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REPRESENTATION OF ALGEBRAS WITH INVOLUTION
GEORGE MAXWELL

Introduction. Let K be a field with an involution J. A x-algebra over K
is an associative algebra A with an involution * satisfying (x.a)* = o’.a*.
A large class of examples may be obtained as follows. Let (V, ¢) be an her-
mitian space over K consisting of a vector space V and a left hermitian
(w.r.t. J) form ¢ on V which is nondegenerate in the sense that ¢(V, ) = 0
implies v = 0. An endomorphism f of V may have an adjoint f* w.r.t. ¢,
defined by o(f(),v) = ¢(u,f*(®)); due to the nondegeneracy of ¢, f* is
unique if it exists. The set B(V, ¢) of all endomorphisms of V which do have
an adjoint is easily verified to be a *-algebra.

We shall prove, conversely, that every #-algebra A satisfying the mild
restriction

1) Aa = 0 implies ¢ = 0

can be imbedded as a #-subalgebra of B (V, ¢) for some hermitian space (V, ¢).
Secondly, we shall investigate which *-algebras can still be imbedded in
B(V, ¢) if ¢ is assumed to be “positive’” in a certain sense.

Results of this type are well-known in the context of Banach algebras with
involution; e.g., Gelfand and Naimark [2], Schatz [5]. Our methods of proof
owe much to these sources.

1. The general case. Suppose 4 is a *-algebra over K. The dual space
A" also has an ‘“involution’ s+ s*, where s*(a) = s(a*)’. If s is hermitian
w.r.t. this involution, (a, b) v s(a*b) is a left hermitian form on 4. Its radical
is the left ideal

(2) I, =1{b¢c A|s(abd) =0foralla € 4}

of 4, so that it induces a nondegenerate left hermitian form ¢, on the left
A-module A4 /I,. Since s((xa)*b) = s(a* (x*b)), we have ¢;(x.a, b) = ¢,(a, x*.b).
In other words, left multiplication by x has an adjoint w.r.t. ¢; equal to left
multiplication by x*.

Suppose J is nontrivial; let F be the fixed field of J and 6 € K such that
¢’ = 0. The set A" of hermitian elements of A4 is clearly a vector space over
F. Every a € A can be written uniquely in the form

3) a = a1+ 0.a,,
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where a; and @, € A", by taking
a1 = (0.a* —6.a)/(0 —67),as = (a — a*)/(6 — ¢).

An hermitian functional of 4 maps 4%into F and, conversely, every functional
¢t of A" induces an hermitian functional s of 4, by defining s(a) to be ¢(a;) +
0t(a2), relative to the decomposition (3). Symbolically, we have shown that
A= 4,
If J is trivial, hermitian functionals are those which vanish on the subspace
$={a —a*|a € A} of A. In this case, 4" = (4/4%)".

ProposiTION 1. Let I(A) = N I, taken over all hermitian functionals s of A.
If J is nontrivial, A.I(A) = 0. If J is trivial, A.I(4) is a x-ideal of A con-
tained im A° and such that (A.I(4))* = 0.

Proof. Suppose J is nontrivial. Let ¢ € 4 be such that ba % 0 for some
b € A. We can write ba = c¢1 + 0.c; with ¢1, ca € A" There exists a functional
t of A* for which either £(c;) or £(cs) is nonzero. Extending {to an hermitian
functional s of 4, we conclude thats(ba) # 0sothata € I,. Hence 4.I1(4) =0.

Suppose J is trivial. If x € I(4) and a € A4, we have ax € A°® since, other-
wise, we could find an hermitian functional s such that s(ax) 5% 0. In particular,
(ax)* = — ax; since A.I(A) is already a left ideal, this shows that it is in
fact a *-ideal. If x € 4.I(4) and ¢ € A we have, as before, (ax)* = — ax or
xa* = ax since now x* = — x. Suppose x,y € A.I1(4) and a € A. Then

(xy)a* = a(xy) = (ax)y = (xa*)y = x(a*y) = x(ya) = (xy)a
so that xy(e — a*) = 0. Since 4.1(4) C A?, this implies that (4.1(4))* = 0.

When J is trivial, it may happen that 4.1(4) # 0. For example, suppose
char(K) ¢ 2 and let A be the algebra K[T]/(1?) with the involution
(@ + BT)* = a — BT. Then I(4) consists of all multiples of 7'

To rectify this difficulty, we turn to the skew-hermitian functionals of 4.
If ¢ is such a functional, one can verify that

((e1, x2), (y1, ¥2)) = t(x1*ys — x2*y1)

is an hermitian form on 4 @ A with radical I, @ I,, where I, is given by (2),
and therefore induces a nondegenerate hermitian form ¢, on the left 4-module
A/I, @ A/I,. As before, left multiplication by x has an adjoint w.r.t. ¢,
equal to left multiplication by x*.

