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REPRESENTATION OF ALGEBRAS WITH INVOLUTION 

GEORGE MAXWELL 

Introduction. Let K be a field with an involution / . A *-algebra over K 
is an associative algebra A with an involution * satisfying (a.a)* = aJ.a*. 
A large class of examples may be obtained as follows. Let (V, <p) be an her-
mitian space over K consisting of a vector space V and a left hermitian 
(w.r.t. J) form <p on V which is nondegenerate in the sense that <p(V,v) = 0 
implies v = 0. An endomorphism / of V may have an adjoint /* w.r.t. <p, 
defined by <p(f(u),v) = <p(u,f*(v)); due to the nondegeneracy of p, f* is 
unique if it exists. The set B(V, cp) of all endomorphisms of V which do have 
an adjoint is easily verified to be a *-algebra. 

We shall prove, conversely, that every *-algebra A satisfying the mild 
restriction 

(1) Aa = 0 implies a = 0 

can be imbedded as a *-subalgebra oîB(V, <p) for some hermitian space (V, <p). 
Secondly, we shall investigate which *-algebras can still be imbedded in 
B(V, <p) if <p is assumed to be "positive" in a certain sense. 

Results of this type are well-known in the context of Banach algebras with 
involution; e.g., Gelfand and Naimark [2], Schatz [5]. Our methods of proof 
owe much to these sources. 

1. The general case. Suppose A is a *-algebra over K. The dual space 
A" also has an "involution" s*->s*, where s*(a) = s(a*)J. If 5 is hermitian 
w.r.t. this involution, (a> b) i—> s(a*b) is a left hermitian form on A. Its radical 
is the left ideal 

(2) Is = {b G A | s(ab) = 0 for all a G A] 

of A, so that it induces a nondegenerate left hermitian form <ps on the left 
A -module A/Is. Since s ((xa)*b) = s(a*(x*b)), we have <ps(x.a, b) = (ps(a> x*.b). 
In other words, left multiplication by x has an adjoint w.r.t. <ps equal to left 
multiplication by x*. 

Suppose / is nontrivial; let F be the fixed field of J and 6 G K such that 
fr* 7e 6. The set Ah of hermitian elements of A is clearly a vector space over 
F. Every a Ç A can be written uniquely in the form 

(3) a = a,\ + 0.a2, 
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where a\ and #2 G Ah, by taking 

ax = ($.a* - P.a)/^ - dJ), a2 = (a - a*)/(d - V). 

An hermitian functional of A maps ^4Ainto F and, conversely, every functional 
t of Ah induces an hermitian functional s of A, by defining s (a) to be t(ai) + 
6t(a2), relative to the decomposition (3). Symbolically, we have shown that 

If J is trivial, hermitian functionals are those which vanish on the subspace 
As = {a - a* \ a £ A} of A. In this case, A"h <^ (A/As)~. 

PROPOSITION 1. Let 1(A) = O Is, taken over all hermitian functionals s of A. 
If J is nontrivial, A.I (A) = 0. If J is trivial, A.I (A) is a *-ideal of A con­
tained in As and such that (A.I(A))Z = 0. 

Proof. Suppose J is nontrivial. Let a G A be such that ba 9e 0 for some 
b £ A. We can write ba = c\ + B.c2 with ci, c2 G Ah. There exists a functional 
t of Ah for which either /(^i) or t(c2) is nonzero. Extending / to an hermitian 
functional 5 of A, we conclude that s (ba) ^ 0 so that a G /*. Hence A.I (A) =0 . 

Suppose / is trivial. If x G 1(A) and a 6 i , we have ax G ^4S since, other­
wise, we could find an hermitian functional s such that s (ax) ^ 0. In particular, 
(ax)* = — ax; since A.I (A) is already a left ideal, this shows that it is in 
fact a *-ideal. If x G A.I (A) and o f i we have, as before, (ax)* = — ax or 
xa* = ax since now x* = — x. Suppose x,y G A.I (A) and a G A. Then 

(xy)a* = a(x;y) = (ax)^ = (xa*)^ = x(a*y) = x(ya) = (#3;) a 

so that xy (a - a*) = 0. Since 4.1(A) C -4s, this implies that (A.I(A)Y = 0. 

