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Abstract

Groupoid actions on C*-bundles and inverse semigroup actions on C*-algebras are closely related when
the groupoid is /--discrete.
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1. Introduction

Many important C*-algebras, such as AF-algebras, Cuntz-Krieger algebras, graph
algebras and foliation C*-algebras, are the C*-algebras of r-discrete groupoids. These
C*-algebras are often associated with inverse semigroups through the C*-algebra of
the inverse semigroup [HR] or through a crossed product construction as in Kumjian's
localization [Kuml]. Nica [Nic] connects groupoid C*-algebras with the partial
crossed product C*-algebras of Exel [Exel] and McClanahan [McC]. This gives
another connection between groupoid C* -algebras and inverse semigroup C*-algebras
since [Sie2] and [Exe2] show that discrete partial crossed products are basically special
cases of the inverse semigroup crossed products of [Sie2, Pat, Siel].

The heart of these connections is Renault's observation in [Renl] that an r-discrete
groupoid can be recovered from the way the inverse semigroup of open G-sets acts
on the unit space of the groupoid. In the upcoming monograph [Pat], Paterson further
develops this connection by showing that the C-algebra of an r-discrete groupoid
G is the crossed product of C0(G°) by the action of the inverse semigroup of open
G-sets.
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144 John Quigg and Nandor Sieben [2]

The purpose of this paper is to explore this connection on the level of C -crossed
products. Renault [Ren2] defines a C-action of a groupoid as a functor to the category
of C*-algebras and homomorphisms, in which the collection of object C*-algebras are
glued together as a C*-bundle over G° and the action is appropriately continuous. We
associate to this an action of any sufficiently large inverse semigroup 5 of open G-sets
on the Co-section algebra of the bundle. Conversely, starting with an action (satisfying
certain mild conditions) of 5 on a C*-algebra B, we obtain an associated C*-bundle
over G° via the realization that C0(G°) will act as central multipliers of B. Then
we construct the groupoid action using the expected 'germs of local automorphisms'
approach that goes back to [Hae] and [Rei]. The C* -bundles arising this way are
typically only upper semicontinuous, rather than continuous. So we use a slight
generalization of Renault's theory.

The philosophy is that inverse semigroups and r-discrete groupoids are two sides
of the same coin; passing back and forth between groupoid and inverse semigroup
constructions may benefit both theories. The theory of groupoid C*-algebras is more
developed, but the inverse semigroup theory is more algebraic. For example, we
can show that the C* -algebra of an r-discrete groupoid is an enveloping C*-algebra
without using Renault's disintegration theorem. In fact one could suspect that for r-
discrete groupoids the disintegration theorem follows from the less complicated inverse
semigroup disintegration theorem. Other applications could include inverse semigroup
versions of Kumjian's [Kum2] groupoid Fell bundles and Renault's imprimitivity
theorem [Ren2] (see also [Rae]). This latter may be an important step towards finding
a regular representation for inverse semigroup actions, which is very much needed for
coactions and crossed product duality.

After some preliminary results, we introduce a slight generalization of Renault's
groupoid actions in Section 3. In Section 4 we recall the basic theory of inverse
semigroup actions. In Sections 5 and 6 we show how to pass back and forth between
groupoid and inverse semigroup actions. In Section 7 we prove our main theorem
by showing that the crossed products of the corresponding groupoid and inverse
semigroup actions are isomorphic. Finally, as an application, we recover the Hausdorff
case of Paterson's theorem connecting groupoid C*-algebras and inverse semigroup
actions. Starting with an inverse semigroup, Paterson builds a universal groupoid
[Pat]. This groupoid is not Hausdorff in general. Since we only work with Hausdorff
groupoids we did not use this universal groupoid, rather we assumed that our inverse
semigroup is always a semigroup of open G-sets of a groupoid. It is likely that our
approach works for non-Hausdorff groupoids and the theory generalizes to the level
of the universal groupoid.
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2. Preliminaries

We will need the following elementary results on representations of C*-algebras.
Since we could not find a reference, we include the proofs for the convenience of the
reader. When we refer to a 'representation' of a "-algebra, we mean a *-homomorphism
of the algebra into the bounded operators on a Hilbert space.

DEFINITION 2.1. Let D be a "-algebra. We say D has an enveloping C*-algebra if
the supremum of the C*-seminorms on D is finite, and in this case we call the Hausdorff
completion of D relative to this largest C*-seminorm the enveloping C* -algebra of
D.

REMARK 2.2. Thus, if D is a "-subalgebra of a C*-algebra B, and if every repre-
sentation of D is bounded in the norm inherited from B, then the closure of D in B is
the enveloping C*-algebra of D.

Conversely, if the closure of D in B is the enveloping C* -algebra of D, then every
representation of D is contractive.

Our first elementary result about enveloping C*-algebras is that ideals have them.

LEMMA 2.3. Let I be a two-sided, not necessarily closed, *-ideal of a C*-subalge-
bra B. Then the closure of I in B is the enveloping C*-algebra of I.

PROOF. Let n be a representation of / on H. Since we can replace H by the closure
of n{I)H, we may as well assume n(I)H is dense in H. Then of course n(I2)H is
also dense in H, so it suffices to show

l^itiabicMA < \\a\\
1 II

for a,bi,...,bn,Ci,...,cn € I,

We use the Effros-Hahn trick: put

d=(\\a\\2-a*a)l/2 eM(B).

We have
2

*abiCi)$i, n(bjCj)^j)

i.j

•J
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which makes sense since M(B)I2 c BI c / ,

[4]

= a

as desired. •

REMARK 2.4. As usual with the Effros-Hahn trick, the above argument shows even
more: we only need to assume it is a *-homomorphism of / into the "-algebra of not
necessarily bounded linear operators on H, such that

n(I)H = H and {n(a)S, n) = (£, w(a*)ij),

and then the argument shows each n (a) is automatically bounded.

