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ABSTRACT Rotation and a magnetic field break the spherical 
symmetry of a star viewed as a pulsating system, lifting the degeneracy 
of oscillation frequencies, and leading to (sometimes prominent) 
observational consequences. Theoretical studies of rotational and 
magnetic effects in pulsating stars are reviewed, starting with simple 
configurations with slow rotation and weak magnetic fields. 

INTRODUCTION 

The theoretical oscillation spectrum of a spherically symmetric, non-rotating 
and non-magnetic star is largely degenerate. The nature of this degeneracy 
is made transparent by the simple considerations about the completeness 
property of the oscillation spectrum of the spherically symmetric star. 

An arbitrary displacement field in a spherical domain occupied by the star 
can be decomposed in terms of spheroidal vector spherical harmonics 

nlmn(r) = Ulmn{r)rYlm{6,<t>) + Vun„(r)V &„($,*), (1) 

and toroidal vector spherical harmonics 

u<m„(r) = -Wimn(r)f x ViYt^e, 4), (2) 

where Vi is angular part of gradient operator 

Vi=*4 + 4^j£r, (3) 
ad sm0 04> 

and r,6,<f> are unit vectors in a spherical coordinate system. In linear analysis, 
the time dependence is separated by a common factor exp(tu><). 

The usual p, f and g modes represent the spheroidal oscillations. Because 
of the spherical symmetry, their frequencies are degenerate with respect to the 
azimuthal order m. 

Toroidal fields are horizontal and divergence-free (solenoidal). They 
describe torsional oscillations, with restoring forces provided by the shear 
stresses. With the only exception of neutron stars (McDermott, Van Horn and 
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Hansen 1988; Strohmayer etal. 1991), the shear stresses actually produce no 
restoring forces, and frequencies of the torsional oscillations are zero ("trivial 
modes"). Formally, these modes describe an arbitrary time-independent 
differential rotation. 

In the spectrum of spheroidal oscillations, there is also one "trivial mode" 
with zero frequency, which is the fundamental mode of degree £ = 1. This 
mode describes the free motion of the star as a whole. The complete oscillation 
spectrum thus describes all the possible motions of the star in free space: 
the motion of the star as a whole, its arbitrary free rotation, and oscillations 
around the equilibrium. 

Rotation and a magnetic field make the oscillation spectrum much 
reacher. They destroy the spherical symmetry, lifting the degeneracy of the 
frequencies of p, f and g modes. The splitting of the frequency multiplets 
with respect to the azimuthal order m can be measured and used for the 
diagnostics of the internal rotation and the internal magnetic field. In addition 
to pressure perturbations, which provide the restoring forces for p modes, and 
buoyancy forces, which are the restoring forces for g and f modes, the rotation 
and magnetic field provide new restoring forces, which are Coriolis forces and 
Lorentz forces, leading to the appearance of non-trivial modes of quite different 
physical nature. 

Pulsations of rotating and magnetic stars were an object of intensive 
study for decades, starting with pioneering works of Cowling and Newing 
(1949) and Ledoux (1951). There are a number of related topics, including 
stability of differentially rotating stars, angular momentum transport and 
interaction between rotation, pulsation and convection, which cannot be 
covered by this short review. For a more extensive bibliography of current 
literature, and for the early work, the reader is referred to the monographs of 
Cox (1980) and Unno etal. (1989), and to the papers cited below. 

SLOW ROTATION 

The influence of rotation on p, f and g modes can be studied using 
perturbation analysis, if this influence is small. "Slow" rotation means that the 
Coriolis forces are small compared with inertial forces, i.e. the angular velocity 
of rotation is small compared with oscillation frequencies, and the rotational 
distortion of the equilibrium configuration is small, i.e. centrifugal forces are 
small compared with gravity. 

The rotational effects on the oscillation frequencies are usually analysed 
for the case of axisymmetric rotation, fi = Q(r,0). An interesting situation 
when the stellar core and the envelope rotate around different axes, and the 
possibility of detecting such a rotation in the oscillation data, is discussed in 
these proceedings by Gough and Kosovichev (1992). 

