
2 A Guided Tour

This chapter gives an overview ofOCaml bywalking through a series of small examples

that cover most of the major features of the language. This should provide a sense of

what OCaml can do, without getting too deep into any one topic.

Throughout the book we're going to use Base, a more full-featured and capable

replacement for OCaml's standard library. We'll also use utop, a shell that lets you

type in expressions and evaluate them interactively. utop is an easier-to-use version of

OCaml's standard toplevel (which you can start by typing ocaml at the command line).

These instructions will assume you're using utop, but the ordinary toplevel should

mostly work �ne.

Before going any further, make sure you've followed the steps in the installation

page1 .

Base and Core
Base comes alongwith another, yet more extensive standard library replacement, called

Core. We're going to mostly stick to Base, but it's worth understanding the di�erences

between these libraries.

• Base is designed to be lightweight, portable, and stable, while providing all of the

fundamentals you need from a standard library. It comes with a minimum of

external dependencies, so Base just takes seconds to build and install.

• Core extends Base in a number of ways: it adds new data structures, like heaps, hash-

sets, and functional queues; it provides types to represent times and time-zones;

well-integrated support for e�cient binary serializers; and much more. At the

same time, it has many more dependencies, and so takes longer to build, and will

add more to the size of your executables.

As of the version of Base and Core used in this book (version v0.14), Core is

less portable than Base, running only on UNIX-like systems. For that reason, there is

another package, Core_kernel, which is the portable subset of Core. That said, in the

latest stable release, v0.15 (which was released too late to be adopted for this edition

of the book) Core is portable, and Core_kernel has been deprecated. Given that, we

don't use Core_kernel in this text.

1 http://dev.realworldocaml.org/install.html

https://doi.org/10.1017/9781009129220.004 Published online by Cambridge University Press

http://dev.realworldocaml.org/install.html
https://doi.org/10.1017/9781009129220.004

10 A Guided Tour

Before getting started, make sure you have a working OCaml installation so you can

try out the examples as you read through the chapter.

2.1 OCaml as a Calculator

Our �rst step is to open Base:

open Base;;

By opening Base, we make the de�nitions it contains available without having to

reference Base explicitly. This is required for many of the examples in the tour and in

the remainder of the book.

Now let's try a few simple numerical calculations:

3 + 4;;
- : int = 7

8 / 3;;
- : int = 2

3.5 +. 6.;;
- : float = 9.5

30_000_000 / 300_000;;
- : int = 100

3 * 5 > 14;;
- : bool = true

By and large, this is pretty similar to what you'd �nd in any programming language,

but a few things jump right out at you:

• We needed to type ;; in order to tell the toplevel that it should evaluate an expression.

This is a peculiarity of the toplevel that is not required in standalone programs

(though it is sometimes helpful to include ;; to improve OCaml's error reporting,

by making it more explicit where a given top-level declaration was intended to

end).

• After evaluating an expression, the toplevel �rst prints the type of the result, and

then prints the result itself.

• OCaml allows you to place underscores in the middle of numeric literals to improve

readability. Note that underscores can be placed anywhere within a number, not

just every three digits.

• OCaml carefully distinguishes between float, the type for �oating-point numbers,

and int, the type for integers. The types have di�erent literals (6. instead of 6)

and di�erent in�x operators (+. instead of +), and OCaml doesn't automatically

cast between these types. This can be a bit of a nuisance, but it has its bene�ts,

since it prevents some kinds of bugs that arise in other languages due to unex-

pected di�erences between the behavior of int and float. For example, in many

languages, 1 / 3 is zero, but 1.0 /. 3.0 is a third. OCaml requires you to be

explicit about which operation you're using.

We can also create a variable to name the value of a given expression, using the let

keyword. This is known as a let binding:

https://doi.org/10.1017/9781009129220.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.004

2.2 Functions and Type Inference 11

let x = 3 + 4;;
val x : int = 7

let y = x + x;;
val y : int = 14

After a new variable is created, the toplevel tells us the name of the variable (x or

y), in addition to its type (int) and value (7 or 14).

Note that there are some constraints on what identi�ers can be used for variable

names. Punctuation is excluded, except for _ and ', and variables must start with a

lowercase letter or an underscore. Thus, these are legal:

let x7 = 3 + 4;;
val x7 : int = 7

let x_plus_y = x + y;;
val x_plus_y : int = 21

let x' = x + 1;;
val x' : int = 8

The following examples, however, are not legal:

let Seven = 3 + 4;;
Line 1, characters 5-10:

Error: Unbound constructor Seven

let 7x = 7;;
Line 1, characters 5-7:

Error: Unknown modifier 'x' for literal 7x

let x-plus-y = x + y;;
Line 1, characters 7-11:

Error: Syntax error

This highlights that variables can't be capitalized, can't begin with numbers, and

can't contain dashes.

2.2 Functions and Type Inference

The let syntax can also be used to de�ne a function:

let square x = x * x;;
val square : int -> int = <fun>

square 2;;
- : int = 4

square (square 2);;
- : int = 16

Functions in OCaml are values like any other, which is why we use the let keyword

to bind a function to a variable name, just as we use let to bind a simple value like an

integer to a variable name. When using let to de�ne a function, the �rst identi�er after

the let is the function name, and each subsequent identi�er is a di�erent argument to

the function. Thus, square is a function with a single argument.

