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HOPF'S ERGODIC THEOREM FOR PARTICLES 
WITH DIFFERENT VELOCITIES 

AND THE "STRONG SWEEPING OUT PROPERTY" 

A. BELLOW, A. P. CALDERÔN AND U. KRENGEL 

ABSTRACT. In an earlier paper we provided a counterexample to an old conjecture 
of Hopf. In this note we show that the "strong sweeping out property" obtains for the 
Hopf operators (Tt) both when t —• +00 and when t —• 0+, that is a.e. convergence fails 
in the worst possible way. 

1. Introduction. Let (Q, $, AO be a probability space and {rt \ t G R} a measurable 
measure-preserving flow on it (see [5]). Let Û = £1 x [0, +00) and let ft = \i 0 A be the 
product of [x and Lebesgue measure A. For/ e Lx{p) and h G L°°((i) Hopf [3] defined 
the operators 

( 7 / ) M = f /(T,,,*, v)h(u>, v) d\(v) 
J[0,+oo) 

and showed that Tf converges in Z^-norm as t —> 00. (As noted in [1], there is also a 
"local version" of Hopf s Ergodic Theorem, namely: TJ converges in Ll-norm as t —> 
0+.) Hopf conjectured that, as t —• 00, Tjf also converges a.e. for/ G Ll(Ù) = Ll(fi). In 
[1] we provided a counterexample to this conjecture. The example we constructed was 
the indicator function/ = 1 ,̂ where the set E was of finite ft measure but unbounded 
(in the v-coordinate); the construction also showed that for/ > 0, h > 0, the liminf 
coincides with the l) -limit. Thus the possibility of demiconvergence is not ruled out. 
Here we strengthen the above result about 1# and show that, restricting ourselves to 
functions with support in the product Qo = ^ x [0,1] we can even obtain the "strong 
sweeping out property" for (Tt) in both cases, t —• +00 and t —> 0+. 

We recall that for a sequence (Tn) of operators with Tn\ = 1, we say that the "strong 
sweeping out property" holds if, given any e > 0 there is a set E of measure less than s 
such that 

limsupr^l^ = 1 a.e. 
n 

liminf Tn\E — 0 a.e. 
n 

In other words, convergence fails in the worst possible way. 
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We are indebted to Benjamin Weiss for bringing to our attention the Perron tree con­
struction. 

2. An application of the Perron tree construction. Let A > 0 and let R(A) = 
[0,1] x [0, A] be the rectangle of height A over the base [0,1]. By a "closed strip in R(A)" 
we mean a set of the form 

S(A) = $i] ; r - {(" + tv, v) | u G [a, b], v G [0, A]} 

where 0 < a < b < 1 and t G R. Note that S may have points outside R^A\ 
Consider now the circle group. For notational convenience we shall write it in the 

form Q = [0,1] (mod 1) (keeping in mind that 0 and 1 are identified and shall denote 
by x + y addition (mod 1)). 

Let / = [0,1] and \etÛo = QxI be the corresponding cylinder of height 1. By a 
"cylindrical closed strip" we mean a set of the form 

S = S[aM.t = {(u + tv,v) | UJ<E [a9b],ve [0,1]} 

where 0 < a < b < 1 and t G R. 

For M e R , M ^ 0 , consider the map a — OM'. ^O -—* &o given by 

a(u), v) = (CJ + MV, v). 

This is an automorphism (measurable, measure-preserving, invertible) of ÛQ. Its inverse 
is 

<j-1 (a;, v) = (LXJ — Mv, v). 

For fixed UJQ G Q, to G R, the "cylindrical line segment" 

C(),r() = {(uo + t0v,v)\ vG [0,1]}. 

under o becomes the "cylindrical line segment" 

Liht0+M = {(^o + ̂ ov + Mv, v) I v G [0,1]}. 

REMARK. The "cylindrical closed strip" §[a,b]-,t is mapped under a — a M onto the 
"cylindrical closed strip" §[atb];t+M-

We now recall a classical lemma in differentiation theory, whose proof is based on the 
Perron tree construction (see, for instance, M. de Guzman [2] p. 215, Lemma 8.5.1). 

