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Abstract

The direct method of Lyapunov is utilized to obtain a variety of criteria for
the nonexistence of certain types of positive solutions of a delay differential
equation of even order. Previous results of Terry (Pacific J. Math. 52 (1974),
269-282) are seen to be corollaries of the more general results of this paper.

Subject classification (Amer. Math. Soc. (MOS) 1970): primary 34 C 10;
secondary 34 C 15, 34 K 05, 35K 15, 34 K 20, 34 K 25.

In this paper we consider the general delay differential equation of even order

¢y D2n=i[r(£) Dip(t)1+y,(6) ft, p,(£)] = O,
where O<m<r(f)SM<o, 0<7(1)<T< 0, y (1) = ylt—7(t)] and f(t,u) satisfies
the following properties:

(F1) f(t,u) is a continuous real valued function on [0,0) X R;

(F2) for each fixed ¢ in [0, o0), f(¢t, u) <f(t,v) for O<u<v;

(F3) for each fixed ¢ in [0, c0), f(z,u)>0 and f(t, —u) = f(t,u) for u#0.

We first let

Diy(p), j=0,..,i-1,

yt) = Di-i[r() Diy(t)), j=1,...,2n—1.

Following Terry (1974), we say that a positive solution y(t) of (1) is of type B
on [Ty,o0) if for t=>Ty the y(t)>0(k=0,...,2j+1) and (—1)*1y,(1)>0
(k=2j+2,...,2n—1). It is of type B; if there is a T, >0 such that it is of type B; on
[T, ©). As in Terry (1974), it is evident that a positive solution of (1) is necessarily
of type B; for some j=0,...,n—1. Moreover, the following lemmas may be
established.
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LemMMA 1. Let )(t) be a solution of (1) of type B; on [Ty, ), where either (i) i is
even and j<(i—2)/2 or (ii) i is odd and j<(i—3)/2. Then for t 2T, = Ty+T
-y <@i+2-k)y.(), k=1,..,2j+1.
LeEMMA 2. Let y(t) be a solution of (1) of type B; on [Ty, ), where i is odd and
J=(@G—1)/2. Then for t2T, = Ty+T
(=T y{)<My; (1)
=T YO <M+ —K)]yp_y(t), k=1,..,i—1.
LeMMA 3. Let y(¢) be a solution of (1) of type B; on [T;, o0), where either (i) i is
even and jzi[2 or (ii) i is odd and j= (i+1)/2. Then for t=>T,
@ (—DyO<SG+2-K)yp @) k=i+1,..,2j+1);
(®) (—T)y () <SMQj+2—-1)y; 4(t);
and
©) (- OSIMQj+2-)ym +({—K)y, () (k=1,...,i-1).

The proof of each of these three lemmas is elementary using only integration by
parts and the definition of a B;-solution. The case i = n is considered in Terry
(1974), where the three results reduce to Lemmas 2.1, 2.2 and 2.3 respectively.

and

LeMMA 4. Let y(t) be a solution of (1) of type B; on [T, 0). Then there exist

constants k;>0 and t,> T, such that
yl[t'—’r(t)]zklyl(t)’ 1zt 1= 01 (L) 2j'

As in Terry (1973), each of the four lemmas may be extended to the case in
which 7(r) satisfies either

(T1) 0L (1)< put, 0L p<mf(m+ M);
or

(T2) 0K 7(H)<pth, 0K p<w and 0 B<1,
provided the number T; is reinterpreted as min{t>T,: t—+(t) 2 T, for t > T;}.

In this paper we use Lyapunov’s second method to obtain criteria for the
nonexistence of B;-solutions of equation (1). We assume n>2 and consider the

system

Dyy(t) = ya(1), k=0,..,i-2;
@) Dy, 4(t) = yi(t)[r(t);

Dyi(8) = yrna(t), k=1i,..2n-2;

Dy2n—1(t) = —yr(t)ﬁ’ y'r(t)'
By a solution of (2) we mean an ordered 2n-tuple o(t) = (¥y(2), - .., Yan—1(f)) Which
satisfies (2). To simplify the discussion we shall let R, = [a,0), a2 0; R* = (0,0);
R, = (—,0); R* = R = (—00,00). As in Terry (1974), we shall abbreviate certain
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frequently occurring cartesian products:
RP* = R*x ... x R¥, ptimes;
R, =R, x...x Ry, p times;
R,* =R, xR*; R*, =R*XR,;
R, = R, x R?*;
IT; = ReAD* 5 (R¥,)1-7 x R;  TI* = R@IHH* 5 (R, )n-1-7 x R¥;
Ili= Rgjpns X (Ry, #¥p1-ixR; I, = Rigjiaye X (R* ) 1-Ix R,.
In the following a scalar function v(z, o(¢)) will be called a Lyapunov function for
the system (2) if it is continuous in (¢, o(f)) in its domain of definition and is locally
Lipschitzian in o(¢). Following Yoshizawa (1970), we define
p o(t+h, o(t+h)—ov(t, o()
A .

