
BULL. AUSTRAL. MATH. SOC. 30D45, 30D50

VOL. 68 (2003) [405-421]

n-TH DERIVATIVE CHARACTERISATIONS, MEAN GROWTH OF
DERIVATIVES A N D F{p, q, s)

J. RATTYA

Various n-th derivative characterisations involving different kinds of oscillations of
F{p,q,s) functions are established, and the mean growth of derivatives of F(p,q,s)
functions is considered. Moreover, inclusion relations between certain analytic func-
tion spaces are discussed.

1. INTRODUCTION

Integral characterisations involving n-th derivatives for functions in the weighted
Bergman spaces were essentially proved by Flett [6] in 1972. In 1989 Stroethoff [11]
proved similar results for Bloch functions and little Bloch functions. Further, in 1998
Aulaskari, Nowak and Zhao [2] obtained n-th derivative characterisations for functions
in the spaces Qp on Qpfi- Recently these results were generalised for the general family
of function spaces F(p, q, s) and FQ(p, q, s) by Rattya [10]: for an analytic function / on
the unit disc of the complex plane the conditions / € F(p,q,s) (respectively F0(p,q,s))
and / ( n ) € F(p,np + q,s) (respectively, F0(p,np + q,s)) are equivalent, provided that the
spaces are not trivial and 1 < p < oo.

The present paper is organised as follows. We begin by briefly recalling the basic
notations of function spaces, as well as some elementary inequalities needed later on
in Section 2. In Section 3, we first note that the condition 1 < p < oo in the result
above can be removed, see Theorem 3.2, and then apply it in order to obtain various
n-th derivative characterisations, involving different kind of oscillations, for F(p, q, s)
functions, see Theorems 3.4, 3.5 and 3.7, generalising resent results by Yoneda [14].
In Section 4 we briefly discuss inclusion relations between the closely related families
of function spaces F(p,q,s) and Fn(p,q,s), and, as an consequence, answer partially a
question posed in [14]. Section 5 is devoted to the study of the mean growth of derivatives
of F(p, q, s) functions, and the results therein generalise and/or improve results in [1] and
[3].
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406 J. Rattya [2]

2. NOTATIONS AND PREREQUISITES

Let D denote the unit disc of the complex plane. For a £ D, let the Mobius
transformation ipa : D —> D be defined by

„ . a— z

and let the Green's function of D with logarithmic singularity at a be

g(z,a) = log — = log
z — a

Simple calculations show that (p~l = <pa and

1

For a e D and 0 < r < 1, the pseudo-hyperbolic disc is defined by

D{a,r) = {z£D:\<pa{z)\ < r } .

The pseudo-hyperbolic disc D(a, r) is an Euclidean disc centred at (1 — r2)a/(l — |a|2r2)
with radius (l — |a|2)r/(l - |a|2r2), see [7, p. 3]. Let daz denote the Euclidean area
element, and let IA"! denote the Euclidean area of K. Obviously

(2.1) | g ( o , r ) | = i r r a ( l ~ l ° | 2 }
(1 - |a|2r2)

The constants, which might vary from one occurence to another, are denoted by C.
For 0 < p < o o , - 2 < g < o o and 0 ^ s < oo, F(p, q, s) and F0(p, q, s) are defined

as the sets of all analytic functions f on D for which

>,,. = sup [f \f{z)\p{\ - \z\2)qg>(z,a) daz
a€DjJD

< oo
"''""" a€~D J JD' ' ' ' '

and

Urn [[ \f'(z)\p(l-\z\2)9g'{z,a)dax = 0, 0<s<oo,
\a\-*l J JD

respectively. For convenience, we also define F0(p, q, 0) = F(p,q,0). For 1 < p < oo,
F(p,q,s) is a Banach space with respect to the norm ||/||P,,,s + | / (0) | , and so is F0(p, q, s)

as a closed subspace of F(p,q,s), see [13, Theorem 2.10 and Proposition 2.15]. The
spaces F(p,q,s), introduced by R. Zhao in [13], are known as the general family of

function spaces. The importance of these spaces stems from the fact that for appropriate
parameter values p, q and s they coincide with several classical function spaces. For
instance, it is well known that F(2,1,0) is just the Hardy space H2, the proof being
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[3] Derivatives of F(p, q, s) 407

based on the Parseval's relation, F(p,p, 0) is the Bergman space LJJ, F (2 ,0 , s ) = Qa and

F(2,0,1) = BMOA, the space of analytic functions with bounded mean oscillation. For

other relations, the reader is invited to see [13].

