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1. Introduction. Let it be required to arrange v elements into v sets such 
that each set contains exactly k distinct elements and such that each pair of 
sets has exactly X elements in common (0 < X < k < v). This problem we 
refer to as the v, k, X combinatorial problem. Listing the elements X\, Xi, . . . , 
xv in a row and the sets Si, S2, . . . , Sv in a column, one forms the incidence 
matrix A of the arrangement by inserting 1 in row i and column j if Xj belongs 
to Si, and 0 in the contrary case. 

It has been shown that X = k(k — l)/(v — 1), and consequently the matrix 
A satisfies 

AAT = ATA = B, 

where AT denotes the transpose of A and where B has k in the main diagonal 
and X in all other positions [7]. In the present paper, we are concerned only 
with the special case in which the incidence matrix A is cyclic. This problem 
we analyse in terms of incidence matrices and multipliers of difference sets. 
Extensive use will be made of certain of the results and techniques developed 
by Bruck, Chowla, Ryser, and M. Hall in [1], [3], [4]. 

2. A non-existence theorem. Let us now suppose that the incidence matrix 

av 

ax 

dv-l J 

of the v, k, X problem is cyclic. In this section we derive the following non­
existence theorem. 

THEOREM 2.1. Let 0 < X < k < v, and let v be odd. Let e be an arbitrary 
positive divisor of v. If there exists a cyclic solution of the v, k, X problem, then 
the Diophantine equation 

X2 = (k - X)y2 + ( - l)^e-D ez2 

must possess a solution in integers not all zero. 

We begin with the following Lemma. 

LEMMA. Let Bbea matrix of order v} where v is odd. Let B have the integer k 
in the main diagonal, and the integer X in all other positions, where 0 < X < k. 
If there exists a matrix A with rational elements such that 
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(B) AAT = B, 

then there must exist an integer T such that 

(1) T* = (* - X) + v\. 

Moreover, the Diophantine equations 

(2) x2 = (k - X)y2 + ( - l ) ^ - 1 ^ 2 

and 

(3) x2 = (k - X ) / + ( - l ) ^ " 1 ^ 2 

wws£ mci possess solutions in integers not all zero. 

Equation (1) follows directly upon observing that the determinant of B is 
(k — A)*-1 (k + (v — 1)X), and that this quantity must be a square. The 
derivation of (2) is contained in [3]. For the sake of completeness, we sketch 
the proof for the case v = 1 (mod 4). 

The matric equation (B) implies 

fcEi=i#i2 + X Etvy %&j = (k - X) £?=i*i2 + X (£*;)2 = E?=i ^;2, 

where the matrix of the transformation X{ — 7 .GjjUj IS rational and non-
singular. For a diagonal matrix [k — X, k — X, . . . ,'k — X] of order v = 1 
(mod 4), there exists a rational and non-singular D such that [k — X, fc — X, 
. . . , k - X] = DT[1, 1, . . . , 1, & - X]Z>, whence 

(* - X) EU**2 = E ^ * 2 + (* ~ X)V. 
Hencs 

Z'=iV + (* « x)V + \CLdijiY = EU";2 , 

where the d* are rational and the matrix of the transformation Vi = J^e ijUj IS 

again rational and non-singular. Set y\ = Yleijuj — =±= "i> where the coeffi­
cient is + 1 if en 9e 1, and —1 if en = 1. Then y2 = YD^ifjUj, and set 
y2 — ± u2, where the coefficient is + 1 if/2 9e 1, and — 1 if/2 = 1. Continue 
inductively, setting yv-\ = dzw„_i. Finally, let uv equal a non-zero rational. 
Then x2 = (& — X) ;y2 + Xz2 possesses a non-zero solution in integers. 

To derive (3) from (1) and (2), observe that if k — X is a square, then (3) 
possesses an obvious non-zero solution. However, if k — X is not a square, 
then 2 ^ 0 , and hence (1) and (2) imply 

(xT + (k - \)y)2 - (k - X)(x + yT)2 = ( - 1)*<•-*> v{\z)2, 

so that (3) again possesses a non-zero solution. 
Diophantine equations of the form (2) and (3) may be analysed in terms of 

the classical theory of Legendre, and necessary and sufficient conditions for 
their solvability are conveniently expressed in terms of the norm-residue 
symbol. The proof of the Lemma does not require the Minkowski-Hasse 
theory. However, this theory may be applied directly to the matric equation 
(B), with the exclusion of the same values of v, k, and X. This approach has 
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been developed by Shrikhande in investigations on the non-existence of block 
designs [8]. 

To derive Theorem 2.1, we now utilize the techniques developed in [4] for 
the cyclic projective plane. A cyclic solution of the v, k, X problem is equival­
ent to a difference set du d2, . . . , dk of k numbers mod v. Following [4], one 
defines 

0(x) = Xdl + Xd2 + . . . + Xdk} 

whence 0(x)0(x-1) = Y,xdi~dj. Now for n & 0 (mody), the congruences 
d{ — dj = n (mod v) have precisely X solutions. Hence in the notation of 
polynomial congruences described in [4], it follows that 

B (x)6(x-1) = k + X(x + . . . + xv~l) mod xv - 1. 

Now let e divide vy where v = e\x. Then 

6(x) = h + hx + . . . + ôs-ijc*-1 mod xe - 1, 

where the 6» are by definition the number of d's congruent to i mod e. Then 

fl^Mx-1) = k + X(M - 1) + MX(X + . . . + Xe"1) mod xe - 1, 

and upon equating coefficients, it follows that 

^Ho1 b* = k - X + MX 
(M) 

T,Uobibi+j = M^, 

where j = 1,2, . . . , e — 1, and the subscripts are to be taken modulo e. 

Now define the cyclic matrix 

f~ bQ bi . . . 6e_i ~| 
S = I ^ b2 . . . b0 

L be-i bo be-2 J 

of order e. Then by the equations (M), it follows at once that 

(N) SST = D, 

where D has k — X + p\ in the main diagonal and n\ in all other positions. 
But by the Lemma, the equation x2 = (k — \)y2 + ( —l)a(«-i) e2

2 possesses a 
non-zero solution in integers. 

Actually the above theorem for e a prime and e = 3 (mod 4) implies a theorem 
of Chowla [2], [3]. But the interