first series dominates every term of the second series. If 
|arg z\ ^ \-K + A, the converse situation holds. When arg z —> ±§7r, no clear-
cut dominance exists except under special circumstances. If Re a > Re /3, then 
the first series can be dropped. 

3. Two special cases. When /? = — m — 1, m = 0, 1, 2, 3, . . . , then all of 
the terms of the first series of (2.26) are zero, the second series has only a finite 
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number of terms. In this case, there is no singularity at 5 = 1, and 

(3.1) n(z, 0,a) = (27TJ)-1 f s-a~\logs)mexp(sz) ds 

= (_1)«2?»| {2iri)~1 J 5-
a-1exp(sz) ds \ 

= (-l)mDm\ Î 

( iv» ,« n™,vV (Amr-^a + 1)1 (-D •« -Oog») L VJ—(io g 2 )" • 

and this exact well-known expansion adequately describes the asymptotic 
behaviour of /JL(Z, 0, a) as z —» oo or z —» 0 in an unrestricted manner. 

The case /3 = m,m = 0, 1, 2, . . . , is also a special case in that the singularity 
at 5 = 1 is a pole of order m + 1, and is no longer a branch point. The path of 
integration to determine /z can be broken into two parts: a path of the form L± 
and a complete circle around s = 1. There exists a rather elegant evaluation of 
the integral that encircles s = 1, the value is of course the residue of the inte­
grand at this pole. 

The circle around 5 = 1 is deformed into the path of integration y shown 
below: 

s-plane 

FIGURE 3.1 

We consider 

(3.2) / = (2W)"1 j J—1 (log s r m _ 1 expfe) ds, m = 0 ,1, 2 , . . . , Re a < 0. 

Since the integral is now regular on the real axis 0 < 5 < 1, the integral along 
the straight line portions vanishes. The substitution 5 = e~w yields: 

(3.3) / = (2wi)-1 J (—wTm-1exp(zé-w + aw) dw, 
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where L begins at w = oo, loops the origin in the counter-clockwise manner, 
and ends at w = oo. Since 

oo n 

(3.4) exp(ze~w) - exp(aw) = 22 —,exp[—(n — a)w], 
n=0 W" 

1 oo n 

(3.5) / = —. Z -. in - a)n 

ml ~o ni K 

1 m I\»\ «3 n r 

= A £ W ( - « ) " l " r « V > where 0 = 
d_ 
dz ' 

By the Leibniz rule, one obtains 

(3.6) I = 2?dm(z-aez)/ml, 

with this exact evaluation, the condition on a can now be removed. This result 
implies: 

« 7 ï (, „ \ z" /)"V.--".-^ I ( - i r + 1 ^ y ( - m - l \ Dn[V-\a + 1)] 

0.7) „(*,«,«)~^* (2 o + (logzr+i„ço V « y — ô ^ r — • 
where m = 0, 1, 2, . . . . 

This result can be used to correct a result given in (3), where a statement 
equivalent to 

(3.8) v{z, a) = M (s, 0, a) = ez + 0 (**-*), as 2 -> oo 

in |argjs| ^ T is given, for every integer N ^ 0. For m = 0, (3.7) yields: 

"(z*a) = e° ~ îk~z i ï>TT) + °(i)l ' 
and the result given in (3.8) is incorrect since za/\og z ^ 0(z?-N), for any non-
negative integer N. Although it is not difficult to pick up the error in the 
outlined proof that leads to (3.8), this hardly seems worth the effort in view of 
the rather simple derivation of the correct result for v(z, a) , which one could 
obtain by the method used in the present paper. 

4. Conclusion. In the earlier work of Barnes (1) and the later work of 
Watson (4), the success of finding the asymptotic behaviour of a Laplace 
integral j Lf(t)exp(zt) dt depended on fit) having at most a branch-point 
singularity at / = 0 of the form /a. I t is now clear from the asymptotic behaviour 
of JU(JS, j3, a) that this work can be extended to allow f(t) to have combinations 
of branch-point singularities and logarithmic singularities of the form /a(log t)p. 
Although some work along these lines has already been accomplished by 
Erdélyi (2), further generalization is possible. 
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