First-order effects of rotation 
The leading-order effects on the oscillation frequencies are linear in fl, and 
independent of the rotational distortion of the equilibrium stellar configuration, 
which is of order Q2. The perturbation analysis is thus straightforward, and 
does not require any additional assumptions. 
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A general expression for the frequency perturbations due to an arbitrary 
axisymmetric differential rotation Q = Q(r,6) was first obtained by Hansen, Cox 
and Van Horn (1987): 

fa = _ ( u , n [ m - « x ] u ) 
(u,u) 

where z is unit vector in the direction of rotation, which is taken also to be 
the direction of z-axis of the spherical coordinate system, u is the zero-order 
displacement field, and scalar product is defined by 

(ui,u2) = / po\i{ -u2c(t); (5) 

the integral is taken over the spherical volume occupied by the star, po is the 
equilibrium density and an asterisk denotes complex conjugate. By separating 
angular dependences, the volume integrals in the expression (4) can be reduced 
to one-dimensional integrals containing U(r) and V(r) (for the ̂ -dependence of 
Q(r, 6) expressed in terms of harmonic functions, see Cuypers 1980). 

Below in this section, we discuss the response of the oscillation frequencies 
to differential rotation, and thus the diagnostic capability of frequency 
measurements in studying internal stellar rotation. For convenience the 
angular velocity distribution expanded in terms of spherical harmonics 

n = £fi,0-m0(M). (6) 

Such a representation of fi(r, 9) is a natural choice when working in spherical 
geometry, and appears to be the most convenient for the practical inversions 
of rotational splitting (Durney, Hill and Goode 1988; Gough and Thompson 
1990). The frequency perturbation becomes (Vorontsov 1981) 

*w = X) /?°r 2 Q< [AMmu (Vi ~ mU) + B?£mV(Vt - mV) 
•• o 

+ CSfiZlVWt-i + Cffi%VWt+i]dr I J ROT2 [U2 + £(£ + 1)V2] dr. 

(7) 

The functions Ut(r), Vi(r), Wt-i(r) and Wl+i(r) represent the simple 
decomposition of the vector field iz x u in terms of spheroidal and toroidal 
vector spherical harmonics (Vorontsov and Zharkov 1981), which contains one 
spheroidal field of the same degree €, and two toroidal fields of degree £ - 1 and 

iz x u = Ut(r)fYtm(0,4) + V$(r)Viylm(*,rf) 
- W^ir)? x V,y«_,im(*,*) - Wi+1(r)f x V I ^ - H . ^ M ) , 

Ut = mV, Vl = 1^-(U + V), (8) 

Wi_i = -«• ^ ^ - - " O V V + P+DV], ^2(2£+l)(2£-l)_ 
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Wl+1 = i 
(e + m + l)(e-m+l)]1/2 _ 

.(^+1)2(2^+1)(2^+3)J l J ' 

U = Uim„(r) and V = Vtmn(r) describe the zero-order displacement field u(r). 
The angular integrals 

Aft'? = J Yk9Yj.u.Y;„dSl, 

B'U'J" = JYk, Writ-) • {VxYjM)' dQ 

4", (9) 
= J n , ( - r x VIYJ>M>) • ( - r x V^JM)' dU, 

4 i 

<%%'? = / **i (ViKrw) • (-f x ViYjw)* JO 
4T 

are determined explicitly in terms of Wigner's 3-j symbols (Edmonds 1957; Luh 
1973). 

When Q is a function of r alone, expression (7) for the frequency splitting 
reduces to (see also Gough 1981) 

to = Jo por7Q{r) lV* + 2UV -Ui~ e{£ + 1)K21 dr (10) 
f?Por2[U* + e(e+l)V*]dr 

For the simplest case of uniform rotation Q = fio) it reduces further to 

« f%or2(V2 + 2UV)dr n t s 

/o%or2[^2 + ^ + l ) V 2 ] r f r 

the result first obtained by Cowling and Newing (1949) and Ledoux (1951). 
When the oscillations of the uniformly rotating star are viewed in the 
corotating frame, the last term in the expression (11) disappears: this term 
describes the simple kinematic effect of the transformation of the coordinate 
system to the inertial frame. The first term on the right-hand side describes 
the influence of the Coriolis forces. 

When Q = f2(r), Su is proportional to m; the frequency separation within 
a particular multiplet is uniform. This frequency separation is different for 
different multiplets: different modes sample the stellar interior at different 
depths, and the observational frequency splittings can be used to infer Q as a 
function of r. 