Now that we're creating more interesting values like functions, the types have gotten

more interesting too. int -> int is a function type, in this case indicating a function

that takes an int and returns an int. We can also write functions that take multiple

arguments. (Reminder: Don't forget open Base, or these examples won't work!)

https://doi.org/10.1017/9781009129220.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.004

12 A Guided Tour

let ratio x y =
Float.of_int x /. Float.of_int y;;

val ratio : int -> int -> float = <fun>

ratio 4 7;;
- : float = 0.571428571428571397

Note that in OCaml, function arguments are separated by spaces instead of by

parentheses and commas, which is more like the UNIX shell than it is like traditional

programming languages such as Python or Java.

The preceding example also happens to be our �rst use of modules. Here,

Float.of_int refers to the of_int function contained in the Float module. This

is di�erent from what you might expect from an object-oriented language, where dot-

notation is typically used for accessing a method of an object. Note that module names

always start with a capital letter.

Modules can also be opened to make their contents available without explicitly

qualifying by the module name. We did that once already, when we opened Base

earlier. We can use that to make this code a little easier to read, both avoiding the

repetition of Float above, and avoiding use of the slightly awkward /. operator. In

the following example, we open the Float.O module, which has a bunch of useful

operators and functions that are designed to be used in this kind of context. Note that

this causes the standard int-only arithmetic operators to be shadowed locally.

let ratio x y =
let open Float.O in
of_int x / of_int y;;

val ratio : int -> int -> float = <fun>

We used a slightly di�erent syntax for opening the module, since we were only

opening it in the local scope inside the de�nition of ratio. There's also a more concise

syntax for local opens, as you can see here.

let ratio x y =
Float.O.(of_int x / of_int y);;

val ratio : int -> int -> float = <fun>

The notation for the type-signature of a multiargument function may be a little

surprising at �rst, but we'll explain where it comes from when we get to function

currying in Chapter 3.2.2 (Multiargument Functions). For the moment, think of the

arrows as separating di�erent arguments of the function, with the type after the �nal

arrow being the return value. Thus, int -> int -> float describes a function that

takes two int arguments and returns a float.

We can also write functions that take other functions as arguments. Here's an

example of a function that takes three arguments: a test function and two integer

arguments. The function returns the sum of the integers that pass the test:

let sum_if_true test first second =
(if test first then first else 0)
+ (if test second then second else 0);;

val sum_if_true : (int -> bool) -> int -> int -> int = <fun>

If we look at the inferred type signature in detail, we see that the �rst argument

https://doi.org/10.1017/9781009129220.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.004

2.2 Type Inference 13

is a function that takes an integer and returns a boolean, and that the remaining two

arguments are integers. Here's an example of this function in action:

let even x =
x % 2 = 0;;

val even : int -> bool = <fun>

sum_if_true even 3 4;;
- : int = 4

sum_if_true even 2 4;;
- : int = 6

Note that in the de�nition of even, we used = in two di�erent ways: once as part

of the let binding that separates the thing being de�ned from its de�nition; and once

as an equality test, when comparing x % 2 to 0. These are very di�erent operations

despite the fact that they share some syntax.

2.2.1 Type Inference

As the types we encounter get more complicated, you might ask yourself howOCaml is

able to �gure them out, given that we didn't write down any explicit type information.

OCaml determines the type of an expression using a technique called type inference,

by which the type of an expression is inferred from the available type information

about the components of that expression.

As an example, let's walk through the process of inferring the type of sum_if_true:

1.. OCaml requires that both branches of an if expression have the same type, so the

expression

if test first then first else 0

requires that firstmust be the same type as 0, and so firstmust be of type int.

Similarly, from

if test second then second else 0

we can infer that second has type int.

2.. test is passed first as an argument. Since first has type int, the input type of

test must be int.

3.. test first is used as the condition in an if expression, so the return type of test

must be bool.

4.. The fact that + returns int implies that the return value of sum_if_truemust be int.

Together, that nails down the types of all the variables, which determines the overall

type of sum_if_true.

Over time, you'll build a rough intuition for how the OCaml inference engine works,

which makes it easier to reason through your programs. You can also make it easier to

understand the types of a given expression by adding explicit type annotations. These

annotations don't change the behavior of an OCaml program, but they can serve as

useful documentation, as well as catch unintended type changes. They can also be

helpful in �guring out why a given piece of code fails to compile.

Here's an annotated version of sum_if_true:

https://doi.org/10.1017/9781009129220.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.004

14 A Guided Tour

let sum_if_true (test : int -> bool) (x : int) (y : int) : int =
(if test x then x else 0)
+ (if test y then y else 0);;

val sum_if_true : (int -> bool) -> int -> int -> int = <fun>

In the above, we've marked every argument to the function with its type, with the

�nal annotation indicating the type of the return value. Such type annotations can be

placed on any expression in an OCaml program.

2.2.2 Inferring Generic Types

Sometimes, there isn't enough information to fully determine the concrete type of a

given value. Consider this function..

let first_if_true test x y =
if test x then x else y;;

val first_if_true : ('a -> bool) -> 'a -> 'a -> 'a = <fun>

first_if_true takes as its arguments a function test, and two values, x and y,

where x is to be returned if test x evaluates to true, and y otherwise. So what's the

type of the x argument to first_if_true? There are no obvious clues such as arithmetic

operators or literals to narrow it down. That makes it seem like first_if_true would

work on values of any type.

Indeed, if we look at the type returned by the toplevel, we see that rather than choose

a single concrete type, OCaml has introduced a type variable 'a to express that the

type is generic. (You can tell it's a type variable by the leading single quote mark.) In

particular, the type of the test argument is ('a -> bool), which means that test is

a one-argument function whose return value is bool and whose argument could be of

any type 'a. But, whatever type 'a is, it has to be the same as the type of the other two

arguments, x and y, and of the return value of first_if_true. This kind of genericity

is called parametric polymorphism because it works by parameterizing the type in

question with a type variable. It is very similar to generics in C# and Java.