A positive measure fi on D is said to be a bounded s-Carleson measure, if

H(S{I))
sup v " < ex), 0 < s < oo,

where | / | denotes the arc length of a subarc / of the boundary dD, S(I) — {z G D :
z/\z\ G / , 1 - \z\ ^ | / | / 2 T T } is the Carleson box based on / and the supremum is taken
over all subarcs / of dD. Moreover, if

H(S(I))
lim ^ \ r , ; / = 0, 0 < s < oo,

then fi is a compact s-Carleson measure. For s = 1 we have the standard definitions of
bounded and compact Carleson measures.

Easy calculations show that for w € D(z, r) and a € D,

(2.2) ± ^ ( i - W2) < i - M2 ^ ^ ( i - kl2),

(2.3) I T 7 ( 1 "|z|2) ^!1"Wzl^ r b ( 1 " | 2 | 2 )

and

{2A)

By (2.1),

If il = (2r)/(l + r2) G (r, 1) and iw G D(z, r), then D(iy, r) C D(z, fi) and

Moreover, it is evident that

(2-7)

Formulas (2.2)-(2.7) will be used frequently in sequel.
For an analytic function f on D and 0 < r < 1,

sup \f(z)-f(w)\
6 D ( )
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and

*.r)\ JJD(Z,T)

where

r{z)=\nb^\ If
\L>{Z,r)\ JJD(.z,r)

are called the oscillation and the mean oscillation of / at z in the Bergman metric,
respectively. To characterise F(p, q, s) functions, we use various different oscillations and
mean oscillations similar to these two, see Theorems 3.4, 3.5 and 3.7.

3. ON n-TH DERIVATIVE CHARACTERISATIONS FOR F(p,q,s)

We begin with an auxiliary lemma which is essentially due to Flett.

LEMMA 3 . 1 . Let f be an analytic function on D and let 0 < p < oo and —1
< q < oo. Then there exist two positive constants Ci and C2, depending only on p and
q, such that

PROOF: By [6, Theorems 6 and 7],

i [[\f'(z)\p\zr1(l-\z\)p+''doz< f r\f{rei9

JJD JO JO

from which [8, Lemma 4.6] and [10, Lemma 5.3.1] with elementary estimates yield the
assertion. D

For the proof of Lemma 3:1 the reader is also invited to see [2, Lemma 1] (the case
p = 2), [15, p. 58] (the case 1 ^ p < 00 and q = 0) and [10, Lemma 4.1.4] (the case
1 < p < 00).

In function space language, Lemma 3.1 states that for an analytic function on D,
the conditions / G Ap

q and /("> G Ap
np+q, n e N, where A\ = F{p,p + q,0) stands for the

weighted Bergman space, are equivalent.
Applying Lemma 3.1 to the function (/ 0 tpw)(rz), 0 < r < 1, we obtain

(3-D / / \ttz)\Pdoz ^c(f[ \f{z)\'(l - \z\ydoz + \!{W)f) ,
J J D(w,r) \J J D(w,r) /
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where the positive constant C depends only on p and r .

The following two theorems fulfill the gap 0 < p ^ 1 in [10, Theorems 4.2.1-4.2.4,

4.3.3 and 4.3.4].

THEOREM 3 . 2 . Let f be an analytic function on D and let 0 < p < oo, - 2

< q < oo and 0 ̂  s < oo. Let n e N a n d <7 + s > — 1 o r n = 0 and q + s -p > — 1 . T i e n

the following conditions are equivalent:

(1) feF(p,q,s),

(2) sup / / |/("'W|P(1 - MT- p + <( l - M*)|a)'«fr. < oo,
aeD J J D v '

(3) sup / / |/(">(z)|P(l - \z\2)np~P+q9a{z,a)daz < oo,
a£DJ JD

(4) dfi{z) = \fM(z)|p(l - \z\*)np-p+q+a doz is a bounded s-Carleson measure.