The latitudinal dependence of the angulal velocity of rotation does not 
affect the symmetry of the multiplet splitting (6u> remains an odd function of 
m), but distorts the equidistant separation of frequencies with respect to m: 
modes with higher |m| concentrate more closely around the equatorial plane, 
and are thus more sensitive to the rotation near this plane. The rotational 
splittings thus allow one to study the internal rotation as a function of both 
depth and latitude. Symmetry properties of the spherical harmonics define the 
selection rules for the contribution of different terms of the expansion (6) to the 
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frequency splitting. The angular integrals (9) differ from zero only if q = M'-M 
and values of k,J',J satisfy triangle rule. Integrals A and B differ from zero 
only if k + J ' + J is even; for the integral C to differ from zero, k + J' + J 
must be odd. Only even components in the expansion (6) thus contribute 
to the frequency splitting: asymmetry of the stellar rotation with respect to 
the equatorial plane has no influence on the oscillation frequencies. Only the 
components with t < 11 contribute to the splitting: higher-order harmonics 
in the latitude dependence of the rotational velocity can not be detected with 
low-degree modes. 

In helioseismology, reliable measurements of rotational splitting are now 
available for p modes in a wide range of degree I. For the interpretation of 
the odd component of the multiplet splitting, the leading-order perturbation 
analysis is adequate, at least within the current accuracy of the observational 
data. The reconstruction of the internal differential rotation from the 
frequency splittings thus represents a linear inverse problem, which is studied 
successfully with different linear inversion techniques. For the extensive 
literature in this area, the reader is referred to the current reviews on 
helioseismology (Gough and Toomre 1991; Libbrecht and Woodard 1991; 
Dziembowski and Goode 1991a; Gough and Thompson 1991; Vorontsov 1992). 

Second-order effects of rotation 
The analysis of the effects of order Q2 on the oscillation frequencies is 
more complicated, and for realistic stellar models requires some additional 
simplifying assumptions. The difficulty comes from the fact that the rotational 
distortion of the equilibrium stellar configuration is also of order fi2, and 
contributes to the same order to the oscillation frequencies. The rotational 
distortion of the star thus must be specified; this problem is very difficult 
in general, if the self-consistent stellar model is required to be not only in 
dynamical, but also in the thermal equilibrium, and the stellar model itself is 
an evolutionary model. 

After the rotational distortion of the equilibrium configuration is specified 
somehow, the extension of the perturbation analysis to second order is a 
straightforward procedure (see e.g. Saio 1981; Vorontsov and Zharkov 1981 
for uniform rotation, and Vorontsov 1981; Gough and Thompson 1990; 
Dziembowski and Goode 1992 for arbitrary axisymmetric differential rotation). 
The standard stationary perturbation technique for Hermitian operators 
is usually used. First-order corrections to the eigenfunctions are needed to 
evaluate the second-order corrections to the oscillation frequencies; they 
include both the spheroidal and toroidal vector spherical harmonics, the 
spheroidal part being determined either as an expansion in terms of the 
unperturbed eigenfunctions of a spherically-symmetric nonrotating star, 
or by the direct solution of an inhomogeneous differential equation. The 
eigenfunctions of different modes thus acquire a mixing character, which 
reflects the linear coupling of different modes induced by the rotation. 

The treatment of the effects of distortion of the equilibrium configuration 
is somewhat simplified by the fact that the contributions of the different 
quadratic terms to the oscillation frequencies are additive: other second-
order terms are independent of the distortion. But the distortional effects can 
dominate in the second-order terms. The nature of the distortional effects 
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in the frequency splittings is clearly seen for the high-degree p and f modes 
trapped near the stellar surface. Modes with m = 0 can be considered as a 
superposition of waves travelling around the star along meridians, and modes 
with m = ±£ are formed by waves travelling along the equator. Due to the 
asphericity induced by the rotation, the wave travel path along the equator 
is larger than along the meridian, and frequencies of the tesseral modes with 
m = ±£ becomes larger than those of zonal modes (m = 0). Together with 
second-order effects of the Coriolis forces, the distortion of the equilibrium 
configuration contributes to the multiplet splitting with an asymmetric 
component (even function of m), because the effect is the same for waves 
travelling in opposite directions. 