When J is trivial, it may happen that A.I (A) ^ 0. For example, suppose 
char(i£) =̂  2 and let yl be the algebra K[T]/(T2) with the involution 
(a + jSJ1)* = a — /3T. Then 7(^4) consists of all multiples of T. 

To rectify this difficulty, we turn to the skew-hermitian functionals of A. 
If t is such a functional, one can verify that 

( O i , x 2 ) , (3>i, y2)) »-* ^(^1*^2 — X2*3>i) 

is an hermitian form o n i 0 i with radical 11 ® Iu where 11 is given by (2), 
and therefore induces a nondegenerate hermitian form <pt on the left A -module 
A/It ®A/It. As before, left multiplication by x has an adjoint w.r.t. <pt 

equal to left multiplication by x*. 
Let Ir(A) = O It, taken over all skew-hermitian lunctionals of A. Suppose 

J is trivial and char(i£) 9^ 2; skew-hermitian functionals are those which 
vanish on elements of the form a + a*. If x G A, and ax 9e 0 we know from 
Proposition 1 that (ax)* = — ax ^ ax so that t(ax) 7^ 0 for some skew-
hermitian functional /; hence x Ç? Iu In other words, 

(4) A.(I(A)r\I'(A)) = 0 

is true in every case other than when J is trivial and char(i£) = 2. 
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PROPOSITION 2. Suppose A is a *-algebra over K satisfying (1). There exists 
an hermitian space (V, <p) over K and an infective *-algebra homomorphism 

A: A-^B(V,<p). If A is finite-dimensional, V may be chosen to be finite-dimensional, 

except possibly in the case when J is trivial and c h a r ( X ) = 2. 

Proof. Suppose t h a t either J is nontrivial or char( i£) ^ 2. W e conclude 
from (1) and (4) t h a t 1(A) H I'(A) = 0. Therefore there exists a family 
{si} of hermit ian or skew-hermitian functionals of A for which H Is% = 0. 
If A is finite-dimensional, we can choose a finite family with this proper ty . 
Le t Vt be either A /Isi if 51 is hermit ian or A/Isi 0 A/Isi if st is skew-hermit ian 
and p u t V = 0 Vi} <p = 0 cpsi. If A is finite-dimensional, so is V. For a £ A, define 
A (a) to be left multiplication by a; it follows from the preceding discussion 
t h a t A (a)* exists and equals A (a*). If \(a) = 0, we have aA C Pi /s» = 0 so 
t h a t Aa* = 0. By (1), a* = 0 and hence a = 0. 

Suppose now t h a t / is trivial and char( i£) = 2. T h e rat ional function 
field K(X) possesses the involution J'(J(X)) = / ( l / X ) . T h e algebra A' = 
A (g)K K(X) with the involution (a (x)/)* = a* (x) J'(f) is a *-algebra over 
K(X). Since / ' is nontrivial , the first pa r t of the proof shows the existence of 
an imbedding A': A' —• B(Vf, (pf) for some hermit ian space (V', <£>') o v e r X ( X ) . 
Choose a nonzero hermit ian functional cr of K(X), regarded as a *-algebra 
over K. Let F be V regarded as a vector space over K and <p the left hermit ian 
form <p(x,y) = <r(<p'(x,y)) on F . For a fixed x ^ 0 , v'(x,y) assumes every 
value in K(X) so t ha t <r(<p'{x,y)) 9^ 0 for some y; i.e., <p is nondegenerate . 
Clearly B(V',<p') C B(V, <p) and * means the same in both algebras. Com­
bining this inclusion with the canonical injection A —> A', we obtain the desired 
homomorphism A: 4̂ —>I3(F, <p). 