THEOREM 3 . 3 . Let f be an analytic function on D and let 0 < p < oo, —2

< 9 < oo and 0 < s < oo. Let n € N and q + s > — I or n = 0 and q + s — p> —1. Then
the following conditions are equivalent:

(1) feF0(p,q,s),

(2) lim

(3) lim
\a\->1

(4) dfj,(z) = |/<">(z)|p(l - \z\2)np~p+q+'daz is a compact s-Carleson measure.

Theorems 3.2 and 3.3 can be proved as [10, Theorems 4.2.1-4.2.4, 4.3.3 and 4.3.4]

by applying Lemma 3.1. We note that as an immediate consequence of the above two

theorems, [10, Theorems 4.4.2 and 4.4.3] hold also for 0 < p ^ 1.

We now use Lemma 3.1 and Theorem 3.2 to prove n-th derivative characterisations,

involving the oscillation of /(") at z in the Bergman metric and similar oscillations, for

F{P, 9J s) functions.

THEOREM 3 . 4 . Let / be an analytic function on D and let 0 < p < oo, - 2
< ( ? < o o , 0 ^ s < o o and 0 < r < 1. Let n e N and q + s > -I or n — 0 and

q + s — p > — 1. Let a + P = np — p + q and Si + S2 — s. Then the following conditions

are equivalent:

(1) feF(p,q,s),

(2) sup/77 sup |
J JD \ weD[z,r)

s u p r\ If l / (n) (w) -/{n){z)
r ) | J JD(Z,T)

x ( l - \<pa{z)\2)'1 (l - \iPaWl2)"
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D(z,r)
, P

< OO.x ( l - \<pa(z)\2)'l/P(l - |¥>OH|2) ' 2 / Pdawjdo.

PROOF: We will prove the implications (4) => (1) => (3) => (2) while (2) => (4) is
trivial.

(4) =$> (1). An easy calculation shows that, for an analytic function g on D,

(3.2) g'(O) = -LJJ Wg(w)daw.

Applying this to the function g(w) = (/'") o tpz)(w) — f^(z) we obtain

(3.3) |/(n+1)(*)| (1 - \z\2) <C [[ |(/W o Vz)(w) - fM(z)\ daw ,
J JD(0,T)

where the positive constant C depends only on r. By (3.3) and the elementary inequalities

[[iff K/(n)

J JD \J JD(O,T)

i
D(z,r)

and it follows by Theorem 3.2 that / 6 F(p,q,s).
(1) =*• (3). By the inequalities (2.2) and (2.4), and by applying (3.1) to the function

/ ( n ) H - f{n)(z), we obtain

daz
\ • / \ • / y

i / ' / ' ( * / / I/(n+l)/...\|P/1 l...|2\Pj_ \ / i |_|2\"P-P+9

Moreover, by (2.2)-(2.5), (2.7) and Fubini's Theorem,

, ,2\np-p+q
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) - \Vm(w)\2)'da

and the implication follows by Theorem 3.2.

(3) => (2). By the inequalities (2.2) and (2.4), and by the subharmonicity of

sup |
w€D(z,r)

s u p

Setting /? = ((2r)/(l +r2)) € (r, 1), we have £»(u;,r) C £»(z,fi) for to € D(z,r), and it
follows by (2.6) that the last expression above is dominated by a constant times

1/p

and the implication follows. 0

Next we prove equivalent conditions involving oscillations derived from the mean

f(w)daz.