Because the type of first_if_true is generic, we can write this:

let long_string s = String.length s > 6;;
val long_string : string -> bool = <fun>

first_if_true long_string "short" "loooooong";;
- : string = "loooooong"

As well as this:

let big_number x = x > 3;;
val big_number : int -> bool = <fun>

first_if_true big_number 4 3;;
- : int = 4

Both long_string and big_number are functions, and each is passed to

first_if_true with two other arguments of the appropriate type (strings in the �rst

example, and integers in the second). But we can't mix andmatch two di�erent concrete

types for 'a in the same use of first_if_true:

https://doi.org/10.1017/9781009129220.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.004

2.3 Tuples 15

first_if_true big_number "short" "loooooong";;
Line 1, characters 26-33:

Error: This expression has type string but an expression was expected

of type

int

In this example, big_number requires that 'a be instantiated as int, whereas "short"

and "loooooong" require that 'a be instantiated as string, and they can't both be right

at the same time.

Type Errors Versus Exceptions

There's a big di�erence in OCaml between errors that are caught at compile time and

those that are caught at runtime. It's better to catch errors as early as possible in the

development process, and compilation time is best of all.

Working in the toplevel somewhat obscures the di�erence between runtime and

compile-time errors, but that di�erence is still there. Generally, type errors like this

one:

let add_potato x =
x + "potato";;

Line 2, characters 9-17:

Error: This expression has type string but an expression was expected

of type

int

are compile-time errors (because + requires that both its arguments be of type int),

whereas errors that can't be caught by the type system, like division by zero, lead to

runtime exceptions:

let is_a_multiple x y =
x % y = 0;;

val is_a_multiple : int -> int -> bool = <fun>

is_a_multiple 8 2;;
- : bool = true

is_a_multiple 8 0;;
Exception:

(Invalid_argument "8 % 0 in core_int.ml: modulus should be positive")

The distinction here is that type errors will stop you whether or not the o�end-

ing code is ever actually executed. Merely de�ning add_potato is an error, whereas

is_a_multiple only fails when it's called, and then, only when it's called with an input

that triggers the exception.

2.3 Tuples, Lists, Options, and Pattern Matching

2.3.1 Tuples

So far we've encountered a handful of basic types like int, float, and string, as

well as function types like string -> int. But we haven't yet talked about any data

structures. We'll start by looking at a particularly simple data structure, the tuple. A

https://doi.org/10.1017/9781009129220.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.004

16 A Guided Tour

tuple is an ordered collection of values that can each be of a di�erent type. You can

create a tuple by joining values together with a comma.

let a_tuple = (3,"three");;
val a_tuple : int * string = (3, "three")

let another_tuple = (3,"four",5.);;
val another_tuple : int * string * float = (3, "four", 5.)

For the mathematically inclined, * is used in the type t * s because that type

corresponds to the set of all pairs containing one value of type t and one of type s. In

other words, it's the Cartesian product of the two types, which is why we use *, the

symbol for product.

You can extract the components of a tuple using OCaml's pattern-matching syntax,

as shown below:

let (x,y) = a_tuple;;
val x : int = 3

val y : string = "three"

Here, the (x,y) on the left-hand side of the let binding is the pattern. This pattern lets

us mint the new variables x and y, each bound to di�erent components of the value

being matched. These can now be used in subsequent expressions:

x + String.length y;;
- : int = 8

Note that the same syntax is used both for constructing and for pattern matching on

tuples.

Pattern matching can also show up in function arguments. Here's a function for com-

puting the distance between two points on the plane, where each point is represented

as a pair of floats. The pattern-matching syntax lets us get at the values we need with

a minimum of fuss:

let distance (x1,y1) (x2,y2) =
Float.sqrt ((x1 -. x2) **. 2. +. (y1 -. y2) **. 2.);;

val distance : float * float -> float * float -> float = <fun>

The **. operator used above is for raising a �oating-point number to a power.

This is just a �rst taste of pattern matching. Pattern matching is a pervasive tool in

OCaml, and as you'll see, it has surprising power.

Operators in Base and the Stdlib
OCaml's standard library and Base mostly use the same operators for the same things,

but there are some di�erences. For example, in Base, **. is �oat exponentiation, and

** is integer exponentiation, whereas in the standard library, ** is �oat exponentiation,

and integer exponentiation isn't exposed as an operator.

Base does what it does to be consistent with other numerical operators like *. and

*, where the period at the end is used to mark the �oating-point versions.

In general, Base is not shy about presenting di�erent APIs than OCaml's standard

library when it's done in the service of consistency and clarity.

https://doi.org/10.1017/9781009129220.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.004

2.3 Constructing Lists with :: 17

2.3.2 Lists

Where tuples let you combine a �xed number of items, potentially of di�erent types,

lists let you hold any number of items of the same type. Consider the following example:

let languages = ["OCaml";"Perl";"C"];;
val languages : string list = ["OCaml"; "Perl"; "C"]

Note that you can't mix elements of di�erent types in the same list, unlike tuples:

let numbers = [3;"four";5];;
Line 1, characters 18-24:

Error: This expression has type string but an expression was expected

of type

int

The List Module

Base comes with a Listmodule that has a rich collection of functions for working with

lists. We can access values from within a module by using dot notation. For example,

this is how we compute the length of a list:

List.length languages;;
- : int = 3

Here's something a little more complicated. We can compute the list of the lengths

of each language as follows:

List.map languages ~f:String.length;;
- : int list = [5; 4; 1]

List.map takes two arguments: a list and a function for transforming the elements

of that list. It returns a new list with the transformed elements and does not modify the

original list.

