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Abstract

We analyze the notion of ‘reliability prediction’ by studying in detail a key property
that is tacitly assumed to make reliability prediction possible. The analysis leads in
turn to a special type of point process for which the connection of future to past can
be explicitly displayed. In this type of process, the semi-renewal process, all finite-
dimensional distributions are completely determined by the distribution of the time to
the first event in the process. The theory provides a heretofore unappreciated unification
of the two most commonly used reliability prediction models for maintained systems,
namely, the renewal and revival processes. We show that familiar results from renewal
theory extend and generalize to semi-renewal processes.
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1. Introduction

1.1. Rationale

Humans are notoriously bad about predicting the future. On what basis, then, does the activity
of reliability prediction in engineering deserve any serious consideration? Close analysis of
how reliability prediction is usually performed reveals that the common feature in all such
exercises is that they use assumptions (sometimes, but usually not, explicitly stated) about how
the future resembles the past. In this paper we explore an explicit formulation of such an
assumption that leads to an interesting new class of stochastic point processes.

1.2. Scope

The two most commonly used stochastic point process models for the reliability of a
maintained system are the renewal process [7, p. 167] and the process that has been called
the ‘minimal repair’ or ‘bad-as-old’ process [1]. A key property shared by these two types of
processes is the following.

Property 1. If you know the distribution of the time to the first event in the process then you
know all the finite-dimensional distributions of the process.

That is, the distribution of the time to the first event in the process completely determines
the probabilistic structure of the entire process.

For the renewal process, this is obvious. For the nonhomogeneous Poisson process (with
which the minimal repair process is often conflated), see [12, Equation 2.42], to see that
the expression for the joint distribution of any collection of intervals in the process contains
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only quantities that can be obtained from the distribution of the time to the first event in the
process. (Here, by ‘interval’ we mean the length of time between two successive events in
the process.) This property is a strong assertion about how the future is connected to the
past. It says, essentially, that if we have only one piece of information about the past then we
know everything about the future evolution of the process (in the probabilistic sense). (For the
purposes of this discussion, let us agree to fix ‘the present’ as the time of occurrence of the first
event in the process.)

It is possible to imagine several ways of formalizing Property 1. In this paper we explore
one such way. We study stochastic point processes for which the conditional distribution of
any interval, given the previous intervals, is obtained as the image of the distribution of the first
interval in the process under a map (operator) chosen, via the values of conditioning variables,
from a given set, which is later specialized to be a semigroup, of operators. In practical terms,
this procedure says that there is a rule (chosen from some structured set of rules) that enables us
to obtain (the distribution of) any interval if we know only the occurrence times of the previous
events and the distribution of the first interval. The dispersion in any interval is controlled by the
dispersion in the first interval. A pure (without distortion) time-shift model, useful for gaining
understanding, is the renewal process, a familiar special case of the general theory presented
below.

1.3. Background

For applications, semi-renewal processes are also useful in modeling repair processes that
may be imperfect or that may be intermediate between renewal (or complete overhaul) and
minimal repair. Brown and Proschan [5] and Kijima [8] have previously studied related models,
the former for which a repair is either a renewal or minimal according to an independent toss
of a coin at each failure time, and the latter for repairs that return the hazard rate of the failure
time of the repaired unit to some multiple (between 0 and 1) of its value at the time of the unit’s
previous failure. Baxter and Chlouverakis [2], [3] studied models of clumsy repair actions that
may introduce additional faults during a repair. In this case, the hazard rate of the time to the
next failure of the repaired item may be greater than that for a new unit and greater than its
value at the time of the unit’s previous failure. Baxter ef al. [4] studied a general model for
equipment condition after repair that includes as special cases all the models above.

1.4. Synopsis

From the point of view of theory, the point processes studied here generalize both the
renewal process and the revival process (itself a generalization of the nonhomogeneous Poisson
process; see [13]). Besides highlighting additional common features of these processes, the
generalization shows that many results and techniques resembling those of renewal theory can
be more widely applied to yield new results and new ways of looking at known results.