I t seems reasonable to conjecture t h a t the second assertion of Proposit ion 2 
holds wi thout exception. This is t rue, for example, if K has a finite algebraic 
extension K' which has a nontrivial involution leaving K fixed. 

2. Pos i t ive a lgebras . In this section we shall assume t h a t F, the fixed 
field of J , is formally real and t h a t K is either F or F(V( — £)), where £ is a 
sum of squares in F\ in the la t ter case, J(\/( — £)) = — V ( — £)• Let 0 be a 
fixed algebraic closure of i£, {i?x}\çA the set of real closures of F in 0, and J\ 
the involution of Œ which leaves i?\ fixed and sends \/(—l) to — y/( — 1) . 
T h e assumption on £ implies t h a t Jx is always an extension of J. W e shall 
denote by F+ the set of elements in F which are sums of squares. If a G K, 
i t is clear t h a t aJa G F+. 

A left hermit ian form ^ o n a vector space V over K is called positive if 
<p(v,v) G ^ + for all v G F . S tar t ing from the fact t h a t <p (v + a.w, z; + a.w) G 7̂ + 
for all a £ K, the usual a rgument for the Cauchy-Schwarz inequali ty proves 

PROPOSITION 3. If <p is positive, then: 
(a) <p(v, v) <p(u, u) — <p(v, u)J<p(v, u) G F+; 
(b) (p is nondegenerate if and only if <p(v, v) = 0 implies v = 0. 

https://doi.org/10.4153/CJM-1972-053-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1972-053-4


ALGEBRAS WITH INVOLUTION 595 

For each X G X, let V\ = V ®K 12, regarded as a vector space over 12, and 
<p\ the left hermit ian form (w.r.t. J\) on V\ defined by 

<p\(v ®a,u ®P) = J\(a)<p(v, u)fl. 

PROPOSITION 4. If <p is positive, so is v\. 

Proof. Let 
n 

be an element of V\. We may assume <p(vi, v±) 9e 0 since, otherwise, <p(vi, u) = 0 
for all u by Proposition 3(a) and the element v± (x) a\ makes no contr ibut ion 
to the value of <p\(w, w). One can then write 

w = vi ® Pi + X v\ (x) au 

where 

i*i = ^i — (<p(vi,i>t)/<p(i>i,vi))i>i 
and 

n 

Pi = S (<p(i>ui>i)/<p(i>i,i>i))<xt. 
i=l 

Induct ion on n shows t ha t (p\(w, w) 6 R\+ since this is clearly true for n = 1. 

We call a *-algebra 4̂ positive if it can be imbedded as a *-subalgebra of 
B(v, <p) for some positive hermitian space (V, <p). Our aim is to find intrinsic 
conditions for positivity. 

A functional 5 of A is called positive if it is hermitian and such t ha t 
s(a*a) G F+ for all a G A. Let I+(A) = Pi Is, taken over all positive function­
a l of A. Applying Proposition 3(a) to the positive left hermitian form (a, b) •—» 
s(a*b) on i , we conclude tha t 

(5) s(a*a)s(b*b) - s(a*b)Js(a*b) G F+. 

Therefore in this case 

(6) Is = {b G A \s(b*b) = 0} . 

PROPOSITION 5. I+(A) is an ideal of A. If A has a unit element, I+(A) is 
closed under *. 

Proof. Being an intersection of left ideals, I+{A) is clearly a left ideaL 
Suppose x G I+(A); for every positive functional s of A and every a G AT 

the functional s'(b) = s(a*ba) is also positive so tha t s(a*x*xa) = 
s((xa)*(xa)) = 0. In view of (6), we must have xa G I+(A); i.e., I+(A) is 
also a r ight ideal. 

In particular, s(xx*xx*) — 0 for each positive functional s. If A has a uni t 
element then, using (5) with a = 1 and b = xx*, we conclude tha t s(xx*) = 0 
so t h a t x * e I+(A) by (6). 
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PROPOSITION 6. A *-algebra A satisfying (1 ) is positive if and only if I+(A) =0. 