THEOREM 3 . 5 . Let f be an analytic function on D and let 0 < p < oo, —2
< q < oo, 0 ^ s < o o and 0 < r < 1. Let n € N and q + s>-lorn = 0 and

q + s — p> — 1. Let a + @ = np-p + q and Si + s2 = s. Then the following conditions

are equivalent:

(1) feF(p,q,s),
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(2) sup ff ( sup \ffir(z)-fW(w)\(l-\z\2)a/p(l-\w\2)(l/p

sup ff (T7577TYI ff I^ 'W - /(n)H|p(i - l*l
aeDJJD \\D{Z, r)\ JJD(z,r)

1(1- \<PaW\2)" daj\ dcrz
( M | ) ( \ \ ) o o ,

sup / / ( / / I ^ W / ( n ) H ( i I H>D(z,r)

x (l- \<pa(z)f) [ 1 - \(pa(w)f) daw\ daz <oo .

PROOF: We will only prove the implication (1) => (3), since the other implications
((3) => (2) and (2) => (4) => (1)) can be proved as the corresponding parts of Theorem
3.4.

(1) => (3). Following the proof of the corresponding part of Theorem 3.4 we deduce

IL
(l - IM*)]2)'1 (l - \Va(w)?)" daj\ daz

i
D(z,r)

The first term can be treated in the usual manner, and the second term is easily seen to
be dominated by a constant times the integral expression in the condition (4) of Theorem
3.4. D

In order to prove equivalent conditions involving oscillations derived from

z — w

we need two auxiliary lemmas. We quote [10, Lemma 5.2.1] as
LEMMA A. Let ubea subharmonic function on D and let - 2 < q < oo, 0 < s < oo,

0 < r < 1 and a € D. Then, for every w 6 D, there exists a positive constant C,
depending only on q, r and s, such that

u(w)(l - M2) '+ 2(l - \<pa(w)\2)' ^Cir u{z){l - |z|2)'(l - \<pa(z)\2)'da,:
V ' JJD(XV,T) V '
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LEMMA 3 . 6 . Let f be an analytic function on D and let 0 < p < oo and —1
< q < oo. Then there exists a positive constant C, depending only on q, such that

f(z)-f(0)p.II. '(1 - \z\ydo,

In the view of Lemma 3.1, Lemma 3.6 follows by the proof [10, Lemma 5.3.2]. For
a slightly different proof in the case p ^ 1, see [12, Lemma 6].

As an immediate application of Lemma 3.1, we see that

(3.4)
J JD(0,r)

M-W) ff \f'(z)\p(l-\z\')pdaz,
J JD{0,r)

where C is a positive constant, see also [14, Lemma 3.2].

THEOREM 3 . 7 . Let f be an analytic function on D and let 0 < p < oo, - 2
< < 7 < o o , 0 ^ s < o o and 0 < r < 1. Let n € N and q + s > - 1 or n = 0 and

q + s - p > — 1. Let a + 0 — np-p + q and Si + s2 = s. Then the following conditions
are equivalent:

(1) feF(p,q,s),

weD(i,r)

x (l -

i
daz <oo,

do, < oc.

PROOF: We will prove the implications (4) =^ (1) => (3) while (3) => (2) =»• (4) can
be proved as the corresponding parts of Theorem 3.4.

(4) => (1). By Lemma 3,

ff ( * ff l/*"-JJD\\D(z,r)\JJD{J z-w

from which the implication follows by Theorem 3.2 in view of the inequalities (2.2) and
(2.4).
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(1) => (3). By the inequalities (2.2)-(2.5),

JJD\\D(z,r)\JJDM~ z — w

do,

D(O,r)
dou 1 daz

Using the inequality (3.4) we see that

\J JD{O,r) • )
daz

4 It \fM{W)\V{\-\w\2Y\^{w)\2daw)daz,
\JJD(z,r) J

from which the implication follows by (2.7) and Fubini's Theorem. D

REMARK. (1) Analogous results to Theorems 3.4, 3.5 and 3.7 hold for the spaces
F0{p, 9, s) by the same proofs.

(2) Theorems 3.4, 3.5 and 3.7 and their Fo(p, q, s) counterparts generalise [14, The-
orems 3.3 and 3.5] to the spaces F(p,q,s) and F0(p,q,s), respectively.