In the context of stellar oscillations, the distortion of the equilibrium 
configuration by the differential rotation was considered in most detail by 
Dziembowski and Goode (1992). The spherically-symmetric part of the 
distortion was ignored, because it does not contribute to the multiplet 
splitting, producing only an overall shift of the multiplets. For solar p modes, 
it was found that the distortion dominates in the second-order rotational 
effects (see also Gough and Thompson 1990), and the effect itself is large 
enough to be taken into account in the interpretation of the even component 
in the frequency splittings (the even component can be produced also by other 
aspherical effects, including magnetic field). 

The applicability of the standard perturbation technique assumes the 
linear interaction between different modes to be small. This condition can 
be violated, if the unperturbed frequencies of the modes which can interact 
are close enough, with the frequency difference of the order of the rotational 
splitting. This situation is familiar in terrestrial seismology, and can be treated 
by an appropriate modification of the perturbational technique for the case 
of quasi-degeneracy (e.g. Messiah 1961). Three-mode coupling induced by 
uniform rotation was considered by Vorontsov and Zharkov (1981) with an 
application to the computation of Jovian oscillations. Dziembowski and Goode 
(1992) considered accidental degeneracies in the solar p-mode spectrum; 
the effects of mode coupling on the rotational splitting were found to be 
insignificant. 

WEAK MAGNETIC FIELD 

A large-scale magnetic field in the star can be considered weak and its effect 
on the stellar oscillations can be treated within a perturbation theory, if both 
the dynamical effects of the magnetic field on the oscillations and the magnetic 
distortion of the equilibrium configuration are small. For reasonable magnetic 
fields, these conditions are always satisfied in stellar interiors, but can be 
violated near the surface of the magnetic star: we shall discuss this situation 
shortly in the last section of the review. 

The perturbation analysis can be based directly on the oscillation 
equations, which include the effects of magnetic field in MHD approximation 
(see Gough and Taylor 1984; Dziembowski and Goode 1984; Unno etal. 
1989; Gough and Thompson 1990; and references therein to early work). An 
alternative approach is the application of the variational principle (e.g. Kovetz 
1966; Lynden-Bell and Ostriker 1967). When the variational principle is used, 
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the convenient symmetric form of the Lagrangian can be written as (Vorontsov 
1986) 

L = r l P o(V • u*)(V • u) + - [p0(u • V)(u* • VV>o) + Po(u* • V)(u • V^o) 

+ (V • u*)(u • Vp0) + (V • u)(u* • Vp0)] + p0(u • V^I + u* • Vt/-i) 

+ -^V^I • V^i - powV • u 

+ -i-HJ . H i - i [ ( V x Ho) x Hi • u* + (V x H0) x HJ • u] , 
4ir ox 

where Ho denotes the equilibrium magnetic field, Hi is its Eulerian 
perturbation 

Hi = V x (u x H0), (13) 

0i is the Eulerian perturbation of the gravitational potential. The first three 
lines in the Lagrangian correspond to the problem of adiabatic oscillations of 
a non-magnetic star; the last line describes the work done against the Lorentz 
forces. The application of the Rayleigh's principle gives the equation for the 
perturbations of the oscillation frequencies due to the influence of the magnetic 
field: 

*•"> / !&*"/£*•* • <"> 
where integrals are taken over the unperturbed spherical volume occupied by 
the star, "parameters" pt denote the equilibrium values of density po, pressure 
Po, gravitational potential i/>o, adiabatic exponent Ti, components of Ho and 
their spatial derivatives. If there is no axial symmetry of the magnetic field, 
or if the axis of symmetry differs from the axis of the spherical coordinate 
system which was chosen, zero-order eigenfunctions u are linear combinations 
of spheroidal components with different values of m; the coefficients are 
determined from the requirement that 6(u>2) is to be stationary under their 
variations. 

Both the frequency perturbations and the magnetic distortion of the 
equilibrium configuration (with the only exception of force-free field, when 
there is no distortion) are proportional to H2 in the leading order, and some 
simplifying assumptions about the equilibrium configuration must enavitably 
be introduced (see Gough and Thompson 1990 for a discussion). The magnetic 
splitting of frequency multiplets is described by an even function of m, because 
the influence of the magnetic field is the same for modes travelling in opposite 
directions around the star. 

