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BOUNDARY BEHAVIOUR OF HARMONIC FUNCTIONS AND
SOLUTIONS OF PARABOLIC SYSTEMS

by N. A. WATSON
(Received 28th October 1986)

1. Boundary behaviour of harmonic functions

In [1], Calderon proved that, if u is a harmonic function on R" x ]0, cof, and at each
point ¢ of a subset E of R”, u is bounded in some cone with vertex (¢, 0), then u has a
nontangential limit at almost every point of E x {0}. The main result of this note is a
stronger version of this theorem, in which the hypotheses remain unchanged but the
nontangential limits in the conclusion are replaced by limits through the more general
approach regions first considered by Nagel and Stein in [7].

If £eR”, y>0 and 0<b=< o0, we denote by I'(¢) the truncated (if b< c0) open cone in
R" x ]0, b[ with vertex (£,0), aperture y, and axis orthogonal to R" x {0}, that is,

&) ={(x,0):||x—¢||<»t, 0<t<b}.

Here, and subsequently, ||y|| denotes the euclidean norm of a point yeR".
Throughout this note, we use m to denote Lebesgue measure on R”, and Q to denote
an open subset of R" x ]0, co[ with the following properties.

(i) There exists a>0 such that, whenever (x,t)eQ,
{9):|ly—x||<a(s—0)} s
(i) There exists >0 such that, for all t>0,
m({xeR":(x,1)eQ}) < pr".

(iif) The point (0,0) is a limit point of Q.

The simplest example of such a set Q is the cone I';°(0). Nagel and Stein [7, p. 98] give
examples in which Q is not contained in any cone, and indeed show that Q may contain
a sequence which approached (0,0) with any prescribed degree of tangency to R” x {0}.

For each {eR" we put Q,=Q+{(£,0)}. We say that a function u on R"x]0, o[ has
an Q-limit | at a point {€R" if to each ¢>0 there corresponds é >0 such that

|u(x,t)—l|<e whenever (x,t)eQ, and ||x—é||+t<6.

Nagel and Stein proved results which, as they pointed out in [7, p. 99], imply that the
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Poisson integral of any function f in I/(R"), where 1<p< oo, has an Q-limit f(&) at
almost every EeR"”. If

P(z,1)=(2/0,+ )t(||2||* + £7) =+ 172

for all (z,t)eR"x ]0, o[, where a,,, denotes the surface area of the unit sphere in R"*?,
then the Poisson integral u of a signed measure u is defined by the convolution

u(x,t) = Rf P(x—y,t)dul(y) (1)
for all (x,t)eR"x J0, oo[, provided that

RI"(l +{[¥}f2) =+ 272 dlu|(y) < o0 2

(see [4, Theorem 6]. The Poisson integral of a function f is that of the measure u given
by du(y)= f(y) dy. Whenever (2) holds, (1) represents a harmonic function.

An easy consequence of the Nagel-Stein theorem is that, if u is the Poisson integral
on R"x]0, o[ of a function f, then u has an Q-limit f(£) at almost every £ eR". This is
proved by applying that theorem to the restriction of f to an arbitrary ball in R".

Our main theorem can now be proved. In fact, this can be done by making only
minor alterations to the proof of Calder6n’s result given by Stein in [8, Chapter VII]. It
is the form of the theorem which is interesting, not its proof, since the boundedness of u
is required only on cones, not on the sets Q, or any simple variant of them.

Theorem 1. Let u be harmonic on R" x]0, o[, and let E be the set of all £eR" with
the property that there exist positive numbers y, M and b, such that

[u(x,t)| SM  for all (x,0)eT%¢).
Then u has Q-limits a.e. on E.

Proof. Follow Stein’s proof, but note that the Poisson integrals therein have Q-limits
a.e.

Theorem 1 can be used to extend the Nagel-Stein theorem to arbitrary Poisson
integrals.

