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Abstract

Identification of human individuals within a group of 39 persons using micro-Doppler (u-D)
features has been investigated. Deep convolutional neural networks with two different training
procedures have been used to perform classification. Visualization of the inner network layers
revealed the sections of the input image most relevant when determining the class label of the
target. A convolutional block attention module is added to provide a weighted feature vector
in the channel and feature dimension, highlighting the relevant u-D feature-filled areas in the
image and improving classification performance.

Introduction

For all sorts of military and civilian safety and security applications it is interesting to use radar to
track individuals moving over ground. Radar provides an all-weather and day and night capability
to detect and track objects. However, it generally lacks the capability to present human interpret-
able images of tracked objects. Therefore, there is a great interest in automatic classification of radar
targets. An interesting source of signature information is micro-Doppler (u-D) which, in this case,
captures the movements of body parts as function of time. u-D is an interesting source of infor-
mation because it can be obtained without imposing technological requirements on the radar’s
bandwidth. By adapting the time-on-target and measuring the 1-D signal of ground moving tar-
gets it is possible to classify moving personnel based on the most relevant and unique form of
human motion, their human gait. Human gait classification based on u-D has attracted the interest
of many researchers. Non-machine learning approaches were used in [1, 2] proposing a particle
filter method and handcrafted features, respectively. In [3, 4] machine learning approaches were
used to solve gait classification problems such as activity and walking style classification. Deep
learning-based methods have gained popularity in several fields, including radar. In [5, 6] deep
convolutional neural networks (DCNNs) were used to deal with challenging problems such as per-
sonnel recognition based on multistatic 4-D and multi-target human gait classification revealing
the potential of such networks. In [7, 8] DCNNs were used successfully for person identification
based on human gait K-band #-D measurements revealing the potential of DCNNs for human
identification. However, identification accuracy of above 89% was achieved for less than 10 subjects
in [7] and 98% in [8] considering that the subjects were walking on a treadmill.

This study explores the potential of data-driven methods that take into consideration the
personal traits of individuals. The aim is to classify personnel on an individual basis by assum-
ing that there are machine observable differences between the gait of different persons. These
differences originate from variations in body dimensions, reflective wearables, and the locomo-
tion timing between the different body parts observable in their y-D return. The inputs con-
sidered for this method are human gait spectrograms which can be fed to image-based deep
neural networks (DNNs). The spectrogram representation is a time—frequency response
obtained by several consecutive Doppler measurements. The spectrogram is computed by
applying short time Fourier transform (STFT) to coherent radar measurements with sufficient
sampling rate, which are then stitched together to form an image. In previous study, personnel
identification was performed using an X- band radar and a CNN network and achieved a clas-
sification accuracy of 93.5% for a population of 22 individuals [9]. However, this leads to the
question how many individuals a deep learning model can correctly classify while still main-
taining competitive classification accuracies. Another question that arises is whether the fea-
tures learnt from a classification problem are transferrable from one set of individuals to
another and whether they can be utilized for a different classification task. Also, it is worth-
while to further investigate whether the deep learning models attend to areas of the spectro-
gram which are relevant for the classification decision and learn to become invariant to the
background noise that makes up a large part of the spectrogram.
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This study extends and improves the study undertaken in [9]
by the following contributions. The dataset diversity and size
has been enlarged by increasing the number of individuals from
22 to 39. This study investigates the classification performance
attainable and the efficacy of transfer learning by training two
VGG-16-based models. The features used by the models for clas-
sification are also visualized in the pixel space, which will reveal
that the networks partly base their output on background noise.
To mitigate this, a convolutional block attention model
(CBAM) [10] is incorporated to guide the network towards
attending the relevant parts of the spectrogram, which increases
both performance and interpretability of the classification output.

The section on “Methodology” describes the data-acquisition
process, the VGG-16 network details and the CBAM architecture.
The next section presents the experimental results obtained and
conclusions are summarized in the final section.

Methodology
Radar system and experimental set-up

A human gait u-D dataset has been collected to complement the
first measurement campaign employed in [9]. The second meas-
urement campaign employed the same 10 GHz (X-band) con-
tinuous wave (CW) monostatic radar and contains samples of
completely different individuals to those present in the first data-
set. The combination of both datasets provides a larger and more
complex dataset to that employed in [9]. In both experiments, the
test subjects walked along the line of sight of the radar system in
both inbound and outbound direction three consecutive times.
Data from 22 individuals, 16 male and 6 female, was collected
in the first measurements campaign and from 17 individuals, 8
males and 9 females, in the second measurement campaign,
with subject heights varying between 1.55and 2.07 m.

Data acquisition and pre-processing

The resulting baseband IQ Doppler signals obtained from each test
subject are sampled at 16 kHz. They are pre-processed in the follow-
ing way. First, the IQ imbalance present in the signal due to calibra-
tion flaws is reduced by correcting the magnitude and phase. Signals
are decimated to 2 kHz and spectrograms for each target are
obtained by performing the STFT with a Hanning window of 128
samples and 90% overlap to produce spectrograms of size 128
Doppler bins x 192 time bins, corresponding to an observation
time of 1.25 s. The number of spectrograms obtained from each
class varied due to differences in stride length and walking speed
between persons. Differences between spectrograms were spotted
by computing statistical indicators. For this reason, normalization
was performed independently for each spectrogram, resulting in
power values between 0 and 1, while still preserving a clear u-D sig-
nature even if spectrograms are normalized with different linear
transformations. The normalization technique employed ensures
spectrogram values span throughout the entire input range of values,
improving convergence and contributing towards making the classi-
fication invariant to fluctuations in the power values of the returned
signal. Furthermore, the pre-processing applied in [9] employed a
narrow-band high-pass filter to remove static clutter and a low-pass
filter to extract the bandwidth of interest. After evaluating the pre-
processing applied, a design choice was made to disregard the
narrow-band and high-pass filter in the second measurement cam-
paign dataset to avoid complexity and unnecessary pre-processing
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steps. This resulted in some subtle differences in the background
noise of spectrograms belonging to different measurement cam-
paigns, but it does not affect the 1-D signature of interest.

CNN model set-up

The same VGG-16 network architecture as [9] was used, com-
prised by a layer concatenation of 2D-convolutional, maxpooling
2D and ReLU activations for the feature extraction process, fol-
lowed by two dense layers with ReLU activations, Dropout and
L2 regularization and a final classification layer with softmax acti-
vation. Two different models were trained and evaluated in order
to investigate both the ability to handle more classes and the effi-
cacy of transfer learning:

1. Model A: randomly initialized VGG-16.
2. Model B: VGG-16 initialized as the final model from [9].

Some hyper-parameters were shared between both models such as
number of epochs, batch size, optimizer and loss functions. From
the overall data 80% and 20% were used as train and test data
from each target class, respectively.

Convolutional block attention module

In Fig. 1 the Grad-CAM [11] visualization of model A is shown.
The heat map produced highlights the regions of the image rele-
vant for the classification of a random input class. The lower
part of the image correctly highlights the u-D oscillations related
to the movement of the target’s limbs. However, above the target’s
signature the background noise is highlighted revealing the back-
ground noise contributes towards the classification decision. This
behaviour was observed for various target classes in both
VGG-16 networks, independently from the parameters used or
the training method. An attention algorithm is implemented as
means to identify and highlight the relevant, salient regions of
an image and suppress irrelevant clutter or background noise
that could wrongly influence the classification decision.
Furthermore, 2D convolution is a local operation performed in
different regions of the image, where for instance in a 3 x 3 convo-
lution only 9 pixels will determine the value of the output pixel,
which means only local information will be used to determine
the value of the destination pixel. This can add a bias since global
structures such as temporal relationships are not taken into
account. This effect can be minimized by using larger convolu-
tional filters or deeper networks. Attention algorithms leverage
this problem by introducing weighted channel attention.

Many variations of attention algorithms [12] have been
applied for Natural Language Processing and image captioning.
This study implements the CBAM [10] into the VGG-16 network
after each convolutional layer. CBAM has reportedly worked bet-
ter than other attention mechanisms because it refines along both
the channel (C) and spatial dimension (H and W). The CBAM
module is depicted in Fig. 1. Each convolutional filter highlights
different features of the image, for instance some filters will
focus on the p-D oscillation of the target’s limbs while others
will focus on the background noise, which is undesirable.
Channel attention provides a weight for the convolutional filter
that best captures the features present in the input spectrogram.
Spatial attention performs the attention mechanism on the feature
map dimension, therefore it will generate a mask that enhances
the features of the spectrograms which are relevant to the features
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Fig. 1. CBAM module. A spectrogram is fed into a 2D convolutional layer and outputs a {HXWxC} feature map, where both channel attention and spatial attention

are performed. Lower left: Grad-CAM visualization [11] of model | without CBAM.