2. The semi-renewal process

2.1. Introduction

The generalization studied here will be called a ‘semi-renewal process’. The terminology
is intended to convey a notion that everything that happens in the future is (probabilistically)
constrained to develop within the confines of a framework defined by a given set of (determin-
istic) maps and the distribution of the time to the first event. In any point process, any interval
is ‘linked’ to the previous intervals by an expression for its conditional distribution, given the
lengths of the previous intervals, which is obtained from the finite-dimensional distributions of
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the interval (or time) representation of the process. We will introduce the framed point process
in which this linkage is expressed in a particular way that is amenable to further analysis. In
more mathematical terms, for every point process (whose intervals are denoted by X1, X», ...),
the conditional distribution P{X,,4+| < x | X1 = x1, ..., X, = x,,} can be understood as a map
from R’} into the set L of life distributions that ‘links X,, | with the previous Xs’. In a framed
point process, this map factors through the space (LL)R" of frames, producing a special class
of point processes that generalizes the renewal process and the revival process and for which
some members of the class can be further analyzed.

The connection with ‘prediction’ is that the frame embodies the assumptions we make about
how the future is linked to the past. This study shows one way to make these assumptions
explicit.

2.2. Framed point processes

This section provides definitions and examples of framed point processes. Throughout,
we will let L denote the set of univariate life distributions (a life distribution is a cumulative
distribution function whose left-hand limit at 0 is 0). We denote by L’ the set of all maps from
L into itself. Let R" represent the n-dimensional Euclidean space, and let R’} be its positive
orthant {(x1,...,x,):x; >0,i=1,...,n}.

Definition. For eachn = 1,2,...,let T,,: RY — LL. Theset T = {T,:n = 1,2,...}is
called a frame.

In a frame, each 7, maps n-vectors into transformations of L into itself. That is, for
each positive integer n and each (x1,...,x,) € R’}r, T,(x1,...,x,) is a map that takes a
life distribution into (possibly another) life distribution.

Definition. A point process with intervals {X{, X», ...} is said to be framed if there is a frame
T for which

PiXop1 <x | Xi=x1,.... Xu =2} = [T (x1, ..., x0) F1(x),

where F is the distribution of X.

The prescription for determining the conditional distribution of an interval in a framed point
process is as follows. Take the values of the previous intervals and select the proper size frame
element (n). Insert the interval values into the frame element and operate with the resulting
map on the distribution of the time to the first event. The end product is another life distribution
that is the desired conditional distribution.

2.3. Semi-renewal process definition

While the framed point process does possess Property 1, which states that (the distribution of)
any interval is determined by the frame and the distribution of the first interval, the generality of
the frame as defined above makes further analysis difficult. The following special case tempers
this difficulty while preserving the important notion that the future stochastic description of the
process is mediated by a known (special type of) frame, with the randomness in this description
coming essentially from the dispersion in the first interval.

Definition. A framed point process is said to be a semi-renewal process if its frame depends only
on the sum of its arguments, i.e. T, (xq, ..., x,) = T(x1 + - - - + x,,), where T is a semigroup
(with identity) of operators in L (that is, for each x, T (x) is a map taking L into itself, T (0)
is the identity map, and T (x; + x2) = T (x1)T (x2) for all nonnegative x; and x»).
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The semi-renewal process is a special case of the counting process governed by nonnegative
Markovian increments introduced by Kijima and Sumita [9]. In the semi-renewal process,
however, some explicit computations, including those in (8) and Theorems 3 and 5, below, are
possible that are not available in the more general case. Note also that the definition involves
only the one-dimensional distributions of the process; no assumptions about covariances or any
other higher-order properties are imposed.

Letting S,, = X1+- - -+ X,,, for a semi-renewal process, we obtain, foreachn =0, 1,2, ...,

PiXpri=x | Xi=x1,.... Xy =x} =[T(x1 + -+ + ) F](x)
=PXppi =x[Si=x1+--+x}, (D

or, in short,
P{Xu1 <x | Sp =u} =T, F(x), (2)

where, for convenience, we have written u = x; 4+ --- + x,, and 7, instead of T («). The
invariance of the right-hand side of (2) with n indicates that we have captured an important
aspect of reliability prediction models that we have been focusing on: it does not matter how
many events (failures) have taken place, or when they took place (except for the most recent
one), the mechanism that takes us to the next inter-failure time is always the same (except
for possible dependence on the current failure occurrence time). Stating it another way, and
recalling that we have defined ‘the present’ as time X; = S; of the occurrence of the first
failure, we see that once we have made the assumption (embodied in (1) when n = 1) about
how the future is linked to the past, then the further evolution of the process is brought about
by the very same mechanism, or assumptions. The mechanism that gets us from S, to X, is
always the same as the mechanism that gets us from §; to X, and now we can make probability
statements about the future reliability of the maintained system modeled by this process because
the stochastic part of the future is governed by the stochastic part of X, which we assume we
know (or can estimate).

2.4. Examples

2.4.1. Renewal process, almost. Via (1) and (2), we see that the semi-renewal process generated
by the trivial semigroup 7,, = I for every u (I is the identity operator) satisfies all the conditions
required of a renewal process except the mutual independence of the sequence {X;, X», .. .}.
Inductive application of (2) shows that each X, has the same distribution and that X, is
independent of S;,_1. However, the following example, due to Norman A. Marlow, shows
that {X1, X7, ...} need not be mutually stochastically independent.

Example. Let0 < p < 1, and choose & such that 0 < 2hp < 1 and 0 < 2(1-h)p < 1. Define
three random variables X, Y, and Z by the joint distribution shown in Table 1. Then X, Y, and
Z have the following properties:

1. they are nonnegative and identically distributed, each assuming the values 1 or O with
probabilities p and 1-p, respectively;

2. X and Y are independent;
3. Z isindependent of X + Y

4. X+Y + Z has the same distribution as it would if X, Y, and Z were mutually independent;
but

5. X, Y, and Z are not mutually independent.
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TABLE 1.
X Y Z Probability
1 1 1 p3
11 0 p*(1—p)
1 0 1 2(1 —h)p2(1 —p)
1 0 0 pd-pll-20-h)p]
0 1 1 2hp*(1 — p)
0 1 0 p(1 — p)(1 —2hp)
0 0 1 p(1—p)?
0 0 0 1-p)?

The material in the remainder of this paper shows that many of the familiar results of renewal
theory continue to hold if only the nth interevent time interval is independent of the occurrence
time of the previous event, and not necessarily of all the previous interevent time intervals.

2.4.2. Revival process. If, for u, x > 0,

T,F(x) = w 3)

then the corresponding semi-renewal process is a revival process. It is straightforward to verify
the semigroup property for (3), and then (2) is the weak minimal repair property that defines the
revival process [13]. This process does not necessarily have independent increments, so it is not
necessarily a Poisson process even though all its finite-dimensional distributions are Poisson.

2.4.3. Record value process. If

T.F(x) = F(x +u)

then the corresponding semi-renewal process {S,,: n = 1, 2, ...} is the record value process of
a set of independent and identically distributed (i.i.d.) nonnegative random variables, or

Sn:max{Yl,...,Yn}, (4)
where the Yy, Y, ... areiid. and X,, = S, — S,,_1 with Sy = 0.

3. The semi-renewal argument

The principle that makes the rest of the theory work is that the standard renewal argument
(that, conditional on the value of the first interval, the remainder of the process is still a renewal
process with the same inter-renewal time distribution) generalizes to the semi-renewal case.

Theorem 1. Let {X,,: n = 1,2, ...} be asemi-renewal process under the semigroup T, and let
the distribution of X1 be F. Then, conditional on X| = u, the remainder {X,: n =2,3,...}
is a semi-renewal process under the same semigroup T and with the distribution of its first
interval (i.e. X») being T, F.
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Proof. Whenever X1 = u, let X| = X, X, = X3, etc. Let P, denote the conditional
probability measure P, (A) = P{A | X1 = u}. Then
PAX,  <x | X|=up,.... X, =u}
=P Xpp<x | Xo=ut,..., Xns1 = uy, X1 =1uj}

= Tyt +u F (%)
= TuTu1+~~+u,,F(x)

= Lyj+-~u, TuF(x)’
which establishes the result.

3.1. Counting the number of events in a semi-renewal process

As an application of the semi-renewal argument, we will show how to obtain the expected
number of events in a semi-renewal process in a given time interval. Let V denote the unit step
functionatQ, andset N(F, t) = ZZO:I V(t—Sy)and M(F,t) = EN(F,t). Using Theorem 1,
we obtain

0, t<u,
E[N(F,t) | X1 =u] =
1+EN(T,F,t —u), t>u,

so that, using the law of total probability,
t
M(F,t):F(t)—i—/ M(T,F,t —u)dF (u). (5)
0

When 7, = I for every u, then (5) is the familiar equation for the expected number of events
in an ordinary renewal process in the time interval [0, t]. If 7, is the semigroup from (3) then
it is easy to verify that M (F, t) = —log[1 — F(¢)] is a solution of (5). If 7}, is the semigroup
from (4) then we have