DEFINITION 2.5. Say that a family {Be}eeE of closed ideals of a C*-algebra B is
upward-directed if for all e,f € E there exists g e E such that BeL) Bf c Bg.

The following elementary result allows us to paste together consistent representa-
tions of an upward-directed family of ideals.

LEMMA 2.6. Let {Be}eeE be an upward-directed family of closed ideals with dense
span in a C* -algebra B, and suppose that for each e € E we have a representation
ne of Be on a common Hilbert space H, such that

(i) ne = 7Tf\Be whenever Be c Bf, and
(ii) span^g ne{Be)H is dense in H.

Then there is a unique representation of B on H which extends every ne.

PROOF. By upward-directedness the union \Je^E Be is a dense ideal of B. The
consistency condition (i) guarantees that the union of the 7r,,'s is a representation n of
U<.<=£ Be> which is of course contractive since each ne is. The nondegeneracy condition
(ii) shows n extends uniquely to a representation of B. •

REMARK 2.7. We did not need to appeal to Lemma 2.3 to extend the representation
n from [JesE Be to B since the hypotheses already told us n was contractive.
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3. Groupoid actions

Throughout, G will be a locally compact Hausdorff groupoid with a Haar system.
After the next few paragraphs G will be r-discrete. We should comment a little on
the still-evolving definition of this term. Renault [Renl, Definition 1.2.6] defined a
locally compact Hausdorff groupoid G to be r-discrete if the unit space G° is open in
G. However, this does not quite give all that one wants, in particular a Haar system. In
fact, Renault proved that a groupoid which is r-discrete in his sense has a Haar system
if and only if the range and domain maps r and d are local homeomorphisms, and in
this case counting measures give a Haar system. The current fashion is to build this
into the definition of r-discrete. Perhaps one of the most elegant 'modern' definitions
is Paterson's [Pat]: for a locally compact (not necessarily Hausdorff) groupoid G,
Paterson defines Q* as the set of open Hausdorff subsets U of G such that r\ U and
d\ U are homeomorphisms onto open subsets of G, and he calls G r-discrete if G"9

is a base for the topology of G. This is compatible with Renault's definition when G
is Hausdorff, and in this case (which is our primary concern) the G"9 condition just
means the range and domain maps r and d are local homeomorphisms. Throughout
this paper, when we say G is r-discrete we will always mean G is locally compact
and Hausdorff, and r and d are local homeomorphisms. In particular, in an r-discrete
groupoid G the range and domain maps r and d are open, so the elements of G"9

are just the open G-sets, also called bisections (recall that a G-set is defined as a
subset of G on which r and d are injective). It was with some hesitation that we
imposed the Hausdorff condition; many r-discrete groupoids occurring in nature are
non-Hausdorff, and it would seem reasonable to expect that our results hold for all
such groupoids. However, our techniques seem to depend upon Hausdorffness; we
intend to explore this in future work.

In [Ren2] Renault developed a notion of actions and crossed products of groupoids
in the C*-category, and we will require a slight generalization of his definition of action.
Algebraically, an action of G is a functor a from G to the category of C*-algebras and
homomorphisms, with a* : AdM -*• ArM for* e G. Of course, since Ghas inverses,
by functoriality each ax will be an isomorphism of Ad(x) onto Ar(jt). Topologically, the
collection si = {Au}ueGo of C*-algebras must be glued together so we can formulate
a continuity condition. Renault requires si to be a continuous C*-bundle, but we will
relax this to upper semicontinuity. So, we have a continuous, open surjection of s/
onto G°, and the norm function || | | on s/ is only upper semicontinuous (see [Bla],
[Dix], [DG], [Nil], and [Rie]). Pulling back via the domain map d: G -+ G°, we
get a Banach bundle d*s/ = {(x,a) e G x s/ : a € Ad(x)} over G. The continuity
condition for a is that the map (x, a) i-»- ax (a) from d*s/ to si be continuous. For his
main results, Renault also requires separability assumptions, partly because he appeals
to direct integral theory. Since we will not need direct integrals, we can dispense here
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with separability hypotheses.
We often need to work with sections, rather than the bundle itself. Recall that upper

semicontinuity of the C* -bundle s/ can be equivalently expressed as the condition
that for every / in the C0-section algebra TQ(s/) the map u i->- ||/(w)|| is upper
semicontinuous. We will need the following characterization of continuity for actions
in terms of compactly supported sections.

LEMMA 3.1. Let s/ be an upper semicontinuous C* -bundle over G°, and let a be a
functor from G to the C*-category with ax : AdM -> Ar(x)for each x € G. Then a is
continuous(henceanaction)ifandonlyifforallx € G, a € AdM,andf,g € Tc(s/)
withf(r(x)) = a, (a) and g(d(x)) = a,

lim\\f(r(y))-ay(g(d(y)))\\=O.

PROOF. First assume a is continuous, and fix x,a,f, g as above. As y —> x
we have r(y) —• r(x), so /(r(y)) —*• f (r(x)) = ax(a) by continuity. Similarly,
g(d(y)) ->• g{d(x)) — a, so ay(g(d(y))) -*• ax(a) by continuity of a. Hence

0 = ||/(/•(*)) - a x ( a ) || > limsup \\f (r(y)) - ay(g(d(y)))\\

by upper semicontinuity, giving | / (r(y)) — oty(g(d(y))) | —> 0.
Conversely, let (x, a) e d*&/, and let V be a neighborhood of ax(a) in si'. Pick

f,g e Tc(s/) with / (/•(•*)) = or, (a) and g(d(x)) = a. By [DG, page 10] we may
assume

= \J[b€Au:\\f(u)-b\\
ueU

for some neighborhood U of r(x) in G° and some e > 0. Assuming

lm||/(r(y))-ory(g(d00))|=0,

we can find a neighborhood N of x in G such that r(N) c t/ and

||/(Ky))-«,

Put

= ( J [b € Au : \\g(u) - b\\ < €-] .W
ued(N)
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Then N * W := (N x. W) P\ d*&4 is a neighborhood of (x, a) in d*£/, and for
(y, b) e N * W we have

\\f (r(y)) - cty(b)\\

< \\f(r(y)) - oiy(g(d(y)))\\ + \\ay(g(d(y))) - ay(b)\\

\ - b\\ < €,

so ay(b) € V, and we have shown (y, b) i-> ay(b) is continuous at (x, a). •

Now let a be an action of G on &/, and let r*s/ — {(a, x) e sf x G : a € ArM}
be the pull-back via the range map r: G ->• G°. Renault [Ren2] shows that the vector
space Vc(r*ji/) of compactly supported continuous sections becomes a *-algebra with
the operations

j i y ) and f*(x) = ax(f(x~l)r.

He then defines (in [Ren2, Section 5]) the crossed product £/ xa G as the Hausdorff
completion of Tc(r*sif) in the supremum of the C*-seminorms

/ ^ uncoil,

where FI runs over all representations of Vc{r*s/) which are continuous from the
inductive limit topology to the weak operator topology. He shows as a consequence
of his decomposition theorem [Ren2, Theoreme 4.1] that this supremum is finite. We
will give an independent proof of this for r-discrete groupoids, as an application of
our isomorphism (see Theorem 7.1) between Fc(r*£/) and a "-algebra associated with
a corresponding inverse semigroup action. In fact, this will show that for r-discrete
groupoids the crossed product is the enveloping C*-algebra of Yc{r*£#), because the
inductive limit continuity is automatic, as we show in the following proposition.

PROPOSITION 3.2. If a is an action of an r-discrete groupoid G on an upper semi-
continuous C*-bundle si, then every representation ofrc(r*s/) is continuous from
the inductive limit topology to the weak operator topology.

PROOF. Let n be a representation of Tc(r*£/) on a Hilbert space H. For each
subset T of G define

r r ( r V ) = [f € F c ( r V ) : supp/ C T).

Claim: it suffices to show that for each s e Gv the restriction Fllr^,..^.) is con-
tinuous from the (sup) norm topology to the weak operator topology. To see this, let
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K be a compact subset of G, and take £, r\ e H. Find su • • • ,sn e C*7 such that
K c[J" Si, and choose a partition of unity {</>,}" subordinate to the open cover {$;}"
of AT, so that supp</>, C s, and £^" </>, = 1 on K. F o r / € I\(r*&/) we have

Now just observe that the map/ (-»• /</>,: F*:(r*.£O ->• FS| (r*srf) is norm continuous,
and the claim follows.

So, fix s € G^. We will in fact show Fi | rj(r. discontinuous for the norm topologies
of rs(r*£/) and S£(H). Note that for/ € F ^ r W ) we have

and for any nonzero term in this sum we have v e s* and x 6 J J C 5*5 = d(s).
Hence, the product / */ is in TdU){r*s/), and for each x e d(s) we have / * / (x) =
ay(f (y)*f (y))> where y is the unique element of 5 with d(y) = x. Now, F'd(S)(r*&?)
is an ideal in the C0-section algebra F0((r*^^)|G»), which in turn is a C*-subalgebra of
£/ xa G. Consequently, Lemma 2.3 tells us the restriction Ulr^^r-^) is contractive,
so

since

D

sup ||/ 7 (x) || = sup ||/ (y)*f (y) || = sup ||/ (y) f .
xed(s) y£s yes

4. Inverse semigroup actions

Here we mainly follow the conventions of [Pat, Sie2] and [Siel]. Let fi be a
C*-algebra. A partial automorphism [Exel] of B is an isomorphism between two
(closed) ideals of B. The set of all partial automorphisms of B forms an inverse
semigroup PAut B under composition. An action of an inverse semigroup S on
B is a homomorphism fi: S —> PAut B such that the domain ideals of the partial
automorphisms {&}jes are upward-directed and have dense span in B. Of course, for
s G S the domain of the partial automorphism fis will also be the range of /},., and
furthermore will only depend upon the domain idempotent d(s) := s*s. Thus, for
each idempotent e e Es we have an ideal Be of B, and each fis is an isomorphism
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[9] Actions of groupoids and inverse semigroups 151

of Bd(s) onto Br(S). Recall from Section 2 that the upward-directedness of the ideals
[Be)eeEs means that any two of them are contained in a third, and is automatic if Es

itself is upward-directed in the sense that for all e, f G Es there exists g e Es such
that e, f < g.

A representation of 5 on a Hilbert space H is a *-homomorphism U of 5 to -£?(//)
such that the span of the ranges of the operators {Us}seS is dense in H. Of course,
each Us will be a partial isometry, since

usu*sus= us us. us = uss.s = u,.
A covariant representation of an inverse semigroup action (B, S, ft) is a pair (n, U)

consisting of a nondegenerate representation n of B and a representation U of S, both
on the same Hilbert space H, such that

UeH=n(Be)H for e e Es

and

Usn{b)U*s = n(ps(b)) for b e Bd(s).

Note that when we are checking whether a pair (jt, U) is covariant, we do not need to
verify the span of the ranges of the Us is dense, since this follows from nondegeneracy
of n and the covariance condition.

