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ON A BOUNDARY VALUE PROBLEM ARISING IN
ELASTIC DEFLECTION THEORY

XIUQIN WANG

In this paper, a finite-difference method for the determination of an approximate
solution of a fourth-order two-point boundary value problem is presented under the
nonresonance condition. The solution of this linear problem can be used to find
approximate solutions of a broad range of nonlinear problems in applications.

1. INTRODUCTION

It is well known that the fourth-order two-point linear boundary problem

j / ( 4 ) - F{x)y = G(x), a<x<b,

y(a) = A0, y(b) = Au y"(a) = B0, y"{b) = B1}

where F and G are real-valued continuous functions on the closed interval [a,b] and
AQ, BO, AI, B\ are real constants, occurs frequently in elastic deflection theory. A straight-
forward substitution X = (x — a)/(b-a) transforms the above problem into the following
problem of the standard type

VW - f{x)y = g(x), 0 < x < 1,

(11) 2/(0) = ao, »(1) = oi, y"(0) = bo,

where the new independent variable is still denoted by x for convenience. Note that the
difference between the second-order problems and the fourth-order problems is that in
the latter situation important tools such as the maximum principle are often unavailable.

In general, (1.1) cannot be solved in closed form and numerical methods are to be
resorted to. In [13], Usmani and Marsden gave a finite-difference method of order 0(h2)

under the condition

(1.2) - 3 6 ^ f{x) sj 0 for x G [0,1].
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Afterwards, under a similar condition, methods of orders of O(/i4) and O(/i6) were derived
by Jain, Iyengar, and Saldanha [4] and Usmani [9]. Later in [14], an O(h2) method was
obtained by Usmani and Marsden under the hypothesis

(1.3) / ( * K 0 , *€(0 , l l ,

which is much less restrictive than the condition (1.2). Attempts have been made to
further relax the condition (1.3). In [10, 11], Usmani proved that problem (1.1) has a
unique solution for arbitrarily given f,g,ao,bo,ai,bi provided that / satisfies

(1.4) |/(ar)j < 7T4 for x e [0,1].

Besides, Usmani [11] also obtained a finite difference scheme of order O(/i3/2) (in [10, 11],
the condition was stated in a weaker form f(x) < TT4 but his proof worked only [12] for
/ satisfying (1.4)). Later, Yang [17] proved that (1.1) has a unique solution under the
general nonresonance condition

(1-5) /(*)#jV, i = 1,2 x€[0,l],

which motivates us to ask the question whether a finite-difference approximation method
can be carried out for (1.1) under this same general condition.

Indeed, our aim of the present paper is to give a uniform treatment of the boundary
value problem (1.1) under the general condition (1.5) imposed on the function / . Note
that if f(x) — j4ir4 for some positive integer j , then the problem (1.1) is not solvable
in general. For instance, if /(x) = TT4, then (1.1) has no solution for 5(1) = 0 and
ao + ai - (bo + bi)/n2 ^ 0. Thus, our condition is quite general.

The finite-difference method we shall obtain below is of the order O(/i3/2). This
means that we obtain the generality of our method at the sacrifice of high convergence
rate. Such a reality has already been witnessed by various earlier studies of similar
problems, in particular, by the studies of (1.1) of various authors cited above. Note
also that, in the h —> 0 limit, we recover the classical solution of (1.1), thus providing an
alternative (discretised) proof of the main existence theorem in [17]. In a recent work [8],
Thompson and Tisdell study the finite-difference methods for approximating solutions
of some boundary value problems of systems of second-order equations, which may be
applied to higher-order equations.

In the next section, we introduce our finite-difference approximation scheme for
the boundary value problem (1.1) and state our main convergence theorem in general
terms. In Section 3, we carry out a detailed analysis of the finite-difference scheme and
estimate the error bounds with respect to various parameters in the problem. We then
give a precise statement of the convergence theorem. In Section 4, we comment on some
applications and discuss future directions.
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2. FINITE DIFFERENCE SCHEME AND CONVERGENCE

THEOREM

Let N be a positive integer and, for convenience, set

(h) = {x € [0,1] : x=jh,j = 1,2,...,N}

where h = (N +1)"1. The set of all real-valued functions u defined on (h) is a real vector
space of dimension N which can be identified with the Euclidean space R". We shall
denote the usual inner product of Rw by (•, •) and the associated norm by || • || where
||u|| = (u,u)1/2. Note that for u,v € RN,

(U,V) = UTV =

where uT denotes the usual transpose of the column vector u = (u(ij)) = (UJ). We shall
also apply the operation r on matrices.