M =3 PLS, < 1)
n=1
= F)+ izfom P(Sy <1 ] Syt = u}dP(Sy_y < u)
— F@) +§/OtP{Xn <t—ul| Sy =ubdP(S, 1 <u)
— F()+ ifot T,F(t — u)dP{S,_; < u)

00
=F(t) + Z/() F(t) dP{S,—1 < u}
n=2

=F@)+ F@) Zp{sn <t}

n=1

= F(@)[1+ M(F, )],
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so that, for the record values process, we obtain

F(t)

M(F.1) = — ok

(6)
Of course, we could always substitute (6) into (5) to verify that (6) is a solution of (5), but the
derivation shows another way to obtain the familiar result (6).

In fact, as in renewal theory, we will see that further computational developments for more
general integral equations of semi-renewal type (see the next section) hinge on whether we
can obtain a solution for the basic semi-renewal equation (5). In cases represented by (3) and
(4) we are able to obtain these in closed form, but even in the ordinary renewal process case,
closed-form solutions to (5) are rare.

Before moving on, we will establish some continuity and differentiability properties of (5).

Theorem 2. Suppose thatu ~~ T, is a continuous semigroup [14] having |T,, F(t —u)| < F(t)
forall 0 < u < t. If F(-) is continuous then M(F, -) is continuous. If F(-) is continuously
differentiable then M (F, -) is continuously differentiable.

Proof. Define

t t
F[Z](t)zf T,F(t —u)dF(u) and F[”“](t):/ T, F" (¢t — u)dF (u)
0

0
forn =2,3,.... In general, this leads to
t t
F i) = / / Tuytotuy FC =y — - — ) dF () - - dF (uy),
0 0
from which it follows by induction that | FI"l(t)| < F(¢)" forn = 1,2, .... Then the series

M(F.ty=> P(S, <t}=)Y F"@)

n=1 n=1
converges geometrically, hence uniformly, and both assertions follow from this fact.

Note that all the semigroups of Section 2.4 satisfy these conditions.

4. Integral equations of semi-renewal type

4.1. Explicit solutions

As in standard renewal theory, many applications reduce to the derivation and solution of a
more general integral equation for the quantities under study. We will show some examples in
Section 4.3, below. The general form of these equations in the semi-renewal case includes the
semigroup parameter as the variable of integration. This is as follows:

t
r(F,t) =h(F, t)+/ r(TuF,t —u)dF(u), @)
0

where & is a given function that may depend on F (in applications, it usually does), and r is
unknown and to be solved for.
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Theorem 3. Equation (7) has a solution that is given by
t
r(F,t)=h(F,t)+/ h(TuF,t —u)dM(F, u). (®)
0
Proof. We use (5) and the semigroup property of 7 to obtain
r(th)_h(F9t)

= /Ot |:h(TuF,t—u) +/Otuh(Tv(TuF),t—u —v)dM(F, v)j| dF (u)
=/0th(TuF,t—u)dF(u)+/(;t /Ot_uh(TmF,r—(u+v))dM(F, v) dF (i)
=/Oth(TuF,t—u)dF(u)—i—/Oth(TsF,t—s)ds[/osM(F,s—x)dF(x)}

= /Oth(TMF,t —u)dF(u)—l—/Oth(TSF,t—s)d[M(F, 5) — F(s)]

'
:/ h(T,F,t —u)dM(F,u),
0

which completes the proof.
Now we present some simple sufficient conditions for the solution (8) to be unique.

Definition. A function 2: L x R — R is called locally semi-bounded if these exists B < 0o
(maybe depending on F and/or ¢t) for which |h(T,F,t —u)| < B forall u € [0, t].

Note that, when T,, = I, local semi-boundedness reduces to local boundedness [7, p. 184],
a condition sufficient for the uniqueness of the solution to the ordinary integral equation of
renewal type.

Theorem 4. Ifh is locally semi-bounded then the solution (8) of the integral equation of semi-
renewal type is unique in the class of locally semi-bounded functions.

Proof. 1t suffices to show that the only locally semi-bounded solution to the homogeneous
form of (7) is identically 0. Consider the homogeneous equation

t
R(F, t):f R(T,F,t —u)dF (u). 9
0
From (9), for every positive integer n, we have
t t—x1 t—X1——Xp
R(F.1) = / / / R(Tys ot Fot — (31 4+ 1)
0 Jo 0

X dF(u)dF (x,)--- dF(x1).