4. ON INCLUSION RELATIONS BETWEEN F(p,q,s) AND Fn(p,q,s)

Let us first recall the definition of the spaces Fn(p,q,s) and F0"(p,q,s) from [10].
For 0 < p < oo, -2 < q < oo, 0 ^ s < oo and n € N, Fn{p,q,s) and F0"(p, q, s) are
defined as the sets of all analytic functions f on D for which

sup
aeD

IUL\ ftn-U{z)-fln-V{w)
z — w

'(i-|z|2)np~P+'/2~1(1-M2)(np

(i - k
s/2

dazdaw <oo ,

and

&////I- 2 — W

( l - ' S = 0, 0 < s < oo,
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respectively. For convenience, we also define Fg(p, q, 0) = Fn(p,q,0).

To consider inclusion relations between the spaces F(p,q,s) and Fn(p,q,s) (respec-
tively, F0(p, q, s) and Fg(p, q, s)), it suffices to consider the case n = 1, since by the defini-
tion, / € Fn(p, q, s) (respectively, / € Fo

n(p, q, s)) if and only if fln~V € Fl(p, np-p+q, s)

(respectively, /("-1) e FQ (p, np — p + q, s)), if / is not a polynomial of degree less than
or equal t o n - 1.

Probably the first paper containing results involving these kind of double integrals
is due Stroethoff. He proved in [12] that F1(p,p - 2,0) = F(p,p - 2,0) = Bp, where
Bp stands for the classical Besov space. Yoneda considered more general situation, and
showed that Fn{p,p— 2,0) C Bp, if p ^ 1 and np > 2. In view of Lemma 3 and Lemma
3.6, we see, by observing the proofs of [10, Theorems 5.2.2 and 5.2.3], that the latter
result can be generalised.

THEOREM 4 . 1 . Let f be an analytic function in D and let 0 < p < oo, —2
<<7<oo, 0 ^ s < o o and n £ N with np-p + q + s>0. Then

Fn(p,q,s)cF(p,q,s)

and

F£{p,q,s)cF0(p,q,s).

We note that Theorem 4.1 is also an immediate consequence of Theorem 3.7.

Further, it is known that Fi(p,p-2, s) = F(p,p-2, s), F0
1(p,p-2, s) = F0{p,p-2, s)

and F1(p, ap - 2,0) = F(p, ap - 2,0) for 1 < p < oo, 0 ^ s < oo and 1 < a < 2 with

ap > 2, see [10, Theorems 5.3.4 and 5.3.6]. These results can be generalised as well.

THEOREM 4 . 2 . Let f be an analytic function in D and let 0 < p < oo, —2
< q < oo and 0 ^ s < oo. If

max{s - 2 , p - s — 1,-s} < q < 2p— s — 2,

then F(p,q,s) = Fl(p,q,s) and F0{p,q,s) = Fj(p,q,s).

PROOF: By a change of variable,

B(p,q,s,a;f):= [[ [f \
J JD J J D' Z — W

dozdow

x{l-\w\2)q-p(\-\<pa{w)\2)'dow,
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from which an application of Lemma 3.6 yields

B(p,q,s,a;f) < c(Jfjf'{z)\p(l - \z\2)q(l - \Mz)

where

C(p,q,s,z,a)

However,

and therefore, by [5, Lemma 2.5],

sup C{p, q, s,z,a) < oo.

The assertions now follow by Theorems 3.2, 3.3 and 4.1. D

An immediate, yet false, see [10, Theorem 5.3.10], conjecture is that the spaces
F(p,q,s) and Fn(p,q,s) coincide for all parameter values p, q, s and n. The follow-
ing theorem shows that if n is sufficiently large, then Fn(p,q,s) is strictly included in
F(p,q,s).

THEOREM 4 . 3 . Let 0 < p < oo, -2 < q < oo, 0 ^ s < oo and n G N with
np — p + q + s > 0. If

(4.1) n > 3 + S ~ g ~ 2 , •
V

thenFn(p,q,s)CF{p,q,s).