Proof. Suppose I+(A) = 0; since a positive functional s yields a positive 
form cps and a direct sum of positive forms is still positive, the same method 
as used in the proof of Proposition 2 shows that A is positive. (Furthermore, 
if A is finite-dimensional, the space V can also be chosen finite-dimensional.) 

Conversely, suppose A is a *-subalgebra of B(V, <p) for some positive 
hermitian space (V,<p). For each v £ V, sv(a) = <p(v, a(v)) is a positive 
hermitian functional of A. If x G I+{A), 

sv(x*x) = <p(v,x*x(v)) = (p(x(v)yx(v)) = 0 

for all v € V so that x(v) = 0; i.e., x = 0. 

We now turn to an altogether different condition for positivity. Call a 
•-algebra A anisotropic if it satisfies 

(7) a*a = 0 implies a = 0 

and totally anisotropic if the algebra A\ = A (g)K 12, with the involution 
(a ®c0* = a* ® Jx(a), is anisotropic for all X Ç A. Either property is 
obviously preserved in passing to a *-subalgebra. 

PROPOSITION 7. A positive *-algebra A is totally anisotropic. 

Proof. In view of the preceding remark, it suffices to verify that B(V, <p) is 
totally anisotropic if (V, <p) is a positive hermitian space over K. On the 
other hand, we have an injective *-algebra homomorphism 

T:B(V, <p) ®KV-^B(VX}<px)y 

given by ir(f (x) a) (v (x) (3) = f(v) ® afi, so that again it suffices to prove that 
B(V\, (f\) is anisotropic. Suppose a*a = 0 holds in B(V\, <p\); then 

<px{a*a(v), v) = <p\(a(v),a(v)) = 0. 

Since ^x is positive by Proposition 4, a{v) = 0 for all v £ V; i.e., a = 0. 

As a partial converse, we have 

PROPOSITION 8. A finite-dimensional totally anisotropic *-algebra A is positive. 

Proof. Starting from (7), a well-known argument [3] shows that A has no 
nil ideals—in our context, this means that A must be semi-simple. Furthermore, 
if B is a minimal ideal of A, so is B* and thus either B* = B or B*B = 0; 
but the latter possibility is again excluded by (7). Since a product of positive 
algebras is easily seen to be positive, it is sufficient to prove the assertion in 
the case when A is simple. 

Let tr: A —» K be the reduced trace. If a G A, we may compute tr(a*a) in 
the extended algebra A\. Suppose A\ = Enda(F) for some finite-dimensional 
vector space V over 12. It is well-known [1] that the involution induced by 

https://doi.org/10.4153/CJM-1972-053-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1972-053-4


ALGEBRAS WITH INVOLUTION 597 

* on Enda(F) must be the adjoint involution corresponding to a nondegenerate 
left hermitian or skew-hermitian (w.r.t. J\) form \[/ on V. We claim that \p is 
hermitian and that either \p or — \p is positive. If not, there would exist a 
nonzero w Ç V such that yj/{w, w) = 0. Choose a nonzero/ G Enda(F) whose 
image is contained in Q.w. Then 

Mv,f*fW) = *(f(v),f(u)) = 0 

for all », w G F so that /*/ = 0, which contradicts (7) since A\ is assumed to be 
anisotropic. 

Since both \f/ and — \f/ induce the same involution on Endo(F), we may 
assume that \f/ is positive. A standard argument [4] now shows that 
tr(/*/) Ç Rx

+. Since this holds for all X Ç A, we conclude that tr(a*a) G F+. 
Furthermore, tr (a*a) = 0 implies a = 0 since this is true in A\. In other words, 
tr: A —> K is a positive functional—it is obviously hermitian—such that 
^tr = 0; therefore, I+(A) = 0 and A is positive by Proposition 6. 
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