We now discretise the problem (1.1) by the following (central) finite-difference
scheme (see also [11, 13, 14])

-2y0 + 5Vl - 4y2 + y3 = -h2y'i + h*(- ^ + yj4)) 4- tu

Vi-2 ~ 4 j / i - i + 6 % - 4 y i + 1 + y j + 2 = h*yf +tJt j = 2,...,N-l,

(2.1) yjv-2 - 4»w_i + 5yN - 2yN+l = -/i2j&+1 + h4 (ytf - ^ V $ . , ) + tN,

where yj = y{xj), Xj = jh, j = 0 ,1,2, . . . , N + 1, and the truncation errors of (2.1) are

59

xj), xj-2<xj<xj+2, j =

59
(2.2) ti

On substituting (2.1) into the discrete version of the differential equation in (1.1), namely,

(2.3) yW(x,-) = /{xjyixj) + gfa), j = l,2,...,N,

we obtain the matrix equation

(2.4) P2Y = hADY + C + T,

where P is the N x N tridiagonal matrix defined by

' 2 - 1 0

(2.5) P =

0

- 1
0

0

n

2
- l

- l
2 - 1

- 1 2
-1

0

0

- 1
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(see [11, 13 , 14]), Y = (yj), D = diag(/(zj)) = diag(/j) is an N x N diagonal matrix,
T = (tj), and C = (c3) is determined by

ci = 9ih4 + 2ao - b0h
2 - ^( /oOo + So).

c2 = gh

(2.6) cN = gNh4 + 2<n - bvh
2 - —

We can state our main convergence theorem as follows.

THEOREM 2 . 1 . The discrete equation

(2.7) P2Y = h*DY + C

obtained from the finite-difference scheme (2.1) for the two-point boundary value problem
(1.1) always has a unique solution when h > 0 is sufficiently small and f(x) satisfies the
condition (1.5) and such a solution approximates the unique solution of (1.1) at the mesh
points Xj = jh (j = 1,2, . . . , N) with an error of the order O(h3^2).

We shall present a precise statement of the above theorem in the next section after
a detailed analysis.

3. CONVERGENCE ANALYSIS

Since f(x) is continuous on the interval [0,1] and f(x) ^ j47r4 for j = 1,2,. . . , if we
define p = inf f(x) and q = s u p / ( i ) , then either

(3.1) <7<7r4,

or there is an integer k such that

(3.2) & V < p s£ q < (k + 1 ) V .

It is well known that the eigenvalues of P are 4sin2(j7r/i/2), j = 1 ,2 , . . . , N. There-
fore the eigenvalues A; of P2 are

(3.3) A ^ l G s i n 4 ^ ) , j = l,2,...,N.

Note also that the standard calculus inequality t - t?/6 < sint < t, t G (0, n/2), gives us

the estimates

(3.4) ^ ( l - ^ j ^ A ^ j V l i 4 , j = l,2,...,N.
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Choose an orthogonal N x N matrix O such that

(3.5) OTP2O = diag(A1,A2l...,Aw)

and introduce a substitution U = OTU where U,U G RN. We have

(U, (P2 - h4D)U) = ITP2U - h'lTDU

> ITP2U - qhAlTU

= IT diag(A1) A2>... , XN)U - qhlUTU

> (Ai - qhA)lTU

(3.6) =(A 1 -g/ l
4 ) ( [ / , i7) .

But, from (3.4), we have Ai > 7r4ft4(l - TT2/I2/24)4. Consequently

(3.7) (U, (P2 - h*D)U) > h* (n* [l - ^ ] 4 - </) ([/, [/).

Now assume /(x) satisfies (3.1) and let

Prom (3.7) and (3.8), we obtain

(3.9) (U, (P2 - h*D)U) > y (TT4 - q)(U, U).