3, Oy(t, o(2)) = limsu
: R0+

THEOREM 1. Suppose that there exist two continuous functions V(t,o(t)) and
W(t, o(t)) which are defined on Ry x11; and Ry x 119 respectively for some fixed T.
Assume further that V(t,o(t)) and W(t, o(t)) satisfy:

(i) both V(t,o(t)) and W(t, o(t)) tend to infinity as t~>co uniformly for o(t) eIl;
or o(t) eIl respectively;

(ii) Vig(t, o(2)) <O for all sufficiently large t, where o(t) is a solution of (2) which

JSor large t lies in the region I1,; and
(iii) Wi(t, a(£))<O for all sufficiently large t, where o(t) is a solution of (2)
which for large t lies in the region IT9,
Then (1) has no solutions of type B;. Moreover, (1) has no negative solutions y(r)
such that — y(t) is of type B;.

ProOOF. Let y(f) be a solution of (1) of type B;. Since y(¢) and y,(¢) are positive
for large ¢, there is a positive T, for which o(z) lies in Il for ¢>T,. By (ii), for ¢
sufficiently large, for example, for t>T, 2 T;, V(¢, o(t)) < V(T3, o(T1)). On the other
hand, condition (i) implies that there is a T, > T; for which ¥V (¢, o(t)) > V(T;, o(Ty))
for t>T,, which is a contradiction. By letting y(¢) be a negative solution of (1) and
considering W(t, o(t)), we obtain an analogous contradiction.

Let us assume for the moment that f(z, ¥) satisfies only (F1).

THEOREM 2. For (t,o(t))eRp*xIl,_; assume that there exists a Lyapunov
Sfunction v(t, o(t)) satisfying:

(l) ¥ 211,—1(’) U(t: U(t))> 0:
(ii) dy(t, o(t))< — A(t), where Xt) is a continuous function defined on Ry such

that
!
) liminf | A(s)ds=0
{0 T

fort=2T>=T*,
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Moreover, suppose that there exists a Ty and a function w(t, o(t)) which for (t, o(t))
in the region Rp, x R®"* x R, is a Lyapunov function satisfying:
(iii) Yon_1(D)<W(t, o(1)) < (Y3, _1(2)), where b(u) is a continuous function, b(0) =0
and b(u) <0 for u#0;
and

@iv) W, o)) < — p() w(t, o(t)), where p(t) =20 is a continuous function such that

©) f mexp!—- f ;p(s)ds} dt = +oo.

If o(t) is a solution of (2) which lies in the region 11, _, for sufficiently large values of
t, then yy, () =0, that is, o(r) eIl _,.

ProoOF. Suppose that there is a sequence {¢,} for which #,—>o0 as k—o0 and
Yan—1(t1) <0. Assume that 7, > 7'* and that ¢, is sufficiently large so that by (4),

!
liminf | A(s)ds>0, =1,
-0 [y
and yy(1), ..., Van—_s(t) are positive, where we assume that n>2. For the case n =1,
see Yoshizawa (1970). Consider the function v(¢, o(t)) for ¢>1,.

ot, o)) < oty (1)) + f, 05> o(s)) ds

1
©) <ol o)~ | X0)ds.
173
Since yy,_1(t;) <0, v(t;, 0(7;)) <0, there is a T, >1¢;, for which

[z ot oo

o

which implies that for 1> T;
u(t, o(1)) <v(ty, o(1))/2 <0.

By (i), ¥2n—1(2) <0 for t>T;. By (iii), there is a T,>T; and a Lyapunov function
w(t, o(t)) defined on Ry, x R®"—1*x R,. For this w(z, o)) we have by (iv)

Yana(O) Wt (1) <W(Tyy o(Tz))exp[— f . p(s)ds],
where T,> T;. By (iii),
[
Vena ) <b 0 (TY) exp[— f e ds].

Substituting this into the above expression, we get

Vens(®) = Dan_s(@T <50n(T)) exp[— fT p(s)] ds.
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Integrating from T, to ¢, we arrive at

Vot < Yan-olT) + 5 (T9) f;zexp[— J:;p(s)ds] at.