The disjoint union of {Be}eeEs forms a Banach bundle SB over the discrete space
£5. Pulling back via the range map r: S -> Es, we get a Banach bundle r*38 =
{(b, s) € S8 x S : b G Br{s)] over S. The set Tc{r*38) of finitely supported sections
becomes a *-algebra with operations defined on the generators by

(b, s)(c, t) = (ft(^(fe)c), st) and {b, sf = (PAb*), s*),

and then extended additively. For every covariant representation (n, U) of (B, S, /S)
the integrated form of (TT, U) is the representation n of Tc{r*38) defined by

The integrated form n is nondegenerate, and we have

T\(Tc(r*38)) = span 7r (£,.(,))£/, and
seS

The crossed product of (B, 5, fi) is the Hausdorff completion B x0 S of Tc(r*^) in
the supremum of the C*-seminorms
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where n runs over the integrated forms of all covariant representations. Warning:
there is some collapsing when Tc(r*&8) is mapped into B Xp S, since whenever FI is
the integrated form of a covariant representation we have

T[(b, s) = U(b, t) for b € Br(s), s < t

(see [Pat, Proposition 3.3.2], [Siel, Lemma 3.4.4], [Sie2, Lemma 4.5]). For b e BrM

let [b, s] denote the image of (b, s) in B Xp 5, so that

B Xp S = span{[6, s] : b e Br(s), s € 5}.

For every covariant representation (n, U) there is a unique representation n x U of
B xe S such that

(n x U)[b, s] = n{b) Us for b € Br(s), s e S,

and in fact this gives a bijection between the covariant representations of the ac-
tion (B, S, ft) and the nondegenerate representations of the C*-algebra B Xp S [Pat,
Corollary 3.3.1], [Siel, Proposition 3.4.7].

Caution: the crossed product B Xp Sis (usually) not the enveloping C*-algebra of
Yc{r*SSy, although it is true (and not hard to show) that Tc{r*3S) does in fact have
an enveloping C*-algebra, there can in general be representations of Tc{r*38) which
are not integrated forms of covariant representations [Sie2, Example 4.9]. Which
representations of Yc(r*SS) are integrated forms? Paterson [Pat] has found an answer:

DEFINITION 4.1. A representation FI of Tc(r*@l) is called coherent if

Fl(b, e) = Yl(b,f) whenever b e Be and e < f.

Actually, Paterson requires Tl(b, e) = Tl(b,f) whenever b e BeBf, which is
clearly equivalent to the above logically weaker condition, and he builds this condition
right into his definition of a representation of Tc(r*3S). He also requires the map FI
to be bounded in the L'-norm

[>„*)[:=
although this follows automatically from Proposition 4.3 below. Clearly, FI is coherent
if and only if its kernel contains the ideal generated by the subspace

span{(b, e ) - ( b , f ) : b e B e , e J e E s , e < f } .

We need to identify this ideal explicitly. Recall that the partial order in an inverse
semigroup is given by

s < t if and only if s = ss*t,

which should be regarded as saying s is a 'restriction' of t.
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LEMMA 4.2. The ideal of Yc(r*9S) generated by {{b,e) - (b,f) : b e Be, e,f e

Es,e < f] coincides with the subspace

Ip : = span{(&, s) - (b,t) : b e Bs, s < t}.

PROOF. It is easy to check that Ip is a self-adjoint left ideal. Hence, it suffices to
observe that for b € Br(s) and s < t we can factor b = cd for some c, d € Bris), and
then

(b, s) - (b, t) = (cd, ss*t) - (cd, tt*t) = (c, ss*)(d, t) - (c, tt*)(d, t)

= ((c,ss*)-(c,tn)(d,t).

D

Is there a coherent representation whose kernel is I p. We do not know in general,
but it follows from Theorem 7.1 below that the answer is yes for representations related
to groupoids.

The following proposition, which appears in various forms in [Pat, Corollary 3.3.1],
and [Siel, Proposition 3.4.7], establishes abijective correspondence between coherent,
nondegenerate representations of Tc(r*3S) and covariant representations of (B, S, ft).
We include the outline of the argument for the convenience of the reader; in particular,
this is the first time the automatic continuity of representations of Tc(r*38) has been
adequately handled.

PROPOSITION 4.3 ([Pat, Siel]). Every representation ofTc(r*3§) is contractive on
each fiber (B^s), s). A nondegenerate representation T\ ofTc(r*B8) is the integrated
form of a covariant representation of(B, S, ft) if and only if II is coherent.

PROOF. Let n be a representation of Tc(r*38). For each e e Es define a represen-
tation ne of Be by

The first statement follows from the estimate

, s)\\2 = \\n(b, syn(b, S)\\ = \\n(ps.(b*), s*)n(b, S)

- \\Tl(ps.(b*b),d(s))\\ = \ndM(pAb*b))l
<\\{iAb*b)\\ = \\b*b\\ = \\b\\2 = \\(b,s)\\2.

For the other part, first assume Fl is the integrated form of a covariant representation
(n, U). Then for b € Be and e < f in Es,

Tl(b, e) = n(b)Ue = n(b)Uef =n(b)UeUf =n(b)Uf = U(bJ),
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since UeH = n(Be)H, and so FI is coherent.
Conversely, assume FI is a nondegenerate and coherent representation of Yc(r*3S)

on H, and recall the above definition of the ne. We have ne = nf\Be whenever
Be c Bf, by coherence, and span, ne{Be)H is dense in H, so by Lemma 2.6 there is
a unique representation n of B on H which extends every ne.

To get the other half of our covariant representation we use the construction of
McClanahan [McC, Proposition 2.8] (where the context was partial actions of groups),
which was adapted to inverse semigroup actions by the second author [Sie2, proof of
Proposition 4.7]. Fix s e S and a bounded approximate identity {£,} for Br(sy Claim:
the net {Yl(bj, s)} is Cauchy in the strong operator topology. To see this, take £ e H.
Then

, s) - n(bj, s))*(n(bh s) -

= (n(((bh s) - (bj,s)y({bh s) - (bj,

Abi), s*)(bh s) + (fiAbj), s*)(bj,s)

PAbi), s*)(bj,s) - (fiAbj), s*){bh s)%

w{PAb* + btj- b^ - bjb,))*, §)

- • 0 ,

since {bf}, {tj}, {btbj}, and {&,£,} are all bounded approximate identities (the latter
two for the product direction) for Br(s), hence their images under Bs. are approximate
identities for Bdis). This verifies the claim, so we can let Us be the strong operator
limit of {Tl(bi, s)}.

