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On the Existence of Similar Sublattices
Dedicated to H. S. M. Coxeter

J. H. Conway, E. M. Rains and N. J. A. Sloane

Abstract. Partial answers are given to two questions. When does a lattice Λ contain a sublattice Λ′ of index
N that is geometrically similar to Λ? When is the sublattice “clean”, in the sense that the boundaries of the
Voronoi cells for Λ′ do not intersect Λ?

1 Introduction

A similarityσ of norm c is a linear map from Rn to Rn such that σu·σv = c u·v for u, v ∈ Rn.
Let Λ be an n-dimensional rational lattice, i.e., u · v ∈ Q for u, v ∈ Λ. A sublattice Λ ′ ⊆ Λ
is similar to Λ if σ(Λ) = Λ ′ for some similarity σ of norm c. We also call σ a multiplier
of norm c for Λ. The index N = [Λ : Λ ′] is cn/2, so if n is odd c must be a square, say
c = a2, and we could take σ to be scalar multiplication by a. In other words the norms
of similarities of odd-dimensional lattices are precisely the integral squares. Henceforth we
will assume that n = 2k is even.

Multipliers of small norm, especially 2 (also called “norm-doubling maps”) are useful
for recursive constructions of lattices [10, Chap. 8]. If the root lattice E6 had a norm-
doubling map σ, then the “u, u + v” construction1would produce a denser 12-dimensional
lattice than the Coxeter-Todd lattice K12. However, some years ago W. M. Kantor and
N. J. A. S. showed by direct search that no such map exists. This result now follows from
Theorem 2.

The question of the existence of multipliers of given norm arose recently in constructing
“multiple description” vector quantizers [15], [17]. In an ordinary vector quantizer an n-
dimensional lattice Λ is specified, and successive n-tuples (x1, . . . , xn) ∈ Rn are replaced
by the closest lattice points (cf. [10, Chapter 2]). In a multiple description scheme we also
choose a number N and a labeling

u ∈ Λ �→
(
l(u), r(u)

)
∈ Z× Z

such that |l−1(i) ∩ r−1( j)| ≤ 1, |l−1(i)| ≤ N , |r−1( j)| ≤ N for all i, j ∈ Z. The numbers
l(u) and r(u) are transmitted over different channels. If both numbers are received then
u is uniquely determined, but if only one number is received (and the other lost) then u
is determined to within a small region of Rn (and the goal is to choose l and r so that
this region is as small as possible). The method proposed in [15], [17] for constructing
such labelings makes use of a sublattice Λ ′ that has index N in Λ and is similar to Λ. For

1Take the lattice consisting of the vectors (u, u + v) for u ∈ E6, v ∈ σ(E6).
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this application it is also of interest to know when the boundary of the Voronoi cell of the
sublattice Λ ′ does not contain any points of Λ: we call such sublattices “clean”.

In Section 2 we give several results about the existence of similar sublattices, and in Sec-
tion 3 we give a partial answer to the existence of clean sublattices in the two-dimensional
case.

The only references we have found which treat the first problem are Baake and Moody
[2], [3], which are concerned with lattices (and more general Z-modules related to qua-
sicrystals) in dimensions 1 to 4. These authors use techniques from ideal theory and quater-
nion algebras to enumerate similar substructures of given index.

A related problem has been studied in the crystallographic literature [1], [4], [5], [13]:
given a lattice Λ (or more generally a Z-module) in Rn, when does there exist an isometry
σ such that the “coincidence site sublattice” Λ ′ = Λ ∩ σ(Λ) has finite index in Λ? This
is a somewhat different problem, since Λ ′ need not be similar to Λ, nor can every similar
sublattice of Λ be obtained in this way.

We discovered the above references by accident. Using a computer we found that the
lattice A4 has multipliers of norm c precisely when c is one of the numbers

1, 4, 5, 9, 11, 16, 19, 20, 25, 29, 31, 36, . . . .

The same sequence appears in [1],2 as the indices of coincidence site sublattices in a certain
three-dimensional quasicrystal. [1] identifies these numbers as those positive integers in
which all primes congruent to 2 or 3 (mod 5) appear to an even power. As Theorem 2
shows, this is the same as our sequence. Although this can hardly be a coincidence, we do
not at present see a direct connection between the A4 and quasicrystal problems.

Two papers by Chapman [6], [7] consider a different, though again related, problem
concerning sublattices of Zn.

2 The Existence of Similar Sublattices

Let Λ be a rational 2k-dimensional lattice with Gram matrix A, and let c ∈ N. We wish to
know if Λ has a sublattice Λ ′ such that σ(Λ) = Λ ′ for some similarity σ of norm c. The
existence ofΛ ′ can be determined (in principal) by searching throughΛ to see if it contains
a set of vectors with Gram matrix cA. For small k and c this is quite feasible. We know of
no other method that will always succeed.

By using the rational invariants of Λ we can obtain a necessary condition for Λ ′ to exist,
which in some cases is also sufficient. The Hilbert symbol [11], [18] provides a convenient
way to specify this condition.

For a rational number r > 0 we write (r) for the fractional ideal rQ . A lattice Λ is (r)-
maximal if Λ is maximal with respect to the property that u · u ∈ (r) for all u ∈ Λ [11],
[12]. The importance of this concept stems from the result [12, Section 102:3] that the
(r)-maximal lattices in a rational class form a single genus. We also say that Λ is unigeneric
if it is unique in its genus.

Theorem 1 A necessary condition for a 2k-dimensional lattice Λ to have a multiplier of

2Found with the help of [16], where it is sequence A31363.
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norm c is that the Hilbert symbol
(
c, (−1)k detΛ

)
p
= 1(1)

for all primes p dividing 2c detΛ. If Λ is unigeneric and (r)-maximal for some r ∈ Q then
this condition is also sufficient.

Proof If σ is a multiplier of norm c forΛ, thenΛ ′ = σ(Λ) and Λ are rationally equivalent,
hence equivalent over the p-adic rationals for all p, and so have the same Hasse-Minkowski
invariant εp for all p. The p-adic Hasse-Minkowski invariants for Λ and Λ ′ differ by a
factor of

(
c, (−1)k detΛ

)
p

[18, p. 46], [11, Theorem 3.4.2]. Since this invariant is 1 if p

does not divide 2c detΛ, the first assertion follows. Conversely, if (1) holds for all p then
Λ and the rescaled lattice

√
cΛ are rationally equivalent. For u ∈

√
cΛ, u · u ∈ (cr) ⊆ (r),

so
√

cΛ is contained in some maximal (r)-lattice M, say. By [12, Section 102:3], M and Λ
are in the same genus, and since Λ is unigeneric, M is in the same class as Λ. Hence Λ has
a sublattice in the same class as

√
cΛ.

Note that it is not enough for Λ to be unigeneric for the condition of the theorem to
be sufficient. The lattice with Gram matrix

[
1 0
0 4

]
is unigeneric and rationally equivalent to[

2 0
0 8

]
, but does not have a similarity of norm 2.

Many familiar lattices of small determinant and dimension are unigeneric (see [8]), and
are often (1)-maximal (if they contain vectors of odd norm) or (2)-maximal (if they contain
only vectors of even norm). In these cases Theorem 1 provides the answer to our first
question, as the following theorem illustrates. The straightforward proof is omitted.

Theorem 2 The lattices Z2, A2, A4, Z6, E6 have multipliers of norm c just for the following
values:

Z2 or Z6: c = r2 + s2, r, s ∈ Z; i.e.,

primes≡ 3 (mod 4) appear to even powers in c,

A2 or E6: c = r2 − rs + s2, r, s ∈ Z; i.e.,

primes≡ 2 (mod 3) appear to even powers in c,

A4: c = r2 + rs− s2, r, s ∈ Z; i.e.,

primes ≡ ±2 (mod 5) appear to even powers in c.

In some cases explicit similarities are easily found. For Z2 and A2 we use complex coor-
dinates and take σ to be multiplication by r + si and r + ωs respectively, where ω = e2πi/3.
For E6 we use three complex coordinates [10, p. 126, Eq. (120)], and again multiply by
r + sω.

For A4 some similarities can be found using the element

α =




0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0



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of Aut(A4). It can be shown that σ = a1α + a2α
2 + a3α

3 + a4α
4 is a similarity for A4 of

norm
1
2 [a1 a2 a3 a4]




2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2







a1

a2

a3

a4




provided
[a1 a2 a3 a4]




0 1 −1 −1
1 0 1 −1
−1 1 0 1
−1 −1 1 0







a1

a2

a3

a4


 = 0.

This gives similarities of norms 1, 5, 11, . . . but not 19, 29, . . . . We do not know a simple
way to find the other similarities. Of course analogous similarities can be found for any
cyclotomic lattice.

Theorem 3 The lattices Z4m, D4m and D+
4m (m ≥ 1), E8, K12, the Barnes-Wall lattice BW16

and the Leech lattice Λ24 have multipliers of every norm.

Remark Baake and Moody [3] establish this for Z4 and D4 and also give a Dirichlet gener-
ating function for the number of similar sublattices of given index.

Proof For Z4m, D4m, D+
4m we represent the vectors by m Hurwitz integral quaternions; then

right multiplication by q = r + si + t j + uk is a similarity of norm |q|2 = r2 + s2 + t2 + u2.
We write the vectors of Λ24 in 4 × 6 MOG coordinates [10] and convert each of the six

columns to a quaternion according to the scheme

1 1 1 1 1 1
k j k j k j
i k i k i k
j i j i j i

.