PROOF: By Theorem 4.1 it suffices to show that the inclusion is strict. Let / be an
analytic function on D such that

where 0 < (q + 2)/p, /3 G Q. Let us first prove that / G F(p,q,s). If s — 0, an
application of [4, p. 65 Lemma] shows that / G F0(p,q,0). If s > 1, F(p,q,s) = Biq+2^P
and obviously / G F(p,q,s) (in fact / G F0(p,q,s) = B^+2)lp). If 0 < s ^ 1, consider
fb(z) = f{bz), 0 < b < 1. A simple calculation with an application of [5, Lemma 2.5]
and Lebesgue's dominated convergence theorem shows that /i = / G F(p,q,s).
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To see that / £ Fn(p,q,s), we may follow the reasoning in [10, Theorem 5.3.10].
Since /? is rational, there exists an r(/7, n) and a disc D(/3, n) C D, depending only on /?
and n, such that

\l-z \0+n-2
Z — W

> 0

for (z, w) € (.D \ £>(0,1 - r(/3, n)) x £>(/?, rc)). It follows that

s u p /"/• / / | / t " - 1 ) ( ^ ) - / t " - 1 ) H | " ( l _ , |2)((n
a€DjJDJJD\ Z-W IV l l y

[f I (-1 |-|2\(("P-P+9+»)/2)-l

/ / Ti I 1 1̂ 1 )
J JD\D(0,\-r{P,n / /-2ir JO \

n I (1 _ r2\((np-p+9+«)/2)-l | / ^ | i

However,
/•27T

which can be seen by the change of variable 6 — (1 — r)£, see [10, Theorem 5.3.10], and
hence

jjDJJD\
SUD ' ' ' ' '" ' * ~ * * I 1 _ l . » l * l " ' r • m,, , | ] | n , , | * \ ^ P P'"// I

a£D

> / 2 / - , . , , 2 \ s / 2

daz dou

^ C (1 - r2)((nP-P+<Z+*)/2)-l-p(/S+n-2)+l j r

il-r(ftn)
The last integral diverges, if

3 _ n ((g + s)/2) + 1

Combining this condition with the inequality 0 < (q + 2)/p we get (4.1). D

REMARK If (q + 2)/p € Q and 0 < s < oo, we may take 0 = (q + 2)/p in the proof
above, and then the slightly weaker condition

n > 3 ( s - q - 2

P

implies Fn(p,q,s) C F(p,q,s). This, with q = p - 2 and 1 < s < oo, reduces-to [10,
Theorem 5.3.10].

As an immediate consequence of Theorem 4.3, we have
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COROLLARY 4 . 4 . Let 0 < p < oo and n e N with np - 2 > 0. Ifn>2, then

Fn(p,p-2,0) g flp = F ( p , p - 2,0).

Corollary 4.4 answers partially the question in [14, pp. 416 and 446], but it still
remains open whether F2(p,p — 2,0) equals to Bp for p > 1 or not.

5. M E A N GROWTH OF DERIVATIVES OF F(p,q,s) FUNCTIONS

A careful reader observes that the mean growth of F(p, q, s) functions is quite well
studied by Flett in terms of generalised Hardy-Littlewood integral means

M(p,q,a;f)= f Mp'(r,/)(1 - r)""-1 dr,
Jo

where Mp(r, f) are the standard IP means of the restriction of / to the circle of radius r
centred at the origin, in his work [6] on multiplier transformations which may be regarded
as fractional derivatives or integrals. Because of this fact, we settle to prove the following
result and some of its consequences.

THEOREM 5 . 1 . Let f be an analytic function on D and let 0 < p < oo, - 2
< q < oo and 0 ^ s < 1. Let ip be an increasing function ofr on the interval (0,1) such

that \f'(z)\ 4: <p{r) for all z = reie e D. If

(5.1) f
Jo

then f e F0{p,q,s).

P R O O F : Let 0 ^ s < 1. Then

and since

I"
Jo

d0

C, i f O < S < -

( 1 - H r ) 2 - 1 ' 2 ^

we conclude, by the assumption (5.1), that the last integral in (5.2) converges for all
a e D. Hence the assertion follows for s = 0. For 0 < s ^ 1, the integrand tends to zero,
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as \a\ -y 1, for all r G (0,1), and we conclude, by Lebesgue's dominated convergence
theorem, that

as \a\ -+ 1. Thus, by [13, Theorem 2.5], / € F0(p,q,s). D

By the proof above it is evident that if the condition (5.1) is satisfied, then the
function / lies actually in F0(p, q + s — 1,1) which is strictly included in F0(p,q,s), if
0 ^ s < 1. Hereafter this observation will be ignored for simplicity.