It then yields from (3.9) and the Schwartz inequality that P2 - h*D is invertible when h
satisfies (3.8), and that

(3.10) | | (P2 - ft4!))-1!/!! < ft4(7r4
2_g)ll^ll> U e RN-

If f(x) satisfies (3.2), we assume for simplicity that N ^ k. Set m = (p+q)/2. Then

|| (P2 - /i4m/)f/||2 = trOT(P2 - h^

(3.11)

From (3.11), we have

(P2 - h4D)U\\ 2 ||(P2 - h4mI)U\\ - ||(/i4m/ -

It is easily checked that if

(3.12) ^ | | tr | |nun|Aj-fc4m|-fc4| |I/ | |max|ni-/ i | .
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then

(3.14) m < ( 4 + 1 ) V ( l - £ ± ^

and if

then

(3.16)

From (3.14) and (3.16), it follows that if h< ho = min(/ii, /12), then (3.12) gives us

(3.17) Wipt-tfDWWzhtdoWW

where

(3.18) do = min (p - * V , | ( [ * + 1]V - <?)).

From the above analysis, we see clearly that if

(3.19) h< ho,

the matrix P2 — h*D is invertible and satisfies the bound

(3.20) ||(P2 - ft4!?)"1!/!! ^ f^\\U\\, U 6 R",

which is the key estimate to our error estimate.
On neglecting the truncation error term T in the equation (2.4), we arrive at the

truncated equation

(3.21) P2Z = rfDZ + C,

where the solution vector Z = (ZJ) is viewed as an approximate solution of the (exact)
equation (2.4). For any data term C = (c,), the equation (3.21) has a unique solution for
sufficiently small h because we can choose h to satisfy (3.8) or (3.19) according to f(x)
satisfying (3.1) or (3.2) to make (P2 - h*D) invertible.

Let E = Y - Z = (y(ij) — Zj) where y(x) and Z are the unique solutions of (1.1)
and (3.21), respectively. It is seen that (the error vector) E = (e>) in fact is a solution of
the equation

(3.22) P2E = h*DE + T.
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Hence, from (3.10) or (3.20) according to f(x) satisfying (3.1) or (3.2), we obtain

(3.23) ^ h-4M\\T\\,

where M is a constant depending only on f(x). In particular, (3.23) implies the following
pointwise bound

max 1

(3.24) O ~ 9 / 2 M max \tt |.

Combining (2.2) and (3.24), we see that we can conclude with

THEOREM 3 . 1 . Suppose that f(x) jt j*ir* for j = 1,2,.. . and that y(x) is
the unique solution of the fourth-order two-point boundary value problem (1.1) which
has continuous derivatives up to the 6th order. Let (3.21) be the matrix equation for
the unknown vector Z = (ZJ) which is the truncated discrete equation derived from the
finite-difference scheme (2.1) or (2.4). If the step size h is sufficiency small such that it
falls into the range (3.19), then the equation (3.21) is uniquely solvable and this solution
pointwise approximates the exact unique solution of (1.1) according to the error bound

(3.25) max\y(Xj) - Zj\ = 0{h3/2).

It is seen that the above theorem is the precise form of Theorem 2.

4. COMMENTS ON APPLICATIONS

The boundary value problem (1.1) studied in this paper is a prototype problem in
elastic theory (the beam or plate deflection problem) and its extensions to other situa-
tions can be carried out following a similar path for which a crucial technical restriction is
the nonresonance condition (1.5). For example, the boundary conditions in (1.1) and the
terms of the diffrential equation in (1.1) can all be modified for application purposes. Be-
sides, we can also extend this work to include for example finite-element approximations
[1, 2, 3, 18], which will be addressed elsewhere.

Our method can be applied to the study of some nonlinear problems [6, 16, 17]
which arise frequently in many areas of engineering. For example, in the study of the
design and performance of microelectromechanical systems (MEMS), one encounters the
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equations of the forms

(4.3) yw-f(x)y =

subject to various kinds of boundary conditions of elastic deformation problem nature
(see [5, 7 , 15, 19] for example). The parameter A represents the magnitude of an applied
electric voltage which is usually assumed to be small (a large value of A breaks the device
and solution will no longer exist). One is interested in small amplitude solutions. For
these problems, we discretise the equations as before and view the right-hand sides of
(4.1)-(4.3) as the nonhomogeneous term in (1.1). In the discretised problems, these give
rise to the vector C in (3.21) and lead to a nonlinear equation of the form

(4.4) P2Z = h4DZ + C{Z).

Under the nonresonance condition, an operator bound of the form (3.10) or (3.20) can
be used to show that when the parameter A is small, (4.4) may be solved iteratively by
the scheme

(4.5) P2Zn = h4DZn + C(ZB_!), n = l , 2 , . . . , Zo = 0,

whose convergence is ensured by the contraction mapping principle. Obviously, as h -¥ 0,

the obtained solution approaches a solution of the original continuous problem.
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