Because R is restricted to be locally semi-bounded, we have, for some B < oo and every
positive integer n,

t pr—x [—X|——Xp
R(F.1)] < B/ / ' / T APy dF () - dF(x1) = By (1),
0 JO 0

where F), is the ordinary convolution of F with itself n times. Letting n — 0o we see that
R(F,t) = 0 for every ¢, and this completes the proof.
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4.2. Asymptotic behavior of solutions

In ordinary renewal theory, the known asymptotic behavior of solutions of renewal-type
integral equations (see, for instance, Section 5.6 of [7]) provides a powerful tool for under-
standing the long-term behavior of operating characteristics of systems that such equations
model. Similar asymptotic results are obtainable for semi-renewal processes as well, and we
explore this in this section. We first prove a technical result.

Lemma 1. Suppose that m is a continuous function of bounded variation satisfying

llinolo[m(t) —m(t —a)] =w(a) foralla >0,

and suppose that lim;_, oo a(t) = A. Then

Am [m(@) —m(t —a@®))] = w(A).

Proof. 1t suffices to show this for m nondecreasing. We have lim;_, o, a(t) = A if and only
if, for every ¢ > 0, there isa B = B(¢) such thatt > Bentails A —¢ < a(t) < A + .
Set j(t,a) = m(t) —m(t — a). Then lim;_, j(¢,a) = L if and only if, for every ¢ > 0,
there is a K = K (g, a) such that t > K entails |j(¢#,a) — L| < . Now choose ¢ > 0 and
take t > max{B(e), K (¢, w(A) — &), K(¢, w(A) + ¢)}. Then, for such ¢, j(t, w(A) — ¢) <
jt,a@)) < jt,w(A) + ). But then, as t — o0, the left-hand side converges to w(A — ¢)
and the right-hand side converges to w (A + ¢). Since ¢ is arbitrary, the result follows.

The asymptotic behavior of (8) for the semi-renewal process depends on the tail properties
of M(F,t) and is contained in the following result.

Theorem 5. Suppose that T, satisfies the conditions of Theorem 2 and that
1. lim; oo[M(F,t) — M(F,t —a)] = w(a) foralla > 0;
2. foreacht > 0, h(T, F,t — u) is nonincreasing as a function of u € [0, t];
3. ho(t) := h(T; F,0) < oo forallt,lim;_, o ho(t) =19 > 0, and lim;_,oc h(F,t) = 0;
4. limy— oo fot h(T,F,t — u)du exists.

Then, for the solution (8) r(F, t) of (7), we have
t
lim r(F,t) = lim / ot —u)d,h(T,F,t —u). (10)
t—00 t—00 0

Proof. Define {Y (¢): t > 0} by

h(T;_,F,
PIY(1) < y) = [1 - %}va .
Note that
P{Y(1) > y} = % for0 <y <t.
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Choose S > 0,andset Ys(t) =Y(@®)V(S—1t) + Y(S)V(t — S). Then

r(F,t) =h(F,t) +/:h(TyF,t —y)dM(F,y)
= h(F,t) + ho(t) /Ot P{Ys(t) >t — y}dM(F, y)
=h(F,t)+ ho(?) /OZEV(YS(I) —t+y)dM(F,y)
=h(F,t) +h0(t)E|:/Ol V(¥s() —t+y)dM(F, y)i|

t
= h(F,t) +h0(t)EU dM(F, y)}
t

—Ys(1)
=h(F,t)+hot)E[M(F,t) — M(F,t —Ys())].

It follows that
lim r(F,t) =no lim E[]M(F,t) — M(F,t — Ys(t))].
11— 00 11— 00

Noting that lim;_,  Ys(¢#) = Y (S) almost surely and applying Lemma 1, we obtain

Am [M(F, 1) = M(F, t = Ys(1)] = o(Y(5))

with probability 1. Also,0 < M(F,t)—M(F,t—Ys(t)) < M(F,t)because M is nonnegative
and nondecreasing. As M (F, t) is integrable (P), we can interchange the limit and expectation
to obtain

Am E[M(F, 1) = M(F,t = Ys())] = E lim [M(F, 1) = M(F.t = Y5(1))]

=Ew(Y(S)),
so that

tlim r(F,t) = nof w(u)dP{Y (S) < u}
—00 0

no S
= — d,h(Ts_, F,
0 o ww)d,h(Ts_, F, u)
no [
= S —u)d,h(T,F,S — u).
G Ow( u) d, h(T, u)