Letting t—>co and using (5), it follows that y,, (1) <0 for sufficiently large ¢,
which is a contradiction.

By the same argument we can prove the following result.

TueoreM 2'. For (t,0(t))€ Ry xI1%1 assume that there exists a Lyapunov
Junction v(t, o(t)) satisfying:
(@) Yen-a(®) o2, (1)) >0;
and
(ii) Oy(t, o(t)) < — X(t), where A(t) is a continuous function defined on Ry such
that for t>T>T*

t
liminf { A(s)ds 20,
b0 JT

Moreover, suppose that there exists a T, and a function w(t, o(t)) which for (t, o(t))
in the region Ry, X Ry,_1)« X R* is a Lyapunov function satisfying:
(iii) ya, () <W(t, 0()) < b(¥9y,—1(2)), where b(u) is a continuous function, b(0) = 0
and b(u) <0 for u#0;
and

@iv) W8, o)) < — p(t) w(t, (1)), where p(t)=0 is a continuous function for

which
@ t
f exp[—f p(s)ds}dt = -0,
T

If o(t) is a solution of (2) which lies in the region II™ for sufficiently large values of
t, then y,, 1(t)<O for large t, that is, o(t) e 111,

REMARK 1. Since 0 <m< r(t) <M, condition (5) is equivalent to

%) f wr_(ltj {exp[— f ;lp(s)ds:l } dt = +o,

To see this we merely note that
(] u ] U
M f '%5 exp [— J;Pp(s) ds] du> j exp [ - J; o(s) ds] du
. t 1 u sl d
=zm f Tu)eXp [— L'p(s) s] u.

In the case n = 1, we have u(t, o(?)) = (¢, y, y') since y, = y and y, = ry’. Condition
(7) arises naturally in the proof of Theorem 2. For the details see Yoshizawa (1970).

https://doi.org/10.1017/51446788700038787 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700038787

206 Raymond D. Terry 61

REMARK 2. Suppose we let o(t)=0 in each of the two theorems. Condition (5) is
then trivially valid, and the alternative condition (7) reduces to

f “dtlr(t) = +oo.

Thus, we may replace condition (iv) by W¢,(t, o(¢)) <0 and obtain two easy corol-
laries whose statements are left to the reader.

RemARrk 3. Let r(f)=1 and f[t,y,(t)] be nonnegative. As already noted,
solutions of type B; are solutions of type 4, (see Terry, 1974). Theorem 2 asserts
that a solution y(¢f) for which D*y(t)>0, k=0,1,...,2n—2, must satisfy
D*n—1y(¢)>0, that is, ¥(f) must be a solution of type 4,_;, which is obvious from
the lemma of Kiguradze (1962).

Theorem 3. Suppose there are continuous functions a(t), b(t), o(ye,_s) and
B(Vzn—s) satisfying:
(a) for large T,
lim infjla(s)ds> 0, liminff b(s)ds=0;
i~ T >0 T
(b) for u =y, o(t), u(u)>0 and D, o(u) >0, where y,(t), k =0,...,2n—2, are
nonnegative for large t;
Jor u=yy,_o(t), uB(u)>0 and D, B(u)>0, where y,(t), k =0,...,2n—2, are
nonpositive for large t;
© a(t) dlyen—oDI<fIt, y(D)]1y(2) for large t, y(£)>0;
b(t) Ban oD =1 Tt, ¥ (O)13,(1) for large 1, (1) <O.
If o(t) is a solution of (2) which for large t lies in the region 11,_,, then y,, (£)=0
for large t. If o(t) is a solution of (2) which for large t lies in the region I17~1, then
Yon—1(t) <O for large t.

PrOOF. Let A(?) = a(t), p(t) = 0 and define v(z, o(¢)) and w(z, o(t)) by

ot, o(t)) = a[yy;_ig)] W(t, () = Yana()+ oLYan_o(0)] f " a(s)ds.

Conditions (i), (i) and (iii) of Theorem 2 hold. In particular,

2
@) Yans(1) 200, o(0)) = ;{—y—%> 0 since yy,_g(r)>0;

(@) Sy, 0()) = {«Dyzn—1(1) = ¥3n-1(1) & Gan—o (N} *(an—o())

Dygn1(2) -
< m)—] (by condition (b))

_ _f[t9yr(t)]yr(t)
I S 0)) (from (1))
<—a(t)=—A() (by condition (a)).
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Moreover,

liminf
{»0

for large ¢ by condition (a).