Let I’(4) = N I,, taken over all skew-hermitian {unctionals of 4. Suppose
J is trivial and char(K) # 2; skew-hermitian functionals are those which
vanish on elements of the form ¢ + a*. If x € 4, and ax # 0 we know from
Proposition 1 that (ex)* = — ax £ ax so that f(ax) £ 0 for some skew-
hermitian functional ¢; hence x ¢ I,. In other words,

(4) A (I(A) N T'(4)) =0

is true in every case other than when J is trivial and char(XK) = 2.
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PROPOSITION 2. Suppose A is a *-algebra over K satisfying (1). There exists
an hermitian space (V, ¢) over K and an injective *-algebra homomorphism
N A—B(V,0). If Ais finite-dimensional,V may be chosen to be finite-dimensional,
except possibly in the case when J is trivial and char(K) = 2.

Proof. Suppose that either J is nontrivial or char(K) # 2. We conclude
from (1) and (4) that I(4) N I'(4) = 0. Therefore there exists a family
{s;} of hermitian or skew-hermitian functionals of 4 for which N I, = 0.
If A4 is finite-dimensional, we can choose a finite family with this property.
Let V;beeither A/l if s;is hermitianor A /I, @ A /I, if s;is skew-hermitian
andputV =@V, e = @ e If Aisfinite-dimensional,sois V. Fora € 4, define
Aa) to be left multiplication by a; it follows from the preceding discussion
that A(a)* exists and equals Na*). If N(a) = 0, we have a4 C N I, = 0 so
that 4a* = 0. By (1), ¢* = 0 and hence ¢ = 0.

Suppose now that J is trivial and char(K) = 2. The rational function
field K(X) possesses the involution J'(f(X)) = f(1/X). The algebra 4’ =
A ®x K(X) with the involution (¢ ®f)* = ¢* ® J'(f) is a *-algebra over
K (X). Since J' is nontrivial, the first part of the proof shows the existence of
an imbedding \': 4’ — B(V”, ¢’) for some hermitian space (17, ¢’) over K (X).
Choose a nonzero hermitian functional ¢ of K(X), regarded as a *-algebra
over K. Let VV be V' regarded as a vector space over K and ¢ the left hermitian
form ¢(x,y) = o(¢' (x,¥)) on V. For a fixed x # 0, ¢'(x, y) assumes every
value in K(X) so that ¢(¢'(x,y)) # 0 for some y; i.e., ¢ is nondegenerate.
Clearly B(V’, ¢') C B(V, ¢) and * means the same in both algebras. Com-
bining this inclusion with the canonical injection 4 — A4’, we obtain the desired
homomorphism \: 4 — B(V, ¢).

It seems reasonable to conjecture that the second assertion of Proposition 2
holds without exception. This is true, for example, if K has a finite algebraic
extension K’ which has a nontrivial involution leaving K fixed.

2. Positive algebras. In this section we shall assume that F, the fixed
field of J, is formally real and that K is either F or F(1/(—£)), where ¢ is a
sum of squares in F; in the latter case, J(v/(—§)) = — v/ (—¢&). Let Q be a
fixed algebraic closure of K, {Ryx}rca the set of real closures of Fin @, and Jy
the involution of @ which leaves R, fixed and sends /(—1) to —+/(—1).
The assumption on £ implies that J, is always an extension of J. We shall
denote by F* the set of elements in F which are sums of squares. If « € K,
it is clear that o’a € F*.

A left hermitian form ¢ on a vector space V over K is called positive if
¢, v) € Ftforallv € V. Starting from the fact that o (v 4+ ., v + a.u) € Ft
for all @ € K, the usual argument for the Cauchy-Schwarz inequality proves

PRroPOSITION 3. If ¢ is positive, then:
(@) ¢, v) o(u, u) — o, u) e, u) € F*;
(b) ¢ is nondegenerate if and only if ¢(v,v) = 0 implies v = 0.
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For each A € \, let V\ = V ®k @, regarded as a vector space over €, and
o\ the left hermitian form (w.r.t. J5) on V5 defined by

QD)\(Y) ®av u ® B) = J)‘(Oé)qo(i), M)B
ProposITION 4. If ¢ is positive, so is ¢y
Proof. Let

n

w=zv¢®az

i=1
be an element of Vy. We may assume ¢ (21, 1) 3 0 since, otherwise, ¢ (v1, #) = 0

for all # by Proposition 3(z) and the element v; ® a; makes no contribution
to the value of ¢\(w, w). One can then write

w=9 QB+ 2 v Qay
i>1
where

I

v/ v, — (@(v1,v:)/0(v1, v1))01

and

By = ; (o1, 92) /o (01, 12))acs

Induction on 7 shows that ¢)(w, w) € R\t since this is clearly true for # = 1.

We call a *-algebra A positive if it can be imbedded as a *-subalgebra of
B(v, ¢) for some positive hermitian space (V, ¢). Our aim is to find intrinsic
conditions for positivity.