Notably, the function passed to List.map is passed under a labeled argument ~f.

Labeled arguments are speci�ed by name rather than by position, and thus allow you

to change the order in which arguments are presented to a function without changing

its behavior, as you can see here:

List.map ~f:String.length languages;;
- : int list = [5; 4; 1]

We'll learn more about labeled arguments and why they're important in Chapter 3

(Variables and Functions).

Constructing Lists with ::

In addition to constructing lists using brackets, we can use the list constructor :: for

adding elements to the front of a list:

"French" :: "Spanish" :: languages;;
- : string list = ["French"; "Spanish"; "OCaml"; "Perl"; "C"]

Here, we're creating a new and extended list, not changing the list we started with,

as you can see below:

languages;;
- : string list = ["OCaml"; "Perl"; "C"]

https://doi.org/10.1017/9781009129220.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.004

18 A Guided Tour

Semicolons Versus Commas

Unlike many other languages, OCaml uses semicolons to separate list elements in lists

rather than commas. Commas, instead, are used for separating elements in a tuple. If

you try to use commas in a list, you'll see that your code compiles but doesn't do quite

what you might expect:

["OCaml", "Perl", "C"];;
- : (string * string * string) list = [("OCaml", "Perl", "C")]

In particular, rather than a list of three strings, what we have is a singleton list

containing a three-tuple of strings.

This example uncovers the fact that commas create a tuple, even if there are no

surrounding parens. So, we can write:

1,2,3;;
- : int * int * int = (1, 2, 3)

to allocate a tuple of integers. This is generally considered poor style and should be

avoided.

The bracket notation for lists is really just syntactic sugar for ::. Thus, the following

declarations are all equivalent. Note that [] is used to represent the empty list and that

:: is right-associative:

[1; 2; 3];;
- : int list = [1; 2; 3]

1 :: (2 :: (3 :: []));;
- : int list = [1; 2; 3]

1 :: 2 :: 3 :: [];;
- : int list = [1; 2; 3]

The :: constructor can only be used for adding one element to the front of the list,

with the list terminating at [], the empty list. There's also a list concatenation operator,

@, which can concatenate two lists:

[1;2;3] @ [4;5;6];;
- : int list = [1; 2; 3; 4; 5; 6]

It's important to remember that, unlike ::, this is not a constant-time operation.

Concatenating two lists takes time proportional to the length of the �rst list.

List Patterns Using Match

The elements of a list can be accessed through pattern matching. List patterns are based

on the two list constructors, [] and ::. Here's a simple example:

let my_favorite_language (my_favorite :: the_rest) =
my_favorite;;

Lines 1-2, characters 26-16:

Warning 8 [partial-match]: this pattern-matching is not exhaustive.

Here is an example of a case that is not matched:

[]

val my_favorite_language : 'a list -> 'a = <fun>

https://doi.org/10.1017/9781009129220.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.004

2.3 Recursive List Functions 19

By pattern matching using ::, we've isolated and named the �rst element of the list

(my_favorite) and the remainder of the list (the_rest). If you know Lisp or Scheme,

what we've done is the equivalent of using the functions car and cdr to isolate the �rst

element of a list and the remainder of that list.

As you can see, however, the toplevel did not like this de�nition and spit out a

warning indicating that the pattern is not exhaustive. This means that there are values

of the type in question that won't be captured by the pattern. The warning even gives an

example of a value that doesn't match the provided pattern, in particular, [], the empty

list. If we try to run my_favorite_language, we'll see that it works on nonempty lists

and fails on empty ones:

my_favorite_language ["English";"Spanish";"French"];;
- : string = "English"

my_favorite_language [];;
Exception: "Match_failure //toplevel//:1:26"

You can avoid these warnings, and more importantly make sure that your code

actually handles all of the possible cases, by using a match expression instead.

A match expression is a kind of juiced-up version of the switch statement found

in C and Java. It essentially lets you list a sequence of patterns, separated by pipe

characters. (The one before the �rst case is optional.) The compiler then dispatches to

the code following the �rst matching pattern. As we've already seen, the pattern can

mint new variables that correspond to parts of the value being matched.

Here's a new version of my_favorite_language that uses match and doesn't trigger

a compiler warning:

let my_favorite_language languages =
match languages with
| first :: the_rest -> first
| [] -> "OCaml" (* A good default! *);;

val my_favorite_language : string list -> string = <fun>

my_favorite_language ["English";"Spanish";"French"];;
- : string = "English"

my_favorite_language [];;
- : string = "OCaml"

The preceding code also includes our �rst comment. OCaml comments are bounded

by (* and *) and can be nested arbitrarily and covermultiple lines. There's no equivalent

of C++-style single-line comments that are pre�xed by //.

The �rst pattern, first :: the_rest, covers the case where languages has at least

one element, since every list except for the empty list can be written down with one

or more ::'s. The second pattern, [], matches only the empty list. These cases are

exhaustive, since every list is either empty or has at least one element, a fact that is

veri�ed by the compiler.

Recursive List Functions

Recursive functions, or functions that call themselves, are an important part of working

in OCaml or really any functional language. The typical approach to designing a

recursive function is to separate the logic into a set of base cases that can be solved

https://doi.org/10.1017/9781009129220.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.004

20 A Guided Tour

directly and a set of inductive cases, where the function breaks the problem down into

smaller pieces and then calls itself to solve those smaller problems.