(i) Pan-2(8) <t 00) i)+ Do) | ats) e,
since y,,_o(f) =0. Also, i

[} t
DVn_al0)] f 'a(syds < f a9 ds

't 1
A(s)ds = lim inf f a(s)ds>0
T o JT

< f ' fls, v, ()]y(s) ds
T

= Yan-1(T) — Yan-1(t)-
For, if we assume as in (iii) of Theorem 2 that o(?) € RC*D* X Ry, Vap_o(f) Is a
positive decreasing function of ¢. Thus, for s<1?,
Von—o(D) <Van-so(s) and  alye, o] <alyen—o(s)]

since D, ou)>0. It follows that w(z, o(2)) < yy,_1(T) <0. Thus, we may take b(1)
to be the continuous function for which 5(0) = 0, b() = p,,_1(T) for u¢(—s,¢)
and b(u) is defined linearly on (—e¢, ¢).

Moreover, to prove the second assertion of the theorem, suppose we let v(¢,0(2))
and w(z, o(2)) be defined by

o(t, o(t)) = ﬁ—y[yz—-_i(’t)—)] W(t, 0(8)) = — Van3(6) — BLYan-1()] f b(s)ds

Routine computations, similar to those just performed, show that u(¢, o(¢)) and
w(t, a(t)) satisfy the four conditions of Theorem 2'.

THEOREM 4. Suppose that, in addition to the hypotheses of Theorem 3,
J a(s)ds = j b(s)ds = +c0,
Then (1) has no solutions of type B,_,.

ProoF. Suppose we define

_yLﬂ(t_)__ ¢
V(t,00) = Do T )% >0,
fta(s) ds, y<O0;

0

Yema(t) [
W(t,o(t)) = B [yzn_z(t)]‘l' Job(s) ds, y<O0,
f b)ds, y>0.
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Assume that y(7) is a solution of (1) of type B,,_;. Then for large ¢, y,(£)>0 for
k=0,...,2n—1. It follows that

t t
Vi, o(t) = foa(s) ds and W(, o)== fob(s) ds.

Because of the additional requirement in the hypothesis of this theorem, both
V(t, o(t)) and W(t, o(t)) tend to infinity as - co uniformly. Next, referring to (ii)
of the proof of Theorem 3

, _n Yena(?) )
Va(t,o(t)) = D m+a(t) <0;

i P — y2n—1(t)
Wa(t,0(8)) = D B———-—[yzn‘2(t)]+b(t)<0.

Hence, V(¢, o(t)) and W(t, o(2)) satisfy the three conditions of Theorem 1 and the
proof is complete. As in Theorem 1, we may also conclude that there are no
negative solutions y(¢) of (1) such that — y(¢) is of type B,_j;.

We observe that Theorem 4 is only one of a sequence of similar results. Let us

now consider the more general formulation.

THEOREM 5. Suppose that there are continuous functions a(t), b(t), o(u) and B(u)
satisfying:

@) f “a(s)ds = f “b(s)ds = +0;

) ua(u)>0, D, (1) 20, where u and u' are nonnegative for large t;
uB(u)>0, D, B(u) >0, where u and v’ are nonpositive for large t;
(©) a(®) aly (DI STt y(D]y,(2) and () Blys (OIS, y. ()] y,(2).
Then (1) has no solutions of type B, (r =j,...,n—1).

Proor. Let
(% + ota(s) ds, y<0;
Vo) ={
t
\ foa(s) ds,y =0;
(% + f :b(s) ds, y>0,
W(t, o(t)) = ’ ,
fob(s) ds, y<O0.

As in the proof of Theorem 4, V(t,0(t)) and W(t,o(2)) will satisfy the three
conditions of Theorem 1. The details are omitted. Moreover, there are no negative
solutions y(¢) of (1) such that —y(¢) is of type B, (r =j,...,n—1).
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COROLLARY 1. Let p(t)>0. If [© 1% p(t)dt = + oo, then there are no solutions of
®) D™r(r) D™ y(0)]+p() y,(1) = 0
of type B, (r=j,...,n—1).

ProoF. Let y(¢) be a solution of (8) of type B, (r =j,...,n—1). Then
Sty (D1y,(0) = p(£) y,(£) = put* p(t) yyy(2).

We let o(u) = B(u) = pu and A(t) = a(t) = b(¢) = t¥ p(¢). With the choices of
V(t,o(t)) and W(t,o(t)) prescribed by Theorem 4, it follows that (8) has no
solutions of type B,.
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