The case p = 2, q = 0 and s = 1 of Theorem 5.1 (that is, / 6 VMOA, the space of
analytic functions with vanishing mean oscillation) has been proved in a different way by
Danikas [3, p. 25].

At this point it is clear that combining Theorems 3.2 and 5.1, we may deduce a
similar result involving n-th derivatives.

THEOREM 5 . 2 . Let f be an analytic function on D and let 0 < p < oo, — 2
< q < oo and 0 < s < 1. Let n € N and q + s>-lorn = 0 and q + s — p > —1. Let

(p be an increasing function ofr on the interval (0,1) such that \f^(z)\ ^ <p(r) for all

z = reie € D. If

r1

/
Jo

(5.3) / <p{r)p(l - r2)«P-p+«+« dr<oo,

then f € F0(p, q, s).

Theorem 5.2 (as well as Theorem 5.1) can be proved in the following alternative way

by applying s-Carleson measures. Let dp(z) = | / ( B ) ( * ) | " ( 1 - \z\2)nj"p+q+s da2. By (5.3),

f1 2 n - + +,
'S(l) ^ Jl-\I\

and by letting | / | —> 0, it follows that d(j,(z) is a compact s-Carleson measure, and hence

/ e F0(p, q, s) by Theorem 3.3.

Defining

we conclude the following immediate corollary of Theorem 5.2.

COROLLARY 5 . 3 . Let f be an analytic function on D and let 0 < p < oo,
- 2 < q < oo and 0 ^ s ^ 1. Let n G N and q + s>-lorn — 0 and q + s — p > - 1 . If

(5.5) f M^r, /(n))p(l - r2r-'+'+' dr < oo,
J

then f € F0(p,q,s).
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Corollary 5.3 generalises and improves [1, Theorem 3.2]. We complete the section
by using the standard arguments to show that the condition (5.5) is also necessary for
the containment in F0(p, q, s), if the function / has Hadamard gaps, that is, if the power

oo

series representation f(z) — £) akZnk satisfies nk+i/nk ^ A > 1, for all k ^ 0. To do this

we need the following lemma by Zygmund, see [16, p. 215] and [9, p. 314].

LEMMA 1 . Let 0 < p < oo, 0 < a < oo, fceNU {0}, 0 < ak < oo, Ik - {j :

2* < j < 2h+l, j € N}, tk = X) ajt and let f(x) = £ akXh- Then there exists a positive
jeik k=o

constant C, depending only on p and a, such that

THEOREM 5 . 4 . Let 0 < p < oo, - 2 < q < oo and 0 < s ^ 1. Let n G N and
oo

q + s > — 1 or n = 0 and q + s — p > — 1. If the analytic function f{z)= Yl o-kZnk has
fc=0

Hadamard gaps, then f € F0(p, q, s) if and only if (5.5) is satisfied.

PROOF: In view of Corollary 5.3, it suffices to show that if / G F0(p,q,s) has
Hadamard, then (5.5) is satisfied. For simplicity, we will prove this only in the case
n = 1, the general case can be proved in a similar manner. We note that Lemma 1 holds

oo

also if f(x)= J2 akx
k~l, and therefore

I"' M^rJ'Yil - r2)"+sdr < 2"+s f ( JTrUcK^K*-1)'(1 - r)«+sdr
Jo Jo \ JZi /

fc=i

k=\

Since the power series representation of / has at most logA 2 + 1 terms a,jZn> such that
fij & Ik, we deduce

Moo(r, f'Y(l - r 2 ) 9 + s dr ^ 22<+2s+1C(logA 2 + l)p £ n j " ' — V * I".

from which (5.5), with n = 1, follows by [13, Theorem 5.5]. D
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