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Summary

The genomic control (GC) approach is extensively used to effectively control false positive signals due to
population stratification in genome-wide association studies (GWAS). However, GC affects the statistical
power of GWAS. The loss of power depends on the magnitude of the inflation factor (1) that is used for GC.
We simulated meta-analyses of different GWAS. Minor allele frequency (MAF) ranged from 0-001 to 0-5 and
A was sampled from two scenarios: (i) random scenario (empirically-derived distribution of real 1 values) and
(ii) selected scenario from simulation parameter modification. Adjustment for 1 was considered under single
correction (within study corrected standard errors) and double correction (additional 2 corrected summary
estimate). MAF was a pivotal determinant of observed power. In random 1 scenario, double correction
induced a symmetric power reduction in comparison to single correction. For MAF <5%, GC significantly
reduced power for genetic risks ranging from 1-2 to 1-4 (n=10-20). Rising MAF attenuated the correction
effect of A adjustment. Moderate A approach yielded more conservative results for population stratification
adjustment, especially for MAF <5%. Large A approach yielded an approximate two fold decrease in power
when compared to moderate A approach and almost four fold when the original random 4 scenario was
considered. Meta-analysis power can be adequate to detect significant variants even for double GC correction
when effect size exceeds >1-2 and MAF >5%. Our results provide a quick but detailed index for power
considerations of future meta-analyses of GWAS that enables a more flexible design from early steps based
on the number of studies accumulated in different groups and the 1 values observed in the single studies.

1. Introduction association study is the presence of population struc-
ture that can mimic the signal of a positive association
(Cardon & Bell, 2004). Failure to control for this fac-
tor could lead to systematic inflation of the observed
magnitude of the effect sizes leading to an increased
number of false positive signals (Marchini et al.,
2004).

A widely accepted method for taking into account
the population stratification is genomic control
(GC). GC uses independent marker loci typed in
cases and controls to adjust the distribution of a stand-
ard association test statistic by an appropriate factor
(Devlin & Roeder, 1999; Pritchard & Rosenberg,
1999). Inflation factor (1) is commonly used for the
controlling of ancestry effects by yielding more con-
servative standard errors and wider confidence inter-
vals. Meta-analysis is a technique where single-study

A variety of common human diseases have a multi-
factorial genetic basis and recent advances have
enabled large-scale association studies. Under this
prism, genome-wide association studies and exome-
and whole-genome sequencing studies (GWAS here-
after for simplicity) have been increasingly used to
identify polymorphisms underlying complex traits
using meta-analytical techniques (Hindorff er al,
2009; Begum et al, 2012). The vast majority of
GWAS use population-based samples for the assess-
ment of underlying associations in complex diseases.
A potential problem for every population-based
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effects that measure the same outcome are synthesized
to provide a summary effect estimate. The approach
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has been widely adopted in genetic epidemiology
where the signals are mostly small or at least moder-
ate. Thus by synthesizing all the available information
someone can boost the power and reduce potential
false positive signals (Evangelou & loannidis, 2013).
However, it may be argued that using such techniques
to increase the proportion of true signals could lead to
recruitment of heterogeneous populations, a phenom-
enon that could be magnified if discrete population
structure exists among different studies. Moreover, be-
sides diverse populations, accumulating evidence sug-
gests that population stratification may also be present
in apparently homogeneous populations (Clayton
et al., 2005; Tian et al., 2008). Detecting realistic effect
sizes requires large-scale studies (translated in thou-
sands of individuals) and residual population stratifi-
cation cannot be excluded. Therefore researchers
usually synthesize estimates that are already corrected
for the population stratification and in most cases a
second correction for the summary results is applied.

On the other hand, the magnitude of A affects stat-
istical power. A large 2 will reduce the statistical
power requiring a larger sample size, whereas a rela-
tive smaller 4 will not require significant adjustment
to the sample size. It is obvious that for low frequency
and rare variants, 4 will significantly affect the number
of cases needed in order to identify a novel variant
(Panagiotou et al, 2010; Day-Williams & Zeggini,
2011; Koboldt et al., 2013). These power considera-
tions indicate that the expected magnitude of the ef-
fect size, the minor allele frequency (MAF) and the
value of the 4 should be taken into account when
designing a meta-analysis of GWAS.