In this form left or right multiplications by i, j or ω = 1
2 (−1 + i + j + k) are all automor-

phisms of Λ24, as is the column permutation (1, 2)(3, 4)(5, 6). Then right multiplication
by q is a similarity of Λ24 of norm |q|2.

We define BW16 to be the sublattice of Λ24 in which the last two columns of the MOG
are zero, and again use q. Finally, we define K12 to be the sublattice of Λ24 consisting of
vectors

a b c d e f
A B C D E F
A B C D E F
A B C D E F

,

which we associate with the three-dimensional quaternionic vector

(a + bi +
√

3A j +
√

3Bk, . . . , e + f i +
√

3E j +
√

3Fk).(2)
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Then right multiplication of (2) by r + si +
√

3t j +
√

3uk defines a similarity of norm
r2 +s2 +3t2 +3u2. Since the latter form represents 1, . . . , 15, by the “15-Theorem” of J. H. C.
and W. A. Schneeberger (cf. [10]) it represents all numbers, and the proof is complete. (Of
course the universality of this form was already known: it appears in [14].)

Another easy consequence of Theorem 1 is:

Theorem 4 A necessary condition for Λ to have a norm-doubling map is that dimΛ be even
and that all primes ≡ ±3 (mod 8) appear to even powers in detΛ. If Λ is unigeneric and
(r)-maximal for some r ∈ Q then this condition is also sufficient.

3 The Existence of Clean Sublattices in the Two-Dimensional Case

The Voronoi cell of a two-dimensional lattice is either a hexagon or a rectangle [9, Fig. 1].
We assume that the lattice is generated by 1 and an imaginary quadratic integer. Similar ar-
guments could be applied to more general two-dimensional lattices but the answers would
be much more complicated.

We first consider a lattice Λ with a hexagonal Voronoi cell, generated say by 1 and ω =
(−1 +

√
−N)/2, N ≡ 3 ( mod 4). A similarity σ of norm c is represented by multiplication

by α = a + bω, a, b ∈ Z, with c = |α|2 = a2 − ab + (N + 1)b2/4. We begin with the case
N = 3, the hexagonal lattice (a rescaled version of A2).

Theorem 5 For the hexagonal lattice generated by 1 and ω = e2πi/3, multiplication by
α = a + bω yields a clean sublattice if and only if αθ is a primitive element3 of Z[ω], where
θ = ω− ω̄ =

√
−3. There is a clean sublattice of index c if and only if c is a product of primes

≡ 1 (mod 3).

Proof The Voronoi cell of Λ is a regular hexagon, and all edges are equivalent, so it is
enough to consider say the left-hand edge L. This edge is the middle third of the line M
from ω to ω̄. The lattice Λ ′ = αΛ is clean if and only if there is no point of Λ on the
line αL. Since Λ is a lattice, if there is a point in the interior of M then there is a point
on L. So Λ ′ is clean if and only if there is no point of Λ in the interior of αM, i.e., if and
only if αθ is primitive. The second assertion follows easily from the fact that the numbers
primitively represented by a2−ab + b2 are of the form 3ε times a product of distinct primes
≡ 1 (mod 3), where ε = 0 or 1.

We state the result for the general case without proof. The argument is similar to the
above, but one must consider all sides of the Voronoi cell.

Theorem 6 For the hexagonal-type lattice generated by 1 and ω = (1 +
√
−N)/2, the

similarity defined by multiplication by α = a + bω yields a clean sublattice if and only if

(i) αθ is primitive, where θ = ω − ω̄ =
√
−N,

(ii) there is an odd number k dividing N+1 such thatα(N−θ)/(2k) is integral and primitive,
and

3An element r + sω ∈ Z[ω] is primitive if and only if gcd(r, s) = 1.
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(iii) there is an odd number k dividing N+1 such thatα(N+θ)/(2k) is integral and primitive.

For the Kleinian lattice generated by 1 and ω = (1 +
√
−7)/2, for example, k = 1 is

the only possibility, and the theorem states that αΛ is clean if and only if αθ, αωθ and αω̄θ
are all primitive. Equivalently, (a + bω)Λ is primitive if and only if a is odd, b is even and
gcd(a, b) = 1.

Similar arguments also give the result for lattices with rectangular Voronoi cells. Again
we omit the proof.

Theorem 7 For the rectangular-type lattice generated by 1 and θ =
√
−N, N ≥ 1, the

similarity defined by multiplication by α = a + b
√
−N yields a clean sublattice if and only if

αᾱ = a2 + Nb2 (or equivalently a + Nb) is odd.

Remarks M. Baake has pointed out to us that by combining Theorems 5 and 7 with the
results of [1] we can say that a sublattice of A2 (or Z2) is clean if and only if it is a coincidence
site sublattice.

It would be nice to know what happens in higher dimensions. What is the analogue of
Theorem 5 for D4 or E8, for instance?
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