When writing recursive list functions, this separation between the base cases and

the inductive cases is often done using pattern matching. Here's a simple example of

a function that sums the elements of a list:

let rec sum l =
match l with
| [] -> 0 (* base case *)
| hd :: tl -> hd + sum tl (* inductive case *);;

val sum : int list -> int = <fun>

sum [1;2;3];;
- : int = 6

Following the common OCaml idiom, we use hd to refer to the head of the list and

tl to refer to the tail. Note that we had to use the rec keyword to allow sum to refer to

itself. As you might imagine, the base case and inductive case are di�erent arms of the

match.

Logically, you can think of the evaluation of a simple recursive function like sum

almost as if it were a mathematical equation whose meaning you were unfolding step

by step:

sum [1;2;3]
= 1 + sum [2;3]
= 1 + (2 + sum [3])
= 1 + (2 + (3 + sum []))
= 1 + (2 + (3 + 0))
= 1 + (2 + 3)
= 1 + 5
= 6

This suggests a reasonable if not entirely accurate mental model for what OCaml is

actually doing to evaluate a recursive function.

We can introduce more complicated list patterns as well. Here's a function for

removing sequential duplicates:

let rec remove_sequential_duplicates list =
match list with
| [] -> []
| first :: second :: tl ->
if first = second then
remove_sequential_duplicates (second :: tl)

else
first :: remove_sequential_duplicates (second :: tl);;

Lines 2-8, characters 5-61:

Warning 8 [partial-match]: this pattern-matching is not exhaustive.

Here is an example of a case that is not matched:

_::[]

val remove_sequential_duplicates : int list -> int list = <fun>

Again, the �rst arm of the match is the base case, and the second is the inductive

case. Unfortunately, this code has a problem, as indicated by the warning message.

In particular, it doesn't handle one-element lists. We can �x this warning by adding

another case to the match:

https://doi.org/10.1017/9781009129220.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.004

2.3 Options 21

let rec remove_sequential_duplicates list =
match list with
| [] -> []
| [x] -> [x]
| first :: second :: tl ->
if first = second then
remove_sequential_duplicates (second :: tl)

else
first :: remove_sequential_duplicates (second :: tl);;

val remove_sequential_duplicates : int list -> int list = <fun>

remove_sequential_duplicates [1;1;2;3;3;4;4;1;1;1];;
- : int list = [1; 2; 3; 4; 1]

Note that this code used another variant of the list pattern, [hd], to match a list with

a single element. We can do this to match a list with any �xed number of elements; for

example, [x;y;z] will match any list with exactly three elements and will bind those

elements to the variables x, y, and z.

In the last few examples, our list processing code involved a lot of recursive functions.

In practice, this isn't usually necessary. Most of the time, you'll �nd yourself happy to

use the iteration functions found in the Listmodule. But it's good to know how to use

recursion for when you need to iterate in a new way.

2.3.3 Options

Another common data structure in OCaml is the option. An option is used to express

that a value might or might not be present. For example:

let divide x y =
if y = 0 then None else Some (x / y);;

val divide : int -> int -> int option = <fun>

The function divide either returns None if the divisor is zero, or Some of the result

of the division otherwise. Some and None are constructors that let you build optional

values, just as :: and [] let you build lists. You can think of an option as a specialized

list that can only have zero or one elements.

To examine the contents of an option, we use pattern matching, as we did with tuples

and lists. Let's see how this plays out in a small example. We'll write a function that

takes a �lename, and returns a version of that �lename with the �le extension (the part

after the dot) downcased. We'll base this on the function String.rsplit2 to split the

string based on the rightmost period found in the string. Note that String.rsplit2 has

return type (string * string) option, returning None when no character was found

to split on.

let downcase_extension filename =
match String.rsplit2 filename ~on:'.' with
| None -> filename
| Some (base,ext) ->
base ^ "." ^ String.lowercase ext;;

val downcase_extension : string -> string = <fun>

List.map ~f:downcase_extension
["Hello_World.TXT"; "Hello_World.txt"; "Hello_World"];;

https://doi.org/10.1017/9781009129220.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.004

22 A Guided Tour

- : string list = ["Hello_World.txt"; "Hello_World.txt";

"Hello_World"]

Note that we used the ^ operator for concatenating strings. The concatenation

operator is provided as part of the Stdlib module, which is automatically opened in

every OCaml program.

Options are important because they are the standard way in OCaml to encode a

value that might not be there; there's no such thing as a NullPointerException in

OCaml. This is di�erent from most other languages, including Java and C#, where

most if not all data types are nullable, meaning that, whatever their type is, any given

value also contains the possibility of being a null value. In such languages, null is

lurking everywhere.

In OCaml, however, missing values are explicit. A value of type string * string

always contains two well-de�ned values of type string. If you want to allow, say, the

�rst of those to be absent, then you need to change the type to string option * string.

As we'll see in Chapter 8 (Error Handling), this explicitness allows the compiler to

provide a great deal of help in making sure you're correctly handling the possibility of

missing data.

2.4 Records and Variants

So far, we've only looked at data structures that were prede�ned in the language, like

lists and tuples. But OCaml also allows us to de�ne new data types. Here's a toy

example of a data type representing a point in two-dimensional space:

type point2d = { x : float; y : float }

point2d is a record type, which you can think of as a tuple where the individual

�elds are named, rather than being de�ned positionally. Record types are easy enough

to construct:

let p = { x = 3.; y = -4. };;
val p : point2d = {x = 3.; y = -4.}

And we can get access to the contents of these types using pattern matching:

let magnitude { x = x_pos; y = y_pos } =
Float.sqrt (x_pos **. 2. +. y_pos **. 2.);;

val magnitude : point2d -> float = <fun>

The pattern match here binds the variable x_pos to the value contained in the x �eld,

and the variable y_pos to the value in the y �eld.