In helioseismology, the possible effects of a large-scale magnetic field 
concentrated in the solar interior were studied by Dziembowski and Goode 
(1984), Gough and Taylor (1984), Roberts and Campbell (1986), and in 
more detail by Gough and Thompson (1990). The effects of a toroidal field 
concentrated in a thin layer near the base of the convection zone were analized 
by Gough and Thompson (1988a, 1990) and Vorontsov (1988). 

In the frequency splitting of solar p modes, the even component is 
really found to be significant (Jefferies etal. 1988; Libbrecht 1989; Libbrecht 
and Woodard 1990). Gough and Thompson (1988b) found evidence that 
the original even coefficients measured by Duvall etal. (1986) were due to 
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a perturbation near the surface and attributed it to a fibril magnetic field. 
The analysis of this even component in recent observations indicates strongly 
that the dominant contribution comes from a perturbation localized near 
the solar surface, and this perturbation varies with the solar activity cycle 
(Libbrecht and Woodard 1990). By the inversion of the even component, 
Dziembowski and Goode (1989,1991b) found evidence for a small additional 
source of perturbation, which they attribute to a steady megagauss toroidal 
magnetic field localized near the base of the convection zone. The dominant 
near-surface perturbation was attributed by Dziembowski and Goode (1991b) 
to the effects of a fibril magnetic field, discussed by Zweibel and Dappen (1989) 
(for the discussion of the effects of fibril field, see also Bogdan 1989; Bogdan 
and Cattaneo 1989; and references therein). 

The prominent variations of the average frequencies of solar p-modes 
during the solar cycle have been also detected (Elsworth etal. 1990; Libbrecht 
and Woodard 1990; Woodard and Libbrecht 1991), which also indicate a 
perturbation localized near the surface (Libbrecht and Woodard 1990). The 
effects of the chromospheric magnetic field (Campbell and Roberts 1989; Evans 
and Roberts 1990,1991,1992; Jain and Roberts 1992; Wright and Thompson 
1992) and of the photospheric flux tubes (Goldreich etal. 1991) were analyzed 
to explain these frequency variations. 

The possible effects of a large-scale magnetic field in the oscillations of 
variable white dwarfs were discussed by Jones etal. (1989). 

JOINT EFFECTS OF THE ROTATION AND MAGNETISM 

The discovery of rapid oscillations of the rotating magnetic Ap stars (see 
Kurtz 1990 for a review) stimulated an extensive study of the joint effects 
of both the rotation and magnetism, when the magnetic axis is inclined to 
the axis of rotation (Gough and Taylor 1984; Dziembowski and Goode 1984, 
1985, 1986; Kurtz and Shibahashi 1986; Gough and Thompson 1990; for a 
review of theoretical work, see Shibahashi 1991). The intriguing property of 
the oscillations of Ap stars is that the pulsation amplitudes correlate with 
the phase of the magnetic field in such a way that the oscillations might be 
interpreted as axially symmetric (m = 0) dipole (£ = 1) p modes with symmetry 
axis coincident with the magnetic axis, which is oblique to the axis of stellar 
rotation. 

In the theoretical interpretation which is now widely accepted, the 
uniform rotation and global dipole magnetic field are assumed; the distortion of 
the equilibrium spherical configuration is neglected. To study the oscillations, 
it is convenient to use the corotating frame, in which the magnetic field is 
stationary. If the variational principle is applied, the modification of the 
Lagrangian (12) by the effects of rotation reduces to the appearance of the 
simple additional term 2pou&ou' • (iz x u), which describes the influence of 
the Coriolis forces; the angular velocity of rotation should be considered as one 
of the parameters pt, with variation from 0 to Q0- Joint effects of the Coriolis 
forces and Lorentz forces lead to the splitting of a degenerate multiplet into 
11 + 1 frequency components, with zero-order eigenfunctions having a mixed 
character (linear combinations of spheroidal vector fields with different values 
of m). When observed from the inertial frame, each of these modes produces 
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2£+l frequency components, separated by the angular velocity of rotation. The 
frequencies of different modes can be different in the corotating frame, and the 
degenerate multiplet can thus be split, in general, into (2£ + l)2 components. 
Although there is only (2£+l)-fold degeneracy in the non-rotating non-magnetic 
star, such a multiple splitting arises because the perturbation is not stationary 
in the inertial frame. 