But S is arbitrary, so we finally obtain

t
lim r(F,t) = lim / w(t —u)d,h(T,F,t —u).
t—00 t—00 0

This completes the proof.
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For example, if 7, = I and the semi-renewal process is a renewal process, then w(a) = a/u,
where p is the mean of F. Then Theorem 5 is the well-known result [7, pp. 184-185]

1 t
lim r(F,t) = — lim / (t —u)dyh(F,t —u)
t—00 " t—00 0

t

1
= — lim td,h(F,t)

Ml—)OO 0

1 o0
—/ h(F,x)dx,
MnJo

upon integration by parts. That w(a) = ca, as in the renewal process, is not true in general;
for an example, use the record value process with F(¢) = 1 —exp(—At), for which M(F, t) =
exp(At) — 1 and w(a) = [1 — exp(—Ara)] exp (At).

A more useful form of the asymptotic result is given in the following corollary.

Corollary 1. Suppose that the conditions of Theorem 5 are satisfied, except that condition 2 is
replaced by

e fort > 0, h(T,F,t —u) is of bounded variation as a function of u € [0, t] and is locally
semi-bounded.

Then (10) holds.

Proof. Since h(T, F, t — u) is of bounded variation as a function of u € [0, ] and is locally
semi-bounded, we may write it as the difference of two nonincreasing functions (take the
usual representation as the difference of two increasing functions f — g, then use the local
semi-boundedness bound B to write as B — g — (B — f)), say h and hj. Set

t
r,~(F,t):h,~(F,t)+/ hi(T,F,t —u)dM(F,u) fori=1,2,
0

and note that

t
lim r;(F,t) = lim / ot —u)d,hi(T,F,t —u),
t—00 t—0o0 0
by Theorem 5. Since r = r; — r», the result follows.

4.3. Example: forward recurrence times

To illustrate the applicability of the results of the previous two sections, we will derive
the distribution and asymptotic distribution of the forward recurrence times in a semi-renewal
process, and, as a result, obtain these for the revival process and the record value process in a
novel way.

Denote by y;(F) the time from ¢+ > 0 to the next event in a semi-renewal process corre-
sponding to the semigroup 7 and having distribution F' of the time to its first event, and set
q:(F,y) =P{y;(F) > y}. Then, using Theorem 1, we obtain

1, u—t >y,
P{y:(F) >y | X1 =u}= {0, u—t<y,
Plyi—u(TuF) >y}, t>y,
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which leads directly to the semi-renewal integral equation

t
q@(F,y)=1—-F(y+1) +/0 qr—u(Tu F, y) dF (u).

In the notation of Section 4.2 we have h(F,t) = 1 — F(y + t). From the general solution (8)
we immediately obtain

t
q:(F,y) =1 —F(y+l)+/ (1 =T, F(y+1—w]dM(F, u). 1D
0

For the revival process where T is given by (3), (11) reduces to

"1—F(y+1) 1-FQy+1)
F,y)=1—F t —— —dF(u) = ———= =1 —-T;F(y),
q:(F,y) (v + )+/0 0= FP (u) —FO) 1 F(y)
so that, finally, P{y;(F) < y} = T; F(y), which is a familiar result for the nonhomogeneous
Poisson process [10] now shown to also hold for the revival process.
In the case of the record value process, whose semigroup is given by 7, F (x) = F(x + u),

(11) reduces to
! F(u)
qt(F,y)Zl—F(y+t)+/0[1—F(y+t)]d[ }

T—F)

=[1-F Nl F@)
=[1-F@+ )][ +1——F(t)i|

=1-TF(y),

which is again a familiar result for the record values process [11].
In these two examples, the forward recurrence time distributions are the same, and the
asymptotic analysis easily follows from

F(y+1t) —F@)
1—F@)

lim P{y,(F) < y} = lim :
—00 t—00

to which we can apply, e.g. the theory of regularly varying functions [6, pp. 275ff.] or other
asymptotic properties of F that may apply.

5. Summary and conclusions

We have defined the framed point process as a model of ‘reliability prediction’ that explicitly
captures assumptions about how the future is connected to the past. For the semi-renewal special
case of framed point processes, we have shown that familiar results about renewal processes
extend and generalize, showing along the way a unification of the renewal and revival processes
via the property that all the one-dimensional distributions of these processes are fully determined
by the distribution of the time to the initial event.
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