We can write this more tersely using what's called �eld punning. In particular, when

the name of the �eld and the name of the variable it is bound to coincide, we don't

have to write them both down. Using this, our magnitude function can be rewritten as

follows:

let magnitude { x; y } = Float.sqrt (x **. 2. +. y **. 2.);;
val magnitude : point2d -> float = <fun>

https://doi.org/10.1017/9781009129220.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.004

2.4 Records and Variants 23

Alternatively, we can use dot notation for accessing record �elds:

let distance v1 v2 =
magnitude { x = v1.x -. v2.x; y = v1.y -. v2.y };;

val distance : point2d -> point2d -> float = <fun>

And we can of course include our newly de�ned types as components in larger

types. Here, for example, are some types for modeling di�erent geometric objects that

contain values of type point2d:

type circle_desc = { center: point2d; radius: float }
type rect_desc = { lower_left: point2d; width: float; height:

float }
type segment_desc = { endpoint1: point2d; endpoint2: point2d }

Now, imagine that you want to combine multiple objects of these types together as

a description of a multi-object scene. You need some uni�ed way of representing these

objects together in a single type. Variant types let you do just that:

type scene_element =
| Circle of circle_desc
| Rect of rect_desc
| Segment of segment_desc

The | character separates the di�erent cases of the variant (the �rst | is optional),

and each case has a capitalized tag, like Circle, Rect or Segment, to distinguish that

case from the others.

Here's how we might write a function for testing whether a point is in the interior

of some element of a list of scene_elements. Note that there are two let bindings in a

row without a double semicolon between them. That's because the double semicolon

is required only to tell utop to process the input, not to separate two declarations

let is_inside_scene_element point scene_element =
let open Float.O in
match scene_element with
| Circle { center; radius } ->
distance center point < radius

| Rect { lower_left; width; height } ->
point.x > lower_left.x && point.x < lower_left.x + width
&& point.y > lower_left.y && point.y < lower_left.y + height

| Segment _ -> false

let is_inside_scene point scene =
List.exists scene
~f:(fun el -> is_inside_scene_element point el);;

val is_inside_scene_element : point2d -> scene_element -> bool = <fun>

val is_inside_scene : point2d -> scene_element list -> bool = <fun>

is_inside_scene {x=3.;y=7.}
[Circle {center = {x=4.;y= 4.}; radius = 0.5 }];;

- : bool = false

is_inside_scene {x=3.;y=7.}
[Circle {center = {x=4.;y= 4.}; radius = 5.0 }];;

- : bool = true

You might at this point notice that the use of match here is reminiscent of how

we used match with option and list. This is no accident: option and list are just

https://doi.org/10.1017/9781009129220.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.004

24 A Guided Tour

examples of variant types that are important enough to be de�ned in the standard

library (and in the case of lists, to have some special syntax).

We also made our �rst use of an anonymous function in the call to List.exists.

Anonymous functions are declared using the fun keyword, and don't need to be explic-

itly named. Such functions are common in OCaml, particularly when using iteration

functions like List.exists.

The purpose of List.exists is to check if there are any elements of the list in

question for which the provided function evaluates to true. In this case, we're using

List.exists to check if there is a scene element within which our point resides.

Base and Polymorphic Comparison
One other thing to notice was the fact that we opened Float.O in the de�nition

of is_inside_scene_element. That allowed us to use the simple, un-dotted in�x

operators, but more importantly it brought the �oat comparison operators into scope.

When using Base, the default comparison operators work only on integers, and you

need to explicitly choose other comparison operators when you want them. OCaml

also o�ers a special set of polymorphic comparison operators that can work on almost

any type, but those are considered to be problematic, and so are hidden by default by

Base. We'll learn more about polymorphic compare in Chapter 4.6 (Terser and Faster

Patterns).

2.5 Imperative Programming

The code we've written so far has been almost entirely pure or functional, which

roughly speaking means that the code in question doesn't modify variables or values

as part of its execution. Indeed, almost all of the data structures we've encountered are

immutable, meaning there's no way in the language to modify them at all. This is a

quite di�erent style from imperative programming, where computations are structured

as sequences of instructions that operate by making modi�cations to the state of the

program.

Functional code is the default in OCaml, with variable bindings and most data

structures being immutable. But OCaml also has excellent support for imperative

programming, includingmutable data structures like arrays and hash tables, and control-

�ow constructs like for and while loops.

2.5.1 Arrays

Perhaps the simplest mutable data structure in OCaml is the array. Arrays in OCaml

are very similar to arrays in other languages like C: indexing starts at 0, and accessing

or modifying an array element is a constant-time operation. Arrays are more compact

in terms of memory utilization than most other data structures in OCaml, including

lists. Here's an example:

https://doi.org/10.1017/9781009129220.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.004

2.5 Mutable Record Fields 25

let numbers = [| 1; 2; 3; 4 |];;
val numbers : int array = [|1; 2; 3; 4|]

numbers.(2) <- 4;;
- : unit = ()

numbers;;
- : int array = [|1; 2; 4; 4|]

The .(i) syntax is used to refer to an element of an array, and the <- syntax is for

modi�cation. Because the elements of the array are counted starting at zero, element

numbers.(2) is the third element.