But only the equidistant triplet structures are usually observed in 
the power spectra of rapidly oscillating Ap stars. To resolve this problem, 
Dziembowski and Goode (1985, 1986) argue the possibility of the selective 
exitation in the presence of the relatively strong magnetic field, so that only 
one mode is actually excited, which appears with 21 + 1 frequency components 
in the observations from the inertial frame. The relative amplidudes of the 
different components depend on the relative contribution of the effects of 
magnetic field and rotation, and thus the mean strength of the magnetic field 
in the stellar interior can be measured. 

Quite recently, new observations of a rapidly oscillating Ap star HR 
3831 revealed that the apparent triplet structure of its oscillation frequencies 
is really a part of a septuplet (Kurtz etal. 1992). The interpretation of this 
complicated structure as a contribution of the lower-amplitude signal from the 
first-order correction to the velocity field, which contains a spheroidal vector 
harmonic of degree £ = 3, is discussed in these proceedings by Shibahashi and 
Takata (1992). 

"RAPID" ROTATION 

When the angular velocity of stellar rotation becomes relatively high, of the 
order of the oscillation frequency, Coriolis forces become of the same order as 
inertial forces, and can no longer be considered as a small perturbation. We 
meet this situation when studying the low-frequency modes; the rotation itself 
is usually considered to be slow enough for the centrifugal distortion of the 
equilibrium stellar configuration to remain relatively small. 

By analogy with pressure perturbations, which provide the restoring 
forces for acoustic waves and global p modes, and with buoyancy forces, 
which provide the restoring forces for gravity waves and global g and f modes, 
the Coriolis forces represent a new type of restoring force for waves of quite 
different physical nature, which can also be trapped in the star and form new 
global modes. 

In contrast with pressure perturbations, which are usually considered 
to be isotropic, and with buoyancy forces, which are always vertical, the 
geometry of Coriolis forces makes the classification of new waves somewhat 
more complicated. 

The first class of possible motions is represented by Rossby waves, 
familiar in geophysics (e.g., Pedlosky 1979). These waves have predominantly 
horizontal displacements, and their origin is due to the latitudinal dependence 
of the distribution of the vertical component of the specific angular momentum 
in the rotating star. The curvature of the level surfaces is thus crucial for the 
existence of Rossby waves; corresponding pressure and density perturbations 
are relatively small. When viewed in the corotating frame for a star with 
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uniform rotation, Rossby waves propagate in the direction opposite to the 
rotation (retrograde waves). 

Waves of another type can appear, with significant vertical displacements, 
which can thus be significantly affected by buoyancy. If the stratification is 
convectively neutral (no buoyancy forces), these modes have a mixed character: 
they are a combination of pure inertial waves, which arise if the Boussinesq 
approximation is adequate, and prograde waves (generalized Rossby waves) 
with restoring forces produced by additional vorticity perturbations, which 
are due to Lagrangian density perturbations in the rotating star (an excellent 
local analysis of waves in rotating stars can be found in monograph of Unno 
etal. 1989; see also Ando 1989). When the stratification is convectively stable, 
the inertial waves are modified by buoyancy, but their frequencies remain real 
in the adiabatic approximation (purely oscillatory motions). In convectively 
unstable layers, however, the situation is much more interesting. In the linear 
adiabatic approximation, the wave amplitude can grow exponentially with 
time. The physical meaning of this phenomenon is related with the stabilizing 
effect of the rotation on the convection. The interaction of the inertial waves 
with unstable convective modes (g~ modes) can produce overstable, or even 
oscillatory convective motions. 

In the global analysis of the long-period oscillations of rotating stars, 
the main difficulty is due to the fact that a particular mode can no longer 
be described by a single spherical harmonic Yim(9,<j>). When the effects of 
rotation are small, the simple perturbational analysis of p, f and g modes 
shows that even if we neglect the centrifugal distortion and consider only the 
uniform rotation, the first-order correction to the eigenfunction of a normal 
mode described by a spherical harmonic Ytm(0, <j>) contains toroidal vector fields 
(equation (2)) of degree £ — 1 and £ + 1, the second-order correction includes 
spheroidal fields of degree £—2 and 1+2, and so on. When the effects of rotation 
are small, this linear interaction between modes of different degree, induced by 
the rotation, is usually small (if there are no accidental resonances between 
interacting modes), and the perturbational expansion converges rapidly. But 
that is not necessary the case for "rapid" rotation (low-frequency modes). 