Test accuracy : 83.635%

True label
True label

Fig. 2. Confusion matrices for model A (left) and model B (right).

of a given class. Overall, the output of the CBAM will produce a
weighted feature map tensor which will serve as input to the fol-
lowing convolutional layer, improving classification performance.

Experimental results
Training and classification results

Both models outlined above were trained with an NVIDIA
GeForce GTX TITAN-X GPU. The total data collected is split
into a training set and a test set. In the study of [9] 88% of the
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overall data was used for training and 12% was used for test. In
this study a less favourable split was employed, using 80% of
the data for training and 20% for testing. The classifier was
trained for 300 epochs using Adam optimizer with initial learning
rate of 107>, learning rate decay equal to 107 and batches of 32
spectrograms.

Test results for models A and B are shown in Fig. 2, model A
achieves 83.6% accuracy while model B achieves 88.4% accuracy
on a total of 39 classes. Although classification accuracies
obtained are slightly below the benchmark achieved in [9]
where they reportedly obtained 93.5% classification accuracy for
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Fig. 4. CBAM confusion matrix.

22 persons, in this study competitive classification accuracies are
obtained for 17 additional classes. Furthermore, this experiment
employs a less favourable train and test split meaning the dataset
employed for testing the network is larger than that employed in
[9] and thus the network is more robust against spectrograms
never seen before.

Figure 2 reveals a slight area of misclassification contained in
the upper and lower bounds parting from the predicted label
22. Targets 1-22 and 23-39 correspond to measurement cam-
paigns one and two, respectively, it means it is more likely that
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the network will perform a misclassification on spectrograms
from each measurement campaign due to differences in the pre-
processing outlined in the next sub-section. The effect of the spec-
trogram background on the classification decision is mitigated
with the CBAM module.

Feature visualization

The penultimate layer of the VGG-16 prior to the softmax activa-
tion contains all the relevant features for the classification task.
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Fig. 5. Upper: Input spectrogram. Lower saliency map.

Once the network was trained the features in this layer were visua-
lized using t-SNE as depicted in Fig. 3 for both models A and
B. As shown in Fig. 3 in model A the network fails to distinguish
between certain classes, such as target features belonging to tar-
gets 24, 26, 28, 29, 30. However in model B classification accur-
acies significantly improve and the network achieves to correctly
distinguish class features in separate clusters as seen in Fig. 3.
Features belonging to targets that were unidentifiable in model
A are now correctly classified in model B, proving that target
classification with a VGG-16 network for a large number of indi-
viduals can be performed. The results obtained confirm that
features from a given class of individuals can be employed to per-
form classification via transfer learning with a completely differ-
ent set of individuals since the features extracted by the
VGG-16 network are transferrable from one set of individuals
to another.

CBAM results

The CBAM module was trained with an NVIDIA GeForce GTX
TITAN-X GPU for 800 epochs using Adam optimizer with initial
learning rate of 107>, The effectiveness of the CBAM module is
shown in Fig. 4 revealing how the VGG-16 network combined
with the attention module outperforms the baseline models A
and B. Higher classification accuracies were obtained for the net-
work combined with the attention layer, providing a classification
accuracy of 93%. Visualization of the internal layers are depicted
in Fig. 5 showing a class saliency map. The network can capture
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the relevant features in the spectrogram and learns to solely focus
on regions of the image containing u-D signatures.

Attention algorithms are of particular interest for radar appli-
cations since they are extremely useful when applied to input
images containing mostly noise, where the signature of interest
is only present in a small region of the image. However, the add-
ition of an attention layer increases the network complexity, num-
ber of parameters and requires a larger computational cost to
reach convergence.

Conclusion

This study expands the work undertaken in [9] by using the
VGG-16 network to identify a larger and more complex group
of 39 individuals. We showed that these individuals can be iden-
tified with up to 88.4% accuracy. Transfer learning provides an
important accuracy boost compared to training the network
with random weight initialization however in both cases the net-
works tend to consider noise as an important part of the input.
We demonstrated that CBAM [10] mitigate this tendency and
increase the network performance achieving the same classifica-
tion accuracy obtained in [9] with 17 additional classes.
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