LEMMA. Let 0 < e < 1, 1 < A and consider the rectangles 

Rx = [0,1] x [0,e/2] (=/? (e /2)) 

R2 = [0,1] x [0,A] (=RiA)). 
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There is then a finite collection of "closed strips in R^A\ " S ^ S ^ , • • • *^> ^ ~ 

(1) S{A)CR2 fori=l,2,...,k 

(2) RX C Ù Sf 

(3) Lebesguemeasure of (({J S(A)) H (R2 \R\)\ < e/2 

( k \ 
(4) Lebesgue measure of ( |J St J <e. 

REMARKS . 1 ) Note that from ( 1 ) above it follows that | tx\ < 1 /A for i = 1,2,..., k. 
In fact we have 

ttA < bt + t(A < 1 

at + ttA >0^>tt> -at > - 1 . 

2) Note that from (2) above it follows that 

Ufa.*/] = [0,1]. 

This has the following picturesque interpretation: 
Think of the vertical strip R2 as a (two-dimensional) piece of cheese. Then one can 

cut out finitely many strips through R2, such that from every point of the base one can 
"see the sky" and the total area of the hollow strips is less than e. 

With the above notation we have: 

COROLLARY. Let 0 < e < 1 and a < (3, a, (3 G Rbe given. Then there is a finite 
collection of "cylindrical closed strips", V\, V2,... ,Vk, V/ = §[a.^y/. such that 

(1') te [a,/3] fori= 1,2,...,A; 

(20 [0,1]= Ufa, M 
Ï=I 

(3') Lebesgue measure of (\^J vA < e 

PROOF. Choose A > 1, A > 2/(j3 — a). Observe that for the closed strips of the 
lemma determined by [at,b(] and ti, the corresponding "closed strip in 7?(1)" and the 
"cylindrical closed strip" coincide 

S[aM;ti = ^"M*' 
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Consider now the automorphism a — OM with M — a + 1 /A and define 

Vt = (j(S[aiMjj) 

then 
Vi = S[fl|.A.];//, where t\ = h + M. 

Since [-1/A, 1/A]+M C [a,(3] and \tt\ < A, (1') follows; (2') follows from (2) and (3') 
follows from (4) and the fact that a — OM is measure preserving. • 

3. Hopf's ergodic theorem and the "strong sweeping out property". In the re­
mainder of this note we assume that Q = [0,1 ] (mod 1 ), that \i is the Lebesgue measure 
on Q, and that rt(u) = u + t. We also take h = 1 in our example. 

For the operators Tt defined in the introduction, note that we have 

(a) Tt:L
l(Û0)-+Ll(Çl) 

(b) / > 0 => Ttf > 0 

(c) ^ ( 1 ^ = 1 ( = 1 Q ) . 

THEOREM 1. For each e > 0 and S > 0 there is a set E C Ûo and a finite collection 
of numbers t[, tf

2,..., t'k such that 

/1(E) <e, 0<tf
t<e 

and 

(*) v(W\ sup Tt,(\E)(uj)= 1}) = 1. 

In particular, the operators Tt: L1(ÛQ) —> L](£l) satisfy the i(strong sweeping out prop­
erty" as t—+ 0+. 

PROOF. By a well-known criterion of del Junco and Rosenblatt (see [4], 
Theorem 1.3), it suffices to check (*). We apply the Corollary in Section 2 with a = 6/2, 
P = 8. Let E = U t i Vh By (3'), p,(E) < e and by (1'), 5/2 < t\ < 6. By (2f) 

ujQ G [0, 1] (mod 1) => COQ £ laj>bj] for somey, 1 <j<k 

=» l£(o;o + /-v, v) = 1 for all v G [0,1] 

^> rr/lE(a;o) = 1 = sup Tt,(\E)(ujo) = 1. 

This proves (*) and, consequently, also our theorem. • 

THEOREM 2. For each e > 0 and M > 0, /̂zere /s a s^ E, E C QQ, and a /zm'te 
collection of numbers t\,t'2,... ,t'k such that p,(E) < e, ̂  > M and 

(**) /i({a;| sup 7>(l£)(a;)= 1}) = 1. 
\<i<k ' 

In particular, the operators 7): L1(ÛQ) —> Ll(Q.) satisfy the "strong sweeping out prop­
erty'' as t —> oo. 

PROOF. Entirely analogous to that of Theorem 1, except that here we take [a, (3} = 
[M,M+1]. • 
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