The breaking of the spherical symmetry thus prevents the possibility of 
simple variable separations (except in the case of a uniform incompressible 
fluid, see Bryan 1889); only the axial symmetry remains (which is always 
considered to be the case), so that modes can still be identified with unique 
values of azimuthal order m. Separation of spatial variables by using the 
vector spherical harmonics (equations (1,2)) results in two infinite chains of 
coupled differential equations, with spheroidal displacements described by 
I = \m\, |m| + 2, . . . ("even" modes) and £ = \m\ + 1, |m| + 3 , . . . ("odd" 
modes). Such a decoupling into two series is due to the symmetry of the 
equilibrium configuration that remains with respect to the equatorial plane; 
"even" modes are symmetric, and "odd" modes are antisymmetric with respect 
to the equatorial plane, and modes from different series do not interact. 

In this situation, different approximate techniques are used to study 
the low-frequency modes, which permits us at least to understand their 
qualitative behaviour. The most common techniques are (i) the truncation 
of the infinite chains of differential equations, and (ii) the application of 
asymptotic analysis (in sense of considering either the slow rotation or modes 
with high radial order). The "traditional approximation" (which neglects 
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the horizontal component of the angular velocity of rotation) simplifies the 
problem significantly (e.g. Unno et al. 1989). The variational principle can 
also be generalized to study the oscillations of rotating stars (Lynden-Bell and 
Ostriker 1967; Ipser and Lindblom 1991). 

The first prominent effect of Coriolis forces is that the degeneracy 
of the oscillation spectrum of a non-rotating star with respect to toroidal 
displacement fields (defined by equation (2): "trivial" modes with zero 
frequencies) is lifted. For a star with uniform rotation, these fields represent 
the leading term of the eigenfunctions of new modes, which are global Rossby 
waves with frequencies 

u, = Jgfr)-mn + o(n3) (is) 

in the inertial frame. In the theory of stellar oscillations, these modes were first 
studied by Papaloizou and Pringle (1978) and were called "r modes", and by 
Provost, Berthomieu and Rocca (1981) ("quasi-toroidal modes"). Papaloizou 
and Pringle (1978) used a technique of consequtive approximations, by putting 
the vertical displacements and Eulerian pressure perturbations to be zero in 
the leading approximation; Provost, Berthomieu and Rocca (1981) used an 
asymptotic technique with the rotational frequency as a small parameter. The 
asymptotic analysis was extended by Smeyers, Craeynest and Martens (1981) 
to account for gravity perturbations. All the studies are largely limited by 
the uniform rotation; differential rotation can lead to the Kelvin-Helmholtz 
instability (shear instability), and makes the problem much less tractable 
(Papaloizou and Pringle 1978; Dziembowski and Kosovichev 1987a,b). 

An interesting property of r modes can be seen directly from expression 
(15): their frequencies are degenerate, at least in the leading order, with 
respect to the radial distribution of the eigenfunctions, i.e. with respect to the 
radial order n. With the only exeption of convectively neutral stratification, 
this degeneracy is lifted when higher-order terms of the asymptotic expansions 
are taken into account. It was demonstrated by Provost, Berthomieu and 
Rocca (1981), by using polytropic models, that the eigenfrequencies decrease 
with radial order when the stratification is convectively stable (polytrope of 
index 3), and increase with radial order when the stratification is convectively 
unstable (polytrope of index 1). If the absolute value of the buoyancy 
frequency is of the order of fl or smaller, the asymptotic analysis becomes 
invalid. Even for a slowly rotating star, this situation can occure in the region 
with effective convection, and was analized in detail by Dziembowski and 
Kosovichev (1987a): a technique was developed which uses matching of the 
asymptotic solutions with the direct numerical solutions of the (truncated) 
oscillation equations in this region. For differential rotation with Q = Q(r), 
Dziembowski and Kosovichev (1987a) argue the possibility of r-mode trapping 
in the vicinity of the local minimum of Q(r). 