In this study, we simulated GWAS with different ef-
fect sizes and MAFs. Subsequently, we meta-analysed
the simulated GWAS and we calculated the sample
size requirements in order to identify genome-wide sign-
ificantsignalsat thelevel of p <5 x 10~%. Meta-analysisis
a powerful method for synthesizing individual studies
that have insufficient power to detect an association.
Given the small risk effects usually observed in genetic
associations, meta-analysis has been increasingly used
in the field of genetic epidemiology. Therefore, we
assessed the effect of various 4 values in the estimated
power of meta-analysed GWAS under different scenarios
of MAFs, odds ratios (OR) and number of incorporated
studies.

2. Methods
(1) Simulation of single studies

Single case—control studies (case to control ratio equal
to 1) were simulated using multinomial approaches
as discussed in detail elsewhere (Pereira et al., 2011).
We considered a scenario with an autosomal bi-allelic
variant, where Hardy—Weinberg equilibrium is
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assumed to hold for the whole population. The suscep-
tibility alleles are considered the causal variants or sur-
rogate markers in tight linkage disequilibrium (> = 1.0).
Studies were generated as from a case—control design.
Under these settings, sample sizes were uniformly dis-
tributed between 1000 and 3000 using a 1:1 proportion
for cases and controls.

(i1) Simulation parameters

Parameters for each scenario were chosen to be in a
plausible range of values, consistent with insights from
recent studies (Lango et al., 2010; Ehret et al., 2011;
Estrada et al., 2012). In this respect, we considered gen-
etic effects under a log-additive model (i.e., multiplica-
tive model) in an OR scale, encompassing genetic
variants with small (OR = 1-05-1-3), moderate (OR =
1-4-1-6) and high (OR =1-7-2.0) effects. We also
assumed different MAFs. Specifically, we estimated
the power assuming MAFs ranging from 0-01% (rare
variants) to 50% (common polymorphisms).

We allowed 4 to be sampled from two scenarios.

(1) Random 4 scenario, where values for 1 were
sampled from an empirically-derived distribution of
real A values. To estimate the distribution of 2
among GWAS data sets, we systematically extracted
A values from all meta-analyses of GWAS published
from January 2010 to May 2012 from major genetic
journals (Supplementary Index 1).

(2) Selected 4 scenario that was subdivided into two
approaches on the basis of empirical values of 1 values
and their distribution in lowest and higher quartiles.
In the first approach, values for 1 were sampled from a
modified gamma distribution that generated values in
the range of 1-1 to 1.2 (moderate A approach), while in
the latter, A values were estimated as previously, from
an alternatively modified gamma distribution that
sampled values larger than 1.2 until approximately
1-55 (large 4 scenario). The selected A scenario 2 was ap-
plied to specific ORs (1-05-1-4) and MAFs (0-1-20%).
The compatible simulation parameters for scenario 2
were selected on the basis of the results from the initial
screening scenario showing a negligible effect of A
on ORs exceeding 1-4 and MAFs over 20%, either
alone or in combination. Gamma distribution modifica-
tions were performed through EasyFit5-5 software
(MathWave Technologies).

(iii) 1 adjustments

We computed the effect of the correction for A consid-
ering two strategies: (i) Estimates from single studies
were corrected prior to the meta-analysis and the ef-
fect sizes along with the corrected standard errors
(SEs) were synthesized (single correction-within
study corrected SEs). Corrected SEs were computed
by multiplying the original SEs (in log scale) with
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the squared root of A. The correction was performed
when 1 exceeded 1, otherwise original 1 were retained.
(i1) Estimates from single studies were corrected, the
meta-analysis was performed, and a second correction
was performed at the meta-analysis level (double
correction-within study corrected SEs plus the 4 cor-
rected summary estimate). The second, consecutive
correction was performed to the SE (in log scale) of
the summary effect size identically using the method
described in (i).