Since multiplication and involution are jointly strong operator continuous on
bounded sets,

(4.1) =lim *„(,)(&.(*?))
= projection on nd(s)(Bd(s))H.

Hence, Us is a partial isometry with initial subspace ndis)(Bd(s))H. In particular,
the following computation shows Us is independent of the choice of the bounded
approximate identity {&,-}: for c € Bd{s), i- e H

Usnd(s)(c)$ = limn(bi, s)n(c,
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since {&.(&,)} is a bounded approximate identity for Z?dW and n is continuous on the
fiber (Bril),s) of r*3§.

To see that U is multiplicative, take bounded approximate identities {&,} for Bns)

and [cj} for Bm:

UsU, = limn(bi,s)n(cj,t) = limn(ps(PAbi)cj),st) = U,,,

since {&(&.(£,)<:,)} is a bounded approximate identity for f5s{BdU)Br{t)) = Br{st). A
similar computation shows U* — Us*.

For covariance, the computation (4.1) implies UeH — ne(Be)H for all e € Es, and
for b € Bdis) the computation (4.2) shows

4 M) = n (/?,(&), 5) - n (&.
(£/(&(**)))*

n is nondegenerate, since if n(B)% = 0 then for all 5 € 5, b e Bd(s) we have

so % = 0 by nondegeneracy of n . Finally, the computation (4.3) also implies
Yl(b, s) = n(b)Us for b e Br(s), so n is the integrated form of (n, U). •

The above proposition allows us to express the crossed product as an enveloping
C* -algebra:

COROLLARY 4.4. The crossed product B Xp S is the enveloping C*-algebra of the
*-algebra Tc(r*&)/lfi.

We will actually need a technical generalization of the above result. Suppose that
for each e e Es we have a dense ideal B'e of Be, such that

f$AB'd(s)) = B'r(s) for a l l i e s .

Write Tc{r*&') for the linear span of {(b,s) € 9B x S : b € B'r(s)] in Tc(r*3S).
Note that Yc{r*3S') is a *-subalgebra (in fact, an ideal) of Tc(r*3B) which is dense for
the pointwise convergence topology. We need to know that the "-algebra Tc(r*3&')
determines the C*-algebra B xfi S.

LEMMA 4.5. Every representation FI ofVc{r*3§') is continuous from the pointwise
convergence topology to the norm topology of operators, and hence has a unique
extension to a representation n ofYc(r*3§). Moreover, Fl is coherent if and only i/Fl
is.
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PROOF. For the first part it suffices to show n is norm continuous on each fiber
(B'r{s), s) of r*9B'. Each fiber (Br(s), s) of r*S6 is given the Banach space structure
of Br(s). For every e e Es define a representation ne of B'e by ne(b) = U(b, e) for
b 6 B'e. For b e B^s) we have

= \n((fiAb*),s*)(b,s))l = \\Tl(PAb*b),s*s)\\

= \Ln*>,{PAb*b))\\<\\PAVb)\\,

by Lemma 2.3, since B'd(s) is an ideal of Bd(S). So

II2

For the coherence, obviously Fl is coherent if 11 is, so assume Fl is coherent. Take
b € BrU) and s < t, and choose a bounded approximate identity {c,} for Br(s) which is
contained in the dense ideal B'rU). Then

, s) = lim n(db, s) = lim Il(c,Z>, 0 = TT(fe, /)•
I i

D

COROLLARY 4.6. W/r/z rte aftov^ notation, B xp S is the enveloping C*-algebra of
the quotient

PROOF. This follows from the above lemma and Proposition 4.3, since a represen-
tation of Tc(r*3S') is coherent if and only if it kills If, n Yc{r*@'). •

5. From groupoids to inverse semigroups

Let a be an action of an r-discrete groupoid G on an upper semicontinuous C-
bundle £?. Recall that since G is r-discrete, the family G^ of open G-sets is a base
for the topology of G. Further, G* is an inverse semigroup with operations

s t = {xy : (x, y ) e (s x t) n G 2 } a n d s* = {x~[ : x e s } .

Note that an element 5 of G^ has domain idempotent

d(s) = s*s = {x~ly : (x~\y) e (s'1 x s ) f l G2}

= [x~ly :x,yes, r(x) = r(y)}

= [x'lx : x e s] — {d(x) : x e s],
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and similarly j has range idempotent

r(s) = ss* = {r(x) : x e s}.

We want to associate to the groupoid action (&/, G, a) an inverse semigroup action
(B, S, fi). For B we take F0(.eO. To construct partial automorphisms of B, we will
need the following elementary lemma, which is an easy consequence of, for example,
[DG, Proposition 1.4].

LEMMA 5.1. Let C and D be upper semicontinuous C*-bundles over locally com-
pact Hausdorff spaces X and Y, respectively. Let <f> be a homeomorphism ofX onto
Y, and for each x e X let yx be an isomorphism of Cx onto D^M. For f 6 TC(C)
and y € Y define

y(f)(y) = y*-'w(f OT'OO)) e D
y.

Ify(rc(C)) C ro(D), then y extends uniquely to an isomorphism ofF0(C) onto
ro(D). Moreover, the extension is given by the above formula for f e F0(C).

For S we want to allow some flexibility; roughly speaking, we can take any
sufficiently large inverse subsemigroup of C*.

DEFINITION 5.2. We call an inverse subsemigroup S of G^ full if 5 is a base for
the topology of G and Es is upward-directed in the sense that every two elements of
Es have a common upper bound.