The unit type that we see in the preceding code is interesting in that it has only

one possible value, written (). This means that a value of type unit doesn't convey

any information, and so is generally used as a placeholder. Thus, we use unit for the

return value of an operation like setting a mutable �eld that communicates by side

e�ect rather than by returning a value. It's also used as the argument to functions that

don't require an input value. This is similar to the role that void plays in languages like

C and Java.

2.5.2 Mutable Record Fields

The array is an important mutable data structure, but it's not the only one. Records,

which are immutable by default, can have some of their �elds explicitly declared as

mutable. Here's an example of a mutable data structure for storing a running statistical

summary of a collection of numbers.

type running_sum =
{ mutable sum: float;
mutable sum_sq: float; (* sum of squares *)
mutable samples: int;

}

The �elds in running_sum are designed to be easy to extend incrementally, and suf-

�cient to compute means and standard deviations, as shown in the following example.

let mean rsum = rsum.sum /. Float.of_int rsum.samples;;
val mean : running_sum -> float = <fun>

let stdev rsum =
Float.sqrt
(rsum.sum_sq /. Float.of_int rsum.samples -. mean rsum **. 2.);;

val stdev : running_sum -> float = <fun>

We also need functions to create and update running_sums:

let create () = { sum = 0.; sum_sq = 0.; samples = 0 };;
val create : unit -> running_sum = <fun>

let update rsum x =
rsum.samples <- rsum.samples + 1;
rsum.sum <- rsum.sum +. x;
rsum.sum_sq <- rsum.sum_sq +. x *. x;;

val update : running_sum -> float -> unit = <fun>

create returns a running_sum corresponding to the empty set, and update rsum x

https://doi.org/10.1017/9781009129220.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.004

26 A Guided Tour

changes rsum to re�ect the addition of x to its set of samples by updating the number

of samples, the sum, and the sum of squares.

Note the use of single semicolons to sequence operations. When we were working

purely functionally, this wasn't necessary, but you start needing it when you're writing

imperative code.

Here's an example of create and update in action. Note that this code uses

List.iter, which calls the function ~f on each element of the provided list:

let rsum = create ();;
val rsum : running_sum = {sum = 0.; sum_sq = 0.; samples = 0}

List.iter [1.;3.;2.;-7.;4.;5.] ~f:(fun x -> update rsum x);;
- : unit = ()

mean rsum;;
- : float = 1.33333333333333326

stdev rsum;;
- : float = 3.94405318873307698

Warning: the preceding algorithm is numerically naive and has poor precision in

the presence of many values that cancel each other out. This Wikipedia article on

algorithms for calculating variance2 provides more details.

2.5.3 Refs

We can create a single mutable value by using a ref. The ref type comes prede�ned

in the standard library, but there's nothing really special about it. It's just a record type

with a single mutable �eld called contents:

let x = { contents = 0 };;
val x : int ref = {contents = 0}

x.contents <- x.contents + 1;;
- : unit = ()

x;;
- : int ref = {contents = 1}

There are a handful of useful functions and operators de�ned for refs to make them

more convenient to work with:

let x = ref 0 (* create a ref, i.e., { contents = 0 } *);;
val x : int ref = {Base.Ref.contents = 0}

!x (* get the contents of a ref, i.e., x.contents *);;
- : int = 0

x := !x + 1 (* assignment, i.e., x.contents <- ... *);;
- : unit = ()

!x;;
- : int = 1

There's nothing magical with these operators either. You can completely reimple-

ment the ref type and all of these operators in just a few lines of code:

type 'a ref = { mutable contents : 'a };;
type 'a ref = { mutable contents : 'a; }

let ref x = { contents = x };;

2 http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance

https://doi.org/10.1017/9781009129220.004 Published online by Cambridge University Press

http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
https://doi.org/10.1017/9781009129220.004

2.5 For and While Loops 27

val ref : 'a -> 'a ref = <fun>

let (!) r = r.contents;;
val (!) : 'a ref -> 'a = <fun>

let (:=) r x = r.contents <- x;;
val (:=) : 'a ref -> 'a -> unit = <fun>

The 'a before the ref indicates that the ref type is polymorphic, in the same way

that lists are polymorphic, meaning it can contain values of any type. The parentheses

around ! and := are needed because these are operators, rather than ordinary functions.

Even though a ref is just another record type, it's important because it is the standard

way of simulating the traditional mutable variables you'll �nd in most languages. For

example, we can sum over the elements of a list imperatively by calling List.iter to

call a simple function on every element of a list, using a ref to accumulate the results:

let sum list =
let sum = ref 0 in
List.iter list ~f:(fun x -> sum := !sum + x);
!sum;;

val sum : int list -> int = <fun>

This isn't the most idiomatic way to sum up a list, but it shows how you can use a

ref in place of a mutable variable.