Although the velocity field of r modes is horizontal and divergence-free 
in the leading order, higher-order terms in the eigenfunctions produce some 
pressure perturbations, and modes can be excited by the destabilizing effect 
of K mechanism. Non-adiabatic analyses of Saio (1982) and Berthomieu and 
Provost (1983) indicate that r modes can become overstable in ZZ Ceti stars. 
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The asymptotic properties of high-order gravity modes (g+ modes) in the 
presence of rotation were studied by Berthomieu etal. (1978). It was shown 
that the "traditional approximation" is applicable for these low-frequency 
modes with predominantly horizontal displacements. Results of the trancated 
analysis of the high-order g modes (Lee and Saio 1987a) were found to be in 
qualitative agreement with the asymptotic approach. Using the asymptotic 
analysis in "traditional approximation", Lee and Saio (1987a) demonstrated 
the appearance of the low-frequency cut-off of the high-order gravity modes, 
which is due to the stabilizing effect of the Coriolis forces, acting as additional 
restoring forces. 

But much more interesting is the influence of rotation on the unstable 
gravity modes (g~ modes, or convective modes), which can be considered 
as an interaction between convective modes and inertial waves governed by 
the rotation, and describes (in general) the interaction between convection, 
rotation and pulsation. This problem has been an object of intensive study in 
recent years. 

The stabilizing effect of Coriolis forces on convection makes the 
unstable convective modes become overstable, or even purely oscillatory. The 
concept of "negative-energy" modes becomes very productive in the physical 
understanding of the related phenomena (Lee and Saio 1989, 1990c). 

If an overstable convective mode is completely stabilized by the rotation, 
two purely oscillatory modes appear, one with positive and another with 
negative energy. The kinetic energies of both modes are surely positive in the 
corotating frame (the studies are largely limited to uniform rotation), but one 
of these modes has negative kinetic energy when considered in the inertial 
frame: the kinetic energy of the equilibrium rotating flow is larger than that of 
the rotating and oscillating flow. Equipartition of kinetic and potential energies 
persists in the inertial frame (Lee and Saio 1990c), and the total energy of the 
mode is thus negative. 

If energy is extracted from the negative-energy mode, its amplitude 
grows; the energy source is provided by the star. The radiative dissipation 
destabilizes the negative-energy mode, making the purely oscillatory motion 
overstable (Lee and Saio 1987b). Due to the resonance coupling of the 
convective modes in the stellar core with the stable envelope g modes, the 
overstable low-frequency modes can appear in rotating massive main-sequence 
stars (Osaki 1974; Lee and Saio 1986,1987b, 1989, 1990c; Lee 1988). 

The line-profile variations produced by low-frequency g modes excited by 
the oscillatory convective modes in a rapidly rotating massive main-sequence 
star were studied by Lee and Saio (1990a) and Lee, Jeffery and Saio (1992). 

Inertial oscillations of Jupiter were studied by Lee and Saio (1990b) 
and Lee, Strohmayer and Van Horn (1992) as an explanation of the slowly 
oscillating thermal features discovered in the Jovian atmosphere by Magalhaes 
etal. (1989) and Deming etal. (1989). 

"STRONG" MAGNETIC FIELD 

Even when the overall magnetic field is relatively weak, the analysis of 
magnetic effects in stellar oscillations by the standard perturbation technique 
can become invalid near the surface, if the magnetic field does not vanish 
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there. Because of the low density, the magnetic pressure in the surface layers 
can become of the same order as gas pressure, and the Lorentz forces can 
become of the same order as inertial forces. The perturbation analysis then 
becomes invalid locally; this situation is exactly what we expect for the rapidly 
oscillating magnetic Ap stars. 

The first steps in the improvement of the theoretical description were 
taken by Biront etal. (1982) using a singular perturbation technique (method 
of matched asymptotic expansions, which originates from boundary layer 
theory). The analysis of Biront etal. (1982) was limited to the study of the 
dynamical distortion of the velocity field in the outer stellar layers. This 
analysis was developed further by Roberts and Soward (1983) and Campbell 
and Papaloizou (1986), who included the energy dissipation through Alfvenic-
type waves which are generated by the pulsations. 

Despite of these efforts, the theoretical understanding of the rapid 
oscillations in Ap stars is far from being complete; there is no convincing 
description of the selective mode excitation, although it has been quite evident 
for the last ten years that the magnetic field plays a crucial role in these 
oscillations. Much work is needed to understand the excellent observational 
data which are already available, and which will undoubtedly be refined by 
forthcoming observations. 

Author thanks Douglas Gough for carefully reading the manuscript to improve 
English, and for comments. 
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