(iv) Meta-analysis methods

Meta-analyses were carried out under fixed-effects mod-
els (inverse-variance method), since this meta-analytical
framework is considered the most powerful approach
to identify novel loci during discovery screenings
(Pereira et al, 2009). We deemed significance at
o= 5% 1078, which is commensurate with genome-wide
cutoffs usually used in a variety of GWAS settings
(Panagiotou & Ioannidis, 2012). All simulations were
performed in the Stata 11-1 package (Stata Corporation).

3. Results
(1) Random 1 scenario

Based on 390 observations, a gamma distribution with
shape = 3-45, scale =0-03 and location parameter =
0-945 provided a good fit for the empirical distribution
of real A values, as discussed in the Methods section.
Corresponding mean and standard deviation for ran-
dom 1 was 1-049 and 0-056 respectively. Pooled effect
size of meta-analysis and power calculations were per-
formed on a range of five to 30 aggregating simulated
studies with a median size of 1500 + 50 subjects. In all
cases, MAF was a pivotal determinant of observed
power (Figure S1, Table 1 and Table 2). Results are
further analysed on the basis of MAF. We considered
common variants SNPs with MAF >5%, low fre-
quency variants those with 1% < MAF < 5% and
rare variants SNPs with MAF <1%.

(a) Common SNPs (MAF >5%)

For MAF = 5%, power exceeded 80% upon the use of
24 studies for a minimum effect size of 1.2 (Table 1).
Incremental values for MAF (>5%) led to progressive
increase in observed power even when combined with
smaller effect sizes (i.e., power 84-15% for OR =1-15
and identical number of studies, data not shown). The
number of studies in the meta-analysis tended to exert
a minor effect on yielding adequate power after exceed-
ing the threshold of 80% and under various combina-
tions of MAF and OR. In detail, for a range of
number of studies from 5 (OR =1-4/MAF = 10%)
to 30 (OR =1-1/MAF =20%), adequate power was
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observed and fluctuated for the same effect size (OR)
under different MAF settings or vice versa (Table 1).
The power reached 99% for MAFs exceeding 40% and
OR=1-1.

(b) Low frequency and rare SNPs ( MAF <5%)

For all scenarios using MAF <5%, a minimum effect
size of OR = 1-3 and the maximum number of studies
(n =30) were required in order to achieve 80% power
(MAF =2%,; Table 2(a)). When genetic risk was sub-
stantially elevated (OR >1-4), the number of studies
required for 80% power for the same MAF was halved
to 15. For the same effect size (OR >1-4) power exhib-
ited a flattened region over 99% for MAFs exceeding
4%, independently of the number of studies, whereas
for ORs >1-5 this was observed from MAFs as
small as 2% (Table 2(b)). For MAFs below 1%, sign-
ificant power could not be yielded by potential
combinations of genetic risk and number of studies
(Table 2(a)).

(c) Correction and power modification

As expected, double correction induced a symmetric
reduction in power of meta-analysis in comparison
to single correction (Table 1 and Table 2). Double cor-
rection strategy exerted a subtle effect on flattened
power >90% for combinations of OR (>=1-2) and
number of studies (n >15; Fig. 1(a)). For low fre-
quency and rare SNPs (MAF <5%), A based correc-
tion reduced the power for genetic risks ranging
from 1-2 to 1-4 and for aggregating studies between
10 and 20 (Table 2(a) and Fig. 1()). For rare variants
(MAF <1%), even the combination of maximum stud-
ies and large genetic effect (OR >2) could not account
for power >80%. For both scenarios of genetic fre-
quencies, elevated MAF attenuated the correction ef-
fect of 2 adjustment in the observed spectrum of ORs
(Figures S2-S4).

(1) Selected A scenario

Selected A scenario results were extracted from meta-
analysed simulated studies (maximum number of
studies 30, mean size 1480 * 28). Results are reported
under two major settings, moderate and large A ap-
proach as described in detail in the Methods section.