Nesting lets with let and in
The de�nition of sum in the above examples was our �rst use of let to de�ne a new

variable within the body of a function. A let paired with an in can be used to introduce

a new binding within any local scope, including a function body. The in marks the

beginning of the scope within which the new variable can be used. Thus, we could

write:

let z = 7 in
z + z;;

- : int = 14

Note that the scope of the let binding is terminated by the double-semicolon, so

the value of z is no longer available:

z;;
Line 1, characters 1-2:

Error: Unbound value z

We can also have multiple let bindings in a row, each one adding a new variable

binding to what came before:

let x = 7 in
let y = x * x in
x + y;;

- : int = 56

This kind of nested let binding is a common way of building up a complex ex-

pression, with each let naming some component, before combining them in one �nal

expression.

https://doi.org/10.1017/9781009129220.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.004

28 A Guided Tour

2.5.4 For and While Loops

OCaml also supports traditional imperative control-�ow constructs like for and while

loops. Here, for example, is some code for permuting an array that uses a for loop:

let permute array =
let length = Array.length array in
for i = 0 to length - 2 do
(* pick a j to swap with *)
let j = i + Random.int (length - i) in
(* Swap i and j *)
let tmp = array.(i) in
array.(i) <- array.(j);
array.(j) <- tmp

done;;
val permute : 'a array -> unit = <fun>

This is our �rst use of the Random module. Note that Random starts with a �xed seed,

but you can call Random.self_init to choose a new seed at random.

From a syntactic perspective, you should note the keywords that distinguish a for

loop: for, to, do, and done.

Here's an example run of this code:

let ar = Array.init 20 ~f:(fun i -> i);;
val ar : int array =

[|0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18;

19|]

permute ar;;
- : unit = ()

ar;;
- : int array =

[|12; 16; 5; 13; 1; 6; 0; 7; 15; 19; 14; 4; 2; 11; 3; 8; 17; 9; 10;

18|]

OCaml also supports while loops, as shown in the following function for �nding

the position of the �rst negative entry in an array. Note that while (like for) is also a

keyword:

let find_first_negative_entry array =
let pos = ref 0 in
while !pos < Array.length array && array.(!pos) >= 0 do
pos := !pos + 1

done;
if !pos = Array.length array then None else Some !pos;;

val find_first_negative_entry : int array -> int option = <fun>

find_first_negative_entry [|1;2;0;3|];;
- : int option = None

find_first_negative_entry [|1;-2;0;3|];;
- : int option = Some 1

As a side note, the preceding code takes advantage of the fact that &&, OCaml's

�and� operator, short-circuits. In particular, in an expression of the form expr1&&expr2,

expr2 will only be evaluated if expr1 evaluated to true. Were it not for that, then the

preceding function would result in an out-of-bounds error. Indeed, we can trigger that

out-of-bounds error by rewriting the function to avoid the short-circuiting:

https://doi.org/10.1017/9781009129220.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.004

2.6 Compiling and Running 29

let find_first_negative_entry array =
let pos = ref 0 in
while
let pos_is_good = !pos < Array.length array in
let element_is_non_negative = array.(!pos) >= 0 in
pos_is_good && element_is_non_negative

do
pos := !pos + 1

done;
if !pos = Array.length array then None else Some !pos;;

val find_first_negative_entry : int array -> int option = <fun>

find_first_negative_entry [|1;2;0;3|];;
Exception: (Invalid_argument "index out of bounds")

The or operator, ||, short-circuits in a similar way to &&.

2.6 A Complete Program

So far, we've played with the basic features of the language via utop. Now we'll show

how to create a simple standalone program. In particular, we'll create a program that

sums up a list of numbers read in from the standard input.

Here's the code, which you can save in a �le called sum.ml. Note that we don't

terminate expressions with ;; here, since it's not required outside the toplevel.

open Base
open Stdio

let rec read_and_accumulate accum =
let line = In_channel.input_line In_channel.stdin in
match line with
| None -> accum
| Some x -> read_and_accumulate (accum +. Float.of_string x)

let () =
printf "Total: %F\n" (read_and_accumulate 0.)

This is our �rst use of OCaml's input and output routines, and we needed to open

another library, Stdio, to get access to them. The function read_and_accumulate is a

recursive function that uses In_channel.input_line to read in lines one by one from

the standard input, invoking itself at each iteration with its updated accumulated sum.

Note that input_line returns an optional value, with None indicating the end of the

input stream.

After read_and_accumulate returns, the total needs to be printed. This is done

using the printf command, which provides support for type-safe format strings. The

format string is parsed by the compiler and used to determine the number and type

of the remaining arguments that are required. In this case, there is a single formatting

directive, %F, so printf expects one additional argument of type float.

https://doi.org/10.1017/9781009129220.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.004

30 A Guided Tour

2.6.1 Compiling and Running

We'll compile our program using dune, a build system that's designed for use with

OCaml projects. First, we need to write a dune-project �le to specify the project's

root directory.

(lang dune 2.9)
(name rwo-example)

Then, we need to write a dune �le to specify the speci�c thing being built. Note that a

single project will have just one dune-project �le, but potentiallymany sub-directories

with di�erent dune �les.

In this case, however, we just have one:

(executable
(name sum)
(libraries base stdio))

All we need to specify is the fact that we're building an executable (rather than a

library), the name of the executable, and the name of the libraries we depend on.

We can now invoke dune to build the executable.

$ dune build sum.exe

The .exe su�x indicates that we're building a native-code executable, which we'll

discuss more in Chapter 5 (Files, Modules, and Programs). Once the build completes,

we can use the resulting program like any command-line utility. We can feed input to

sum.exe by typing in a sequence of numbers, one per line, hitting Ctrl-D when we're

done:

$./_build/default/sum.exe
1
2
3
94.5
Total: 100.5

More work is needed to make a really usable command-line program, including

a proper command-line parsing interface and better error handling, all of which is

covered in Chapter 16 (Command-Line Parsing).

2.7 Where to Go from Here

That's it for the guided tour! There are plenty of features left and lots of details to

explain, but we hope that you now have a sense of what to expect from OCaml, and

that you'll be more comfortable reading the rest of the book as a result.

https://doi.org/10.1017/9781009129220.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.004