Theorem 2. If u is the Poisson integral on R"x 0, o[ of a signed measure u, and f
is the Radon—Nikodym derivative of u, then u has an Q-limit f(£) at almost every £eR".

Proof. It is well-known that v has a nontangential limit f(£) at almost every £eR"
[3, Theorem 4.1]. Hence, given any positive numbers b and v, u is bounded on I'}(¢) for
almost all £eR" Therefore u has Q-limits a.e. on R", by Theorem 1. That these limits
are equal to f a.e. follows because I'°(0) < Q.

Theorem 2 has been proved by a different method in [6].
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2. Analogues for parabolic systems

The Nagel-Stein theorem has an analogue for solutions of homogeneous parabolic
systems in the sense of Petrowskii, of order 2, defined on a strip R*x [0, T]. Such
systems are described in [2, Section 1], and the conditions on the coefficients given
therein are sufficient to enable us to prove this analogue. The Poisson integral of a
function felIf(R") is replaced by the formula [2, (15)], with each f;eI?(R"). In the
conditions on Q, a(s—¢) is replaced by a(\/ s—\/ t) in (i), and Bt" by Bt™? in (ii). The first
step in the proof is to use the upper estimate for the elements of the fundamental
solution given in [5, Chapter 9], but then the proof proceeds analogously to the
harmonic case. The crucial estimate of the maximal function follows from [7, Theorem
2] by square rooting the exceptional variable. These results were obtained in
collaboration with Dr. J. Chabrowski.

Analogues of Theorems 1 and 2 can also be obtained, but their proofs require that
the elements of the fundamental solution are non-negative, so that the parabolic system
must be weakly coupled [2, Section 4]. A lower estimate for the diagonal elements of
the fundamental solution is also required. The analogue of Theorem 1 can be proved,
under the same conditions on the coefficients as were imposed in [9], by modifying the
proof of the theorem therein in the same way that the proof for the harmonic case was
modified above. The cones must, of course, be replaced by paraboloids. For Theorem 2,
the Poisson integral of a signed measure is replaced by the formula [2, (31)], with
signed measures y; which satisfy

ﬁ[- exp( —«]|x||?) d|uj(x) < 00

for some constant k. The proof carries over easily, with the nontangential limits
replaced by the parabolic limits of [2, Section 3]. The conditions on the coefficients are
the same as those for the analogue of Theorem 1. An apparently different, but in fact
equivalent, analogue of Theorem 2 for a single parabolic equation, is given in [6].

REFERENCES

1. A. P. CaLperoN, On the behaviour of harmonic functions near the boundary, Trans. Amer.
Math. Soc. 68 (1950), 47-54.

2. J. Cuasrowski, Representation theorems for parabolic systems, J. Austral. Math. Soc. (Ser. A)
32 (1982), 246-288.

3. J. L. Doos, Relative limit theorems in analysis, J. Anal. Math. 8 (1960/61), 289-306.

4. T. M. FLErT, On the rate of growth of mean values of holomorphic and harmonic functions,
Proc. London Math. Soc. (3) 20 (1970), 749-768.

S. A. FriEDMAN, Partial differential equations of parabolic type (Prentice-Hall, Englewood Cliffs,
1964).

6. B. A. Mair and D. SingMan, A generalized Fatou theorem, Trans. Amer. Math. Soc. 300 (1987),
705-720.

https://doi.org/10.1017/50013091500003394 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500003394

270 N. A. WATSON

7. A. NageL and E. M. SteiN, On certain maximal functions and approach regions, Advances
Math. 54 (1984), 83-106.

8. E. M. SteiN, Singular integrals and differentiability properties of functions (Princeton
University Press, Princeton, 1970).

9. N. A. Warson, Parabolic limits of solutions of weakly coupled parabolic systems, J. Math.
Anal. Appl. 95 (1983), 278-283,

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF CANTERBURY
CHRISTCHURCH

NEw ZEALAND

https://doi.org/10.1017/50013091500003394 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500003394