A functional s of A4 is called positive if it is hermitian and such that
s(a*a) € Ftiloralla € A.Let IT(4) = N I, taken over all positive function-
als of A. Applying Proposition 3(a) to the positive left hermitian form (a, ) —
s(a*b) on A, we conclude that

(5) s(a*a)s (b*b) — s(a*b)’s(a*b) € F+.
Therefore in this case
6) I;=1{bc A|s@®*) = 0}.

ProposiTION 5. IT(A4) is an ideal of A. If A has a unit element, I+ (A4) s
closed under *.

Proof. Being an intersection of left ideals, IT(4) is clearly a left ideal.
Suppose x € I*(4); for every positive functional s of 4 and every a € 4,
the functional s'(b) = s(a*ba) is also positive so that s(a*x*xa) =
s((xa)*(xa)) = 0. In view of (6), we must have xa € It(4); i.e., IT(4) is
also a right ideal.

In particular, s(xx*xx*) = 0 for each positive functional s. If 4 has a unit
element then, using (5) with a = 1 and b = xx*, we conclude that s(xx*) = 0
so that x* € It(4) by (6).
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PRrOPOSITION 6. A *-algebra A satisfying (1) is positive if and only of It (4) =0.

Proof. Suppose IT(4) = 0; since a positive functional s yields a positive
form ¢, and a direct sum of positive forms is still positive, the same method
as used in the proof of Proposition 2 shows that A4 is positive. (Furthermore,
if 4 is finite-dimensional, the space V can also be chosen finite-dimensional.)

Conversely, suppose A4 is a s#-subalgebra of B(V, ¢) for some positive
hermitian space (V, ¢). For each v € V, s,(a) = ¢(v, a(v)) is a positive
hermitian functional of 4. If x € It(4),

sp(x*x) = o0, x*x(v)) = ¢(x(@), x(®)) = 0
forallv € V so that x(v) = 0;1i.e,x = 0.

We now turn to an altogether different condition for positivity. Call a
x-algebra A anisotropic if it satisfies

) a*a = 0 implies ¢ = 0
and totally anisotropic if the algebra Ay = 4 ®x 2, with the involution

(@ ®a)* = a* @ h(e), is anisotropic for all N € A. Either property is
obviously preserved in passing to a *-subalgebra.

PRrROPOSITION 7. A positive x-algebra A is totally anisotropic.

Proof. In view of the preceding remark, it suffices to verify that B(V, ¢) is
totally anisotropic if (V, ¢) is a positive hermitian space over K. On the
other hand, we have an injective *-algebra homomorphism

m: B(V, ¢) Q@ — B(Vy, o),

given by 7(f ® «) @ ® 8) = f(¥) ® B, so that again it suffices to prove that
B(Vy, @) is anisotropic. Suppose a*a = 0 holds in B(TV4, ¢n); then

er(@*a(),7) = er(a(®),a@)) = 0.

Since ¢, is positive by Proposition 4, ¢ () = 0 forallv € V;i.e., a = 0.
As a partial converse, we have
ProPOSITION 8. A finite-dimensional totally anisotropic *-algebra A is positive.

Proof. Starting from (7), a well-known argument [3] shows that 4 has no
nil ideals—in our context, this means that 4 must be semi-simple. Furthermore,
if B is a minimal ideal of 4, so is B* and thus either B* = B or B*B = 0;
but the latter possibility is again excluded by (7). Since a product of positive
algebras is easily seen to be positive, it is sufficient to prove the assertion in
the case when A4 is simple.

Let tr: A — K be the reduced trace. If ¢ € 4, we may compute tr(¢*a) in
the extended algebra 4,. Suppose A\ = Endq(V) for some finite-dimensional
vector space V over Q. It is well-known [1] that the involution induced by
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* on Endg (V) must be the adjoint involution corresponding to a nondegenerate
left hermitian or skew-hermitian (w.r.t. J)) form ¢ on V. We claim that ¢ is
hermitian and that either ¢ or —y is positive. If not, there would exist a
nonzero w € V such that ¢ (w, w) = 0. Choose a nonzero f € Endg(V) whose
image is contained in Q.w. Then

v, @) = ¢(f@),f@) =0

for all v, u € V so thatf*f = 0, which contradicts (7) since 4, is assumed to be
anisotropic.

Since both ¢ and —y induce the same involution on Endg(V), we may
assume that ¢ is positive. A standard argument [4] now shows that
tr(f*f) € Ry+. Since this holds for all X € A, we conclude that tr(a*e) € F*.
Furthermore, tr(e*a) = 0implies ¢ = 0 since this is true in 4. In other words,
tr: A — K is a positive functional—it is obviously hermitian—such that
I, = 0; therefore, I*(4) = 0 and 4 is positive by Proposition 6.
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