(a) Moderate \ approach

Common SNPs (MAF >5%). When A values were
selected from a less skewed distribution (moderate A
approach (MLA), mean A=1-14 and standard
deviation =0-017) and MAF surpassed 5%, power
considerations were relevant to the random A
scenario (Table S1).
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Table 1. Achieved power for different genetic risks and correction methodology in meta-analysis of GWAS with common SNPs ( MAF: 5, 10 and 20% ) under random

A\ approach.
OR fla f2> f3 Correction method
OR =11 OR=12
0-05 0-1 0-2 0-05 0-1 0-2

Studies in
meta-analysis No  Single Double No Single Double No Single Double No Single Double No Single Double No Single Double

5 0 0 0 0-04 001 0-01 0-35 024 0-21 047 036 0-22 7-16 57 4.4 42-14 37-88  33.33
10 0-02 0-02 0 0-51 034 0-25 576 441 3-44 865 672 512 5569 5073 4535 97-08 96-07 94-59
15 022 012 0-1 3.05 234 1-77 2342 1937 1591 32-57 2838 23-88 91-64 895 86-51 99-96 9996 9994
20 0-73 051 0-38 887 1705 541 50-02 45 39-52 62-13 5719 5179 99-03 9876  98-09 100 100 100
25 1-82  1-38 1-01 19-55 1607 12-8 7381 6954 642 837 8005 7572 9995 9994  99-88 100 100 100
30 368 275 2:25 32.8 287 24.9 88-18 8569 8251 94.33  92:86  90-46 9999 9999 9999 100 100 100

OR=13 OR=14
0-05 0-1 0-2 0-05 0-1 0-2
No Single Double No Single Double No Single Double No Single Double No Single Double No Single  Double

5 1059 837 6-55 60-81 5594 507 9727 9632 94.97 49-02 4356  38:54 96-15 9474 9323 9998 9996 9995
10 6753 6255 5778 99-48  99-15 9876 100 100 100 98-38  97-68 100 100 100 100 100 100 100
15 9606 9489  93.25 100 100 100 100 100 100 100 99-99 100 100 100 100 100 100 100
20 9973 9963 995 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
25 9998 9997 9996 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
30 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

nojaguvayy i puv sojnodoidi0ar) ‘o
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Table 2. Achieved power for different genetic risks and correction methodology in meta-analysis of GWAS with uncommon SNPs ( MAF <5%) under random A

approach.

OR fla f2’ f3 Correction method

AOR =1-1-1-2)
OR=1-1
0-001 0-005 0-01 0-02 0-03 0-04
n of studies No Single Double No Single Double No Single Double No Single Double No Single Double No Single  Double
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0-01  0-01 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0-04 0-04 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0-02 0-02 0-01 0-09 0-07 0-06
20 0 0 0 0 0 0 0 0 0 0 0 0 0-07  0-05 0-04 0-27 0-21 0-14
25 0 0 0 0 0 0 0 0 0 002 0 0 0-25 0-13 0-1 0-68 045 0-31
30 0 0 0 0 0 0 0 0 0 007 0 0 048  0-24 0-2 1-37 098 0-73
OR=12
0-001 0-005 0-01 0-02 0-03 0-04
No Single Double No Single  Double No Single Double No Single Double No Single  Double No Single  Double
50 0 0 0 0 0 0 0 0 0-01 0-01 0-01 0-07 0-04 0-03 0-23 0-14 0-12
10 0 0 0 0 0 0 0 0 0 0-12 0-07 0-04 1-06 0-76 0-53 3-63 2-64 1-96
15 0 0 0 0 0 0 0-04 001 0-01 0-87 0-66 0-43 5-81 4.31 319 16:39  13-69 11-06
20 0 0 0 0-01 001 0-01 0-09 007 0-04 3-46 2:6 1-89 16-88  13-58 10-96 3879  33.67 29-42
25 0 0 0 0-01 001 0-01 039  0-19 0-13 832 6-57 5-11 332 28-58 23.93 62-7 57-61 5174
30 0 0 0 0-02 001 0-01 093 061 0-44 16-15 131 10-6 5269 47-14 41-59 80-84  77-07 72-69
B(OR =1-3-1-4)
OR=113
0-001 0-005 0-01 0-02 0-03 0-04
n of studiess No Single Double No  Single Double No Single Double No Single Double No Single Double No Single Double
5 0 0 0 0 0 0 0 0 0 026  0-17 0-13 1-51 1-08 0-82 4.95 3-65 271
10 0 0 0 0-01 0-01 0 0-15  0-06 0-03 4.64 349 271 20-34 1701 1399 44.52  39-62  34.83
15 0 0 0 0-04 0-02 0 1-0 0-69 0-44 20-65 1731 1432 5852 53.01 47-28 85-6 8279  78-06
20 0 0 0 0-06 0-04 0-03 3.67 269 198 4546  40-1 34-85 8574 8248  78:48 97-78 97.06 9598
25 0 0 0 026 0-18 0-13 9-26 7-43 577 70-32 651 59-69 96-85 9574  94.01 99-87 9977 99-56
30 0 0 0 0-57 0-36 0-24 1839 1489 1181 8623 8323  79:36 99-43 9927  98-83 99-98 9998 9995

§a1pnjs Uov120Ss» 9]9]&(-9“401/193.[0 SUONIDAIPISUOD AoMOJ
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2 - < Low frequency and rare SNPs (MAF <5%). When
g L£8Isgs MATF did not exceed 5%, sufficient power could not
A= —== be established for moderate OR (<1-3; Table S2).
+ | o Adequate power (~80%) was first reported for
2 g” § § § 288 uncommon SNPs (i.e., MAF =2%) for OR =1-3 and
R AR === maximum number of studies. Marginal differences
o over the number of studies needed before flattening of
S g ; g 288 power (i.e., 30 studies in MLA anq OR =115 vs. 25
studies in a random scenario with identical OR)
o should be evaluated under the prism of simulation-
2leRB8R driven data.
SR
Correction and power modification. In terms of
é %;0 o S8 oo correction stratfzgy sequelae, MLA tendfzd to yield
FlelgacsSsS more conservative results for double adjustment of
population stratification across ORs between 1.2
= RN and 1-3 and MAF >5% (Figure 2(a) and Table S1).
Z|ZR&e=2= Discrepancies in power adjustment for A were
magnified for MAF <5% (Table S2). Albeit beginning
%; - © from almost identical power under unadjusted settings,
gl= § 'é g § ; MLA led to a steeper reduction in power as compared
to a random A approach for a range of ORs (1:2-1-4),
ale © e o MAFs (2-4%) and number of studies (15-25; Figure 2
S| 2% 2333 (b) and (¢)). Sufficient power for low frequency variants
N maAvaaR (MAF = 2%) was only established in the upper limit of
< _saesz the s.tgldi.ed effgezct s(ijzp (OR =1-4) along with the
= 2|Tadang contribution of 22 studies.
g
%; L woe (b) Large ) approach
BlaoZhene Common SNPs (MAF >5%). When A factor was
inflated (large 1 approach (LLA), mean 2=1-35 and
S o e 22 standard deviation = 0-047) and with common SNPs,
Slél2ezagd power >80% was initially observed for a small
genetic risk (OR =1-15) combined though with
olag. %8 elevgted MAF (29‘%)) and increased number of
Z | S EZH8ESB studies (25 studies aggregated). By contrast,
comparable power in the random 4 approach would
2 precipitate the same number of studies and genetic
2 S3HR&ER risk but with a significantly smaller MAF of 10%. In
Rleocoo—d subsequent scenarios of LLA with MAF >5%,
20 relevant associations were derived about the increased
s E" i) number of meta-analysed studies or MAF needed to
A|locoScdn achieve equivalent power to the original approach
olzgn_sa (Table S3).
Z| |-
Low frequency and rare SNPs (MAF <5%). When
= MAF was restrained below 5%, significant power
3 (~80%) was established at the cost of maximum
Rlooccoeso OR =14 and increased number of studies (n=14;
S| e Table S4). However, in all comparisons between
= 2 ) empirically derived A and LLA for double correction
§ n|ococococoo strategy, power was underestimated in the latter.
‘d\j 2 coococoo Correction and power modification. In line with
% previous analysis, correction strategy attenuated
~ w2284 R power estimates in LLA (Tables S3 and S4). For

https://doi.org/10.1017/50016672316000069 Published online by Cambridge University Press


https://doi.org/10.1017/S0016672316000069

Power considerations of genome-wide association studies

(a) OR=1.2 MAF=10% OR=1.3 MAF=10%
s O COMECHON e == SiNQIeE No correction Single
====s Double correction ====+ Double correction
100 100
80 / 80
Power (%) 28 Power (%) 23
20 20
0, _ : : 0, ' , ,
. Nu1rRDer of sruzdoles % 0 Nu1rgbe! of stuzd?es o
(b) OR=1.2 MAF=3% OR=1.3 MAF=3%
N0 COMECtion === Single N0 COMECtion =——=Single
===== Double correction ====+ Double correction
50 100
40 /4 80
Power (%) A /’,{' & Power (%) -
20 4 40
10 4 20
0 0

0 NJ{%DEI‘ of stuzd?es 0

¢ NU}RDEE of stuzdoles 5

Fig. 1. Power modifications induced by no, single and double correction strategy under different genetic risks, MAF and
number of studies for (@) MAF >5% and (b) MAF <5%.

(a) Random A Moderate A approach
— MO COMECHION = . Single comection| — N COMECHON == Single comection
== == Double correction ==== Double correction

100 80
80— - 60
Power (%) gg: Power (%) 40
20 : 20
u—.l T T T D

0 10 20 30

Number of studies
OR=1.2 MAF=5%
(b) No comection = = Single correction|
= === Double comection
80 80
60 ¢ 60
Power (%) 40 £ Power (%) 40
20 20
0 0
— NO COMBCHON == = Single cormection
==== Double corection
80
60
Power (%) 49
20
0

OR=1.2

Wm of sludz-.lc

Fig. 2. Power modifications induced by double correction strategy under different genetic risks, MAFs <5% and number
of studies in random A approach and MLA: (¢) OR =1-2, MAF = 5%; (b) OR =1-2, MAF =4%; and (¢) OR =1-3,
MAF = 2%. Closer lines to each other corresponding to no correction/single/double correction indicate a less pronounced

effect of power tapering.

MAF >=5%, coarse tapering of power was observed,
especially when either genetic risk (OR <I1-2) or
number of studies was low. Figure 3 depicts power
adjustment for random A scenario and LLA under
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different settings. When MAF was set below the
threshold of 5%, doubly corrected power was
repeatedly lower in comparison to random A
scenario as well as MLA with identical settings. For
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(a) Random A Large A approach
e No cOfrection — = Singie COMECt — No CoTection — = Singlt COMEC
= === Double comection = === Double correction

No comection == = Single corect
Double correction

80— 80+
60— 60—
P
Power (%) 4o_| ower (%) 4|
20 20
0 0
. Wummsm&o =0
OR=1.1 MAF=10%
(b) — NO COfTBCHON =« Single coMmec!
= === Double comection -
100 4
80—
60—
Power (%)
40—
20—
0_ T T T T
0 ;-Fumfofllud’gg i e
OR=1.2 MAF=10%

marntm of sm%o

Fig. 3. Power modifications induced by double correction strategy under different genetic risks, MAFs >5% and number
of studies in random A approach and LLA: (a) OR = 1-1, MAF = 10%; (b) OR =1-2, MAF = 10%. Closer lines to each
other corresponding to no correction/single/double correction indicate a less pronounced effect of power tapering.

Random A

Moderate A approach

— NO Comection == =Single comection

= === Double comection

——— No comeclion = Single comection

==== Double comedtion

100 100

80 80

60 60

Power (%) Power (%)

40 40

20 20

0, : 0

0 20 0

10 20
Number of studies
Large A approach

= No coftection == Single comection

==== Double comection

100

80

Power (%) £
40

20

10 20 30
Number of studies

OR=1.4 MAF=2%

10 20
Number of studies

Fig. 4. Power modifications induced by double correction strategy under selected scenarios of A magnitude and number of
studies for uncommon variant (MAF = 2%) with predetermined effect size (OR = 1.4).

rare variants (MAF <2%), maximum OR =1-4 and
maximum number of studies had to be recruited in
order to achieve sufficient power (~80%). Intensity
of power correction was the main characteristic of
LLA: for ORs ranging from 1-2-1-4 and for MAFs
of 2-4%, LLA yielded an approximate two fold
decrease in power when compared to MLA and
almost four fold when the original random 2
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scenario was considered (Fig. 4). Sigmoid curves are
established for power in Fig. 4, indicating prominent
modification under a realistic number of studies (10—
20) and the subtle effect of this parameter in more
extreme values.

Table S5 provides a review of major differences be-
tween common (MAF >5%) and low frequency or
rare SNPs (MAF <5%) in terms of effect size needed
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for adequate power (= 80%) across the three scenarios
(random A approach, MLA and LLA) of our study. A
ten fold difference in MAF between common and un-
common SNPs was selected for demonstration reasons
(i.e., uncommon SNP = 1% vs. common SNP = 10%).
Differences between unadjusted estimates and double
-corrected counterparts are also reported. Table 3 fo-
cuses on uncommon variants and depicts the impact
of alternative correction methods (no correction vs.
single and double A correction) on achieved power
for varying genetic effects and fixed number of studies
in meta-analysis.

(ii1) Working example

Here we present an example of the successful
AMDGene Consortium (Fritsche er al, 2013) that
discovered seven new loci associated with age-related
macular degeneration and confirmed older findings.
The consortium synthesized results from 17 groups
in the discovery stage and, in total, 33 groups were
used in the two-stage design, contributing 17 181
cases. The overall 1 was 1-06 fitting in our random 4
scenario. The smallest OR detected was 1-10. For
our working example we assume an overall number
of 33 contributing groups. Based on our calculations,
the group would have adequate power to detect sig-
nals with an OR of >1-3 and/or MAF exceeding 5%;
however, the consortium has limited power to discover
additional loci for low frequency variants (MAF
<5%) and moderate genetic effects (Table S6).
Figures S5-S7 depict the power modifications induced
by GC for uncommon SNPs under different settings
of genetic effects/number of aggregated studies and
further emphasize the need for augmentation of the
sample size in relevant analyses. From the baseline
status of 33 studies with 17 181 cases, an additional
sample size of approximately 10 500 subjects should
be recruited in order to yield acceptable power
(>90%) under double GC correction for uncommon
SNPs (MAF =4%) and a moderate effect size
(OR =1-2). Therefore, the consortium should work
towards accumulating larger sample sizes or inviting
new groups into the consortium.

4. Discussion

We evaluated the influence of population stratification
using the widely applied GC on the power of a
meta-analysis under different settings and number of
the individual GWAS. Thus, our results provide direct
evidence of the power of the discovery efforts to iden-
tify new signals. It is clearly shown that the meta-
analysis power can be adequate to detect significant
variants even if investigators apply the more conserva-
tive double GC correction for ORs >1-2 and for
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Table 3. Power considerations under selected scenarios of N magnitude, correction approach and effect size for uncommon variants and predetermined number of studies

in meta-analysis.
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0

0
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OR =11

0

0-17
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0-1
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0-13

0-39

0-81
0-04

32-52
9-58

10-67
1.74

20-71

28-58 23.93 33-81
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MAFs >5%. However, the power of the meta-analysis
is greatly influenced when the genetic risk effect is
weak or the MAF of the variant under study is rare.

Based on the findings of this simulation study we can
describe the different levels of 1 regarding their influence
on power as: 1-1-10: small 4; 1-1-1-2: moderate 4; and
>1.2: large A. This allows for quick inspection of the
data and for power consideration even during the early
stages of a consortium being formulated, the participat-
ing teams design the study and draft the analysis plan.
Moderate and large A values may substantially increase
the sample size requirements to maintain adequate stat-
istical power when compared with weak A values even
if the underlying genetic risk factors are moderate or
large and the MAF <5%. Therefore, the calculations pre-
sented in the work can be used to estimate the expected
power in meta-analyses of GWAS. Power considerations
could be taken into account even from the early stages of
the study design, based on the number of cases accumu-
lated in different groups and the 1 observed in each indi-
vidual genome-wide association.

In our study we empirically drew a distribution of 4
that was subsequently applied in the simulation scen-
arios. We have shown that in most studies the 1 was
small (<1-1) indicating that even though stratification
cannot be excluded as a possibility in real scenarios,
most of the teams continuously monitored for stratifi-
cation and applied stringent quality control measures
to diminish the possibility of confounding by popula-
tion admixture. This supports previous arguments that
unrelated case—control and cohort studies can be ef-
fectively compared to other designs such as family-
based studies (Risch 1990; Silverman & Palmer,
2000; Cardon & Bell, 2004; Evangelou et al., 2006).

Accumulating evidence from recently published
studies suggests that GC may not be effective in con-
trolling population stratification in association studies
(Edwards & Gao, 2012; Wang et al., 2012). This prob-
lem may be aggravated under meta-analysis settings
where a double GC correction method might lead to
more prominent inflation of type I error rates at a
marker with significant allele frequency differentiation
in subpopulations generated by recent strong selection
(Bouaziz et al., 2011; Edwards & Gao, 2012; Wang
et al., 2012). Conversely, alternative methods, includ-
ing principal component analysis (PCA) correction
and Bayesian semiparametric algorithm for inferring
population structure, could control type I error rates
and yield much higher power in meta-analyses com-
pared to the double GC correction method (Bouaziz
et al, 2011; Edwards & Gao, 2012; Majumdar
et al., 2013). Emerging techniques also incorporate
linear mixed models to test for association in
GWAS, after taking into account relatedness among
samples, population stratification and other confound-
ing factors (Zhou & Stephens, 2012). These models
present substantial computational challenges but
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implementation of new algorithms enable exact tests
for large GWAS, minimizing the need for approxi-
mate methods and subsequent power loss (Zhou &
Stephens, 2012; Shin & Lee, 2015). In the presence
of subject outliers or markedly admixed populations,
methods that are considered more effective than GC
for controlling population stratification (i.e., PCA)
may need further improvement. Amendments such
as robust PCA combined with k-medoids clustering
or hybrid approaches with linear mixed models
could increase the robustness of techniques designated
to adjust for population heterogeneity (Liu et al,
2013; Tucker et al., 2014). Statistical methods in con-
fronting population stratification may include optimal
case—control matching through hierarchical clustering
or modified spectral clustering (spectral dimensional
reduction techniques) in the case of rare variants
(Miclaus et al., 2009; Zhang et al., 2013; Lacour
et al., 2015).

In our study, we confirmed a prominent decrease in
observed power of meta-analysis of GWAS, notably
after double GC correction for low frequency and
rare variants under small genetic effects (Jiang et al.,
2013). Double GC-induced power decrease was aggra-
vated for inflated A values indicating conservative
results in relatively distant populations (Bouaziz
et al., 2011; Jiang et al., 2013). However, GC should
not be excluded a priori from future analyses on the
basis of its computational simplicity and speed. By
contrast, adjusted regressions and principal compo-
nent methods can be very time consuming depending
on the algorithm used to infer the population
structure.

Certain drawbacks of our study should be acknowl-
edged. First, the need to exhaustively examine a wide
range of combinations among potential modifiers of
power (MAF/effect sizenumber of studies) in
meta-analyses of GWAS imposed the use of simulated
data of independent single studies. Highest number of
replication iterations, previously validated method-
ology for simulation data (Pereira et al., 2009), assess-
ment of 1 distribution as derived from published
GWAS and biological interpretation of study results
partially compensated for the absence of real data.
Moreover, genetic associations were analysed under
the assessment of a multiplicative genetic model. By
contrast, other researchers have suggested the syn-
thetic use of multiplicative and recessive genetic mod-
els and the implementation of Bonferroni correction
(Salanti & Higgins, 2008). Finally, this study provides
descriptive results on the basis of power modifications
after adjusting for effect size, MAF and number of
studies. Under this prism, quantification of the influ-
ence of the above parameters per se on power adjust-
ments could not be ascertained.

Exome- and whole-genome sequencing data for
complex traits will exponentially grow in the next
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few years, therefore the need for power considerations
for the next meta-analytical efforts increases. A prior
estimate of the number of studies and participants
needed will allow international consortia to focus on
the recruitment of new partners and will lead to the
design of more effective and targeted analyses plans
that will lead to novel locus discovery.
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