Take S to be any inverse subsemigroup of C*" which is full in the above sense. It
might be useful to mention that to determine whether S is a base it is enough to check
the idempotents; more precisely, an inverse subsemigroup S of G"9 is a base for the
topology of G if and only if S covers G and the idempotent semilattice Es is a base
for the topology of the unit space G°.

Note that C* is a full inverse subsemigroup of itself since it is a base for the
topology of G, and the open G-sets in G° are just the open sets in G°. For a more
interesting example, consider a transformation groupoid G — X x H where H is a
discrete group with identity e. If SB is an upward-directed base for the topology of
the locally compact space X then S = [U x [h] : U e SB, h e H) is full since it
covers G and Es = {U x [e] : U 6 38} is an upward-directed base for the topology
of G° = X x {e}.

The ideals of the semigroup action ft will be given by

Be = [f € r0(.fi0 : / = 0 off e\ for e € ES.

The reader can immediately verify that each Be is a closed ideal of F o (^ ) , the span
of these ideals is dense in F o (^ ) , and the family {Be)eeEs is upward-directed.
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THEOREM 5.3. Let a be an action of an r-discrete groupoid G on an upper semi-
continuous C*-bundle si/, and let S be a full inverse semigroup of open G-sets. Then
there is a unique action fi of S on TQ(&/) such that

a,t\<^ \aus{f{s*us)) ifuer(s),

[0 else,

fors € S,f € Bd(s), and u € G°.

PROOF. We first show that the above formula defines an isomorphism/^: BdW —=+
Br(s), equivalently, an isomorphism of the Q-section algebra ro(^\d(s)) of the re-
stricted bundle &?\d(s) onto ro(^| r(S)), and for this we aim to apply the above lemma.
Themapu H* SUS* gives a homeomorphismofd(s) onto r(s), with inverse u i-> s*us.
Moreover, u i-> us = s(s*us) is a homeomorphism of r(s) onto s, and d(us) = s*us,
and similarly for u H>- SU : d(s) —>• s. For each u e d(s), asu is an isomorphism of Au

onto Asus.. Thus, the proposition follows from the above lemma once we verify that if
/ € rc(£/\d{s)) then fis(f) e ro(st/\r(s)). The continuity properties of / and a ensure
that fis(f) is a continuous section. Also, if u £ s(supp/).s* then fis(f)(u) = 0, so
ffs(f) has compact support.

It remains to check that ft is a homomorphism. For s,t € 5 the domain of psfl, is

r(<)) = Pt*{Bd(s)nr«)) = B,*d(.s)r(l)t = B,'s.s, — Bd(st),

which is the domain of fisl. For / € Bd(St) and u e r(st) we have u e r(s) and
s*us e r{t), so

PsPl(f)(u)=ctus{pi(f)(s*us))=aus(as.usl(fU*s*ust)))

= auss.usl(f(t*s*ust)) = ft,(

since

uss*ust = uust = ust,

and this is enough to show fisf}t = fisl. •

6. From inverse semigroups to groupoids

As in the preceding section, let G be an r-discrete groupoid, and let 5 be a full
inverse semigroup of open G-sets. Suppose we are given an action ft of S on a C -
algebra B. We want to construct an action of G from which (B, S, ft) arises as in the
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construction of the preceding section. We first need to find an upper semicontinuous
C*-bundle tf over G° such that B = T0(s/). We know from [Bla, DG, Nil] and
[Rie] (for example) that this is equivalent to B being a C0(G°)-algebra, that is, to
the existence of a faithful, nondegenerate homomorphism of C0(G°) into the central
multipliers ZM(B). So, assume we have an injective, nondegenerate homomorphism
<f>: C0(G°) - • ZM(B). For u € G°put

/„ = {/ e C 0 ( G ° ) : / ( « ) = 0 }

Ku = </»(/«)B (a closed ideal of B)

Au = B/Ku.

Then put st = [JHeGo Au, and define <t>: B -+ Y[ueG°A* b v

= b + Ku.

Then there is a unique topology on stf making srf an upper semicontinuous C*-bundle
and each O(&) a continuous section, and moreover <t> is an isomorphism of B onto

We need to relate the homomorphism <£ to the action (B, S, /J). For e e Es define
the ideal

Ce = [f eC0(G°):f =0offe}

of C0(G°). For our purposes, the appropriate connection between <j> and ft is

(6.1) <j)(Ce)B = Be for eeEs,

so we assume this henceforth. Although we do not need it, we point out that (6.1)
implies 0 is equivariant for fl and an obvious action of S on C0(G°).

To simplify the writing, we use the isomorphism <I>: B -> To(^) to replace B by
r o ( ^ ) . Then ft is an action of S on T0{s^), and the homomorphism <f>: C0(G°) ->•
ZM(B) becomes the canonical embedding of C0(G°) in ZAf(ro(^)). Since

CACaO = {/ € r0(*O : / = 0 off e] for e e £ s ,

our hypothesis (6.1) tells us the ideals associated with the inverse semigroup action /J
are Be = {f e r0(*O : / = 0 off e}.

We want to construct an action a of the groupoid G on the C*-bundle si. For a
start, if x € G we need an isomorphism ax of Ad(jt) onto Ar{x). Take any 5 e 5 such
that x e s (and note that such s form a neighborhood base at x in G). For « e G° we
have

https://doi.org/10.1017/S1446788700039288 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700039288


160 John Quigg and Nandor Sieben [ 18]

Furthermore, if u e e e Es we have

B = Be + Ku.

Therefore,

Au = B/Ku = (Be + Ku)/Ku = Be/(BeKu).

LEMMA 6.1. With the above notation, there is a unique homomorphism or, from
Ad(x) to Ar(x) such that

ax(f(d(x))) = Ps(f)(r(x)) forx eseSJ € Bd{s).

PROOF. Identifying Ad(x) with Bd(s)/(Bd(s)Kd(x)), and similarly for Ar(x), the con-
clusion of the lemma is equivalent to the assertion that there is a homomorphism ax

making the diagram

Bd(S) I \Bd(S)Kd(X)) — ^ — Br(s) / (Br(s)Kr(x))

commute. For this we must show

Take/ € Bd(S)Kd(X). By density and continuity we can assume supp/ c e for some
e e Es with e C d(s) and d(x) £ e. Then

*)) = P,pe(f)(r(x)) = Pse(f)(r(x)) = 0,

since

Bse(f) e Br(se) = Bses. and r(x) = sd(x)s* i ses*.

n

THEOREM 6.2. Let G be an r-discrete groupoid, let S be a full inverse semigroup
of open G-sets, and let 8 be an action of S on a C*-algebra B. Assume that there
is an injective, nondegenerate homomorphism (j> of Co(G°) into ZM(B) such that
4>{Ce)B = Be for every e € Es. Then B is isomorphic to Yo(srf) for an upper
semicontinuous C*-bundle srf, and the map a defined in the above lemma is an action
of G on #/.
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PROOF. By the above discussion, the only thing left to check is that a is an action.
We must check functoriality and continuity. Let (x, y) e G2 and a e Adw. Choose
s,t e S such that* e 5 and yet, and then choose/ 6 Bd(sl) such that/ (d(y)) = a.
Then xy € st, so by the above lemma we have

= axy(f(d(xy)))=axy(f(d(y))).

Thus, a preserves compositions. To see that it preserves identities, that is, au = id^
for u e G°, just note that otu will be an idempotent surjection from Au to itself.

For the continuity, we appeal to Lemma 3.1. Take x e G, a e AdM, and f,ge
Tc(s/) with f (r(x)) = ax(a) and g(d(x)) — a. Cutting down / and g, we can
assume that / e Br(i) and g e Bd(s) for some s € S with x e s. Then for y e 5 we
have

If (r(y)) - ay(g(d(y)))\ = \\f (r(y)) - fi,(g)(r(y))\\

= \\{f-PAg))(r(y))\\,

which goes to 0 as y —> x since the norm is upper semicontinuous and/ — fis(g) is a
continuous section which is 0 at r(x). •

7. The isomorphism

Let G be an r-discrete groupoid, and let S be a full inverse semigroup of open
G-sets. In the preceding two sections we established a correspondence between the
actions of G and certain actions of S. Our main result will be that the associated
crossed products are isomorphic. To be specific, let a be an action of G on an upper
semicontinuous C*-bundle si, and let ft be the corresponding action of S on the
Co-section algebra B := T0(s/). Recall that the ideals of P are given by

Be := {/ e ro(.<3O : / = 0 off e] for e e Es,

and the partial automorphisms are given by

P.(f)(r(x)) = ax(f(d(x))) for* € s € 5 , / G Bd(s).

We will show in Theorem 7.2 that B xfi S = srf xa G. At the same time, we will fulfill
our promise from Section 3 by giving an independent proof that si x a G exists, that is,
the '-algebra Fc(r*^) has an enveloping C*-algebra. We emphasize that our proof of
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this is completely independent of Renault's (or anyone else's) decomposition theorem
for representations of G. There is no measure theory (other than the hypothesis that
counting measure is a Haar system on G); rather, the techniques are topological. As
a (minor) byproduct, we have no separability requirements.

The crossed product B x^ S is the enveloping C*-algebra of a quotient of the
finitely supported section algebra of the pull-back bundle r*3S. However, for our
proof we will need to work with a subbundle having incomplete fibers. For e e Es

put Fe(j2/) — [f e rc(jrf) : supp/ c e], and for s e S put

giving a subbundle & = \JseS Cs of r*3B.

THEOREM 7.1. With the above notation, the map * : r c (^ ) ->• rc{r*$f) defined
on the generators by

[0 else

(and extended additively) is a surjective *-homomorphism with kernel Ip d r c

PROOF. Since the range map r takes each G-set s e S homeomorphically onto r(s),
* takes each fiber Cs of ^ isometrically and isomorphically onto the linear subspace

r , ( r V ) :={f € r c ( r V ) : supp/ C s)

of Tc(r*sz/). Since the elements of S cover the groupoid G, a standard partition of
unity argument shows 1* maps r^C^) onto rc(r*.c/).

Fix (b, s), (c, t) 6 <€. We have

* ( ( & , s)(c, t))(x) = V<fi,tfAb)c), st)(x)

= f P,(PAb)c)(r(x)) if xest,

[0 else.

Now, if x e st then x factors uniquely as x — yz with yes and z e t, and then

P,iPAb)c)(r(x)) = P,(PAb)c)(r(y)) = ay((ftAb)c)(d(y)))
= a,(PAb)(d(y))c(d(y)))
= ay(ay-i(Hr(y))))ay(c(d(y)))
= b(r(y))ay(c(r(y-lx)))

r(w)=r(x)

https://doi.org/10.1017/S1446788700039288 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700039288


[21 ] Actions of groupoids and inverse semigroups 163

On the other hand,

supp(*(6, s)*(c, t)) C (supp V{b, s))(supp *(c, t)) C st,

so if x ^ sr then

0=(*(M)*(c, *))(*)•

Hence, * is multiplicative. A similar computation shows * preserves adjoints, so *
is a *-homomorphism.

It remains to show the kernel of the map *I>: Tc&) —>• Tc(r*£/) is the ideal Ip n
r c (^ ) . This will involve a couple of mildly fussy partition-of-unity arguments, so we
have made an attempt to isolate the hard bit by factoring the map 4» through an auxiliary
bundle: let X be the bundle over 5 with (incomplete) fibers {(rs{r*s/), s)}s€S- Then
define 0 : rcCtf) -+ TC(3C) and A: YC{3C} -» Tc{r*jz/) by

@(b,s) = (V(b),s) and A(f,s)=f,

so that * = A o 8 . The map @ is a linear isomorphism of Tc(ff) onto Tc{3£), since
it is induced by the identity map on the base space S of the bundles ̂  and S£, and by
linear isomorphisms between the fibers {Tr{S){s/), s) and (Ts(r*£/), s). Moreover, 0
takes Ip D rc(1f) onto the span of {(/, s) - (f,t) : f e Fs(r*jrf), s < r}. Thus, it
remains to show the kernel of A coincides with this span.

We first show

(7.1) ker A = span{(/, s)-(f,t):f e ^ ( r V ) ) .

Let / denote the right hand side. Certainly / c ker A. For the opposite inclusion,
suppose A(£"( / , , Si)) = 0. We need to show £"( / , , s,) e / . We have J^f, = 0,
so if n = 1 then f\ = 0 and so £" ( / ; , *,) = (/i, ^0 = 0. Hence, we can assume
n > 1. Let £2 denote the family of subsets of {1,.. . ,«} with cardinality at least 2,
and for co e Q put

Then {KuĴ gn forms an open cover of U"suPP/i> since if/,•(*) ^ 0 then also
fj(x) ^ 0 for at least one j ^ i, and upon taking limits we get supp/, C Uy^isuPP/; '
so if * € supp/, and to = (/ : x e Sj], then o> e fi and x € Vw. Choose a partition
of unity {(p^^n subordinate to the open cover {V^en of |J" supp/,. Note that
whenever i ^ w w e h a v e / j ^ = 0 since supp/, n V,,, = 0. Hence,

= 0 for all o> € £2.

https://doi.org/10.1017/S1446788700039288 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700039288


164 John Quigg and Nandor Sieben [22]

We have

= E Z

Fix a) € fi, and pick any two distinct elements j , k of &>. Then

iew\{j,k)

j ) + (fk<t>w, Sk) + ^ (fi<f>,o, Si)
ieco\{j,k)

(^'^a"St) ~ E '̂̂ 'Sk)
k\ ieu>\{j,k)

iew\U)

= (f j</>«,, Sj) ~ (fj<t>w,Sk)

because /,</>„ + 1 ] , ^ ^ )/;</><« = 0. Since s u p p / , ^ c 5/ for every i, / e <B, we
conclude that ^2i€w(fi<t>w, •$/) is an element of / , so we have shown (7.1).

Now put

J = span{(/\ s)-(f,t):f e r , ( r V ) , 5 < r}.

Clearly 7 C ker A. For the opposite containment, by the above argument it suffices
to show that if / € Tsn,{r*s^) then (/, s) — (f,t) e J. Since 5 is a base for the
topology of G, we can find su • • •, sn € S such that

n

s u p p / C [Js, C sDt.
I

choose a partition of unity {(pi}" subordinate to the open cover {.$,}" of s u p p / . We
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(f, s) ~

Since each 0, has support contained in s, • n s n f, the latter sums are elements of 7,
and we are done. •

THEOREM 7.2. Let a be an action of an r-discrete groupoid G on an upper semicon-
tinuous C* -bundle si', S a full inverse semigroup of open G-sets {as in Definition 5.2),
and j3 the associated action of S on B := Fo(^) (as in Theorem 5.3). Then the
'-algebra Tc(r*srf) has an enveloping C*-algebra srf xa G. Moreover, the map * of
Theorem 7.1 extends uniquely to an isomorphism of B Xp S onto s/ xa G.

PROOF. By Theorem 7.1, the map ^ factors through an isomorphism * ' of the
quotient rc(^)/(Ip n Tc(&)) onto Tc{r*srf). Since each Te(s/) is a dense ideal of
Be and /3s(rd(j)(.2s0) = r r ( I ) ( ^ ) for every s e 5, Corollary 4.6 tells us B x0 S is the
enveloping C*-algebra of Tc(^)/{Ifi n Tc(^)). The result follows. •

8. Application

We show how Theorem 7.2 allows us to recover Paterson's representation [Pat] of
the C* -algebra of an r-discrete groupoid as a semigroup crossed product. Since our
groupoids are Hausdorff and Paterson requires only the unit space of the groupoids to
be Hausdorff, we cannot get his theorem in full generality. We believe the connection
between groupoid and inverse semigroup crossed products should also work for non-
Hausdorff groupoids.

If G is a not necessarily Hausdorff r-discrete groupoid then Paterson [Pat] calls an
inverse subsemigroup 5 of G* additive if 5 is a base for the topology of G and s,
t e S with 5 U t e C*7 implies s U t e S. Note that additivity is a strictly stronger
condition than fullness in the sense of Definition 5.2. Paterson shows [Pat, Theorem
3.3.1] that if 5 is an additive inverse subsemigroup of Gap then C*(G) is isomorphic
to C0(G°) Xp S if S acts on C0(G°) canonically (see below). We can deduce the same
result if we assume that G is also Hausdorff, and in fact we can get away with slightly
less than additivity:
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THEOREM 8.1. Let G be an r-discrete (Hausdorff) groupoid and let S be a full
inverse semigroup of open G-sets. Then S has an action fi on B := Co (Go) defined
by

else,

forf e Bd(s) : = {/ € C0(G°) :f-0 offd{s)}, and C*(G) is isomorphic to B xfi S.

PROOF. G has an action a on the trivial C*-bundle &/ — C x G°, where ax :
Adw "*• ArM is the identity map between two copies of C. It is clear that C*(G) is
isomorphic to sf x a G. By Theorem 7.2 stf xa G is isomorphic to B x^ 5. Since
F o (^) is isomorphic to C0(G°) and ax is the identity map for all x e G, f) is exactly
the canonical action of 5 on C0(G°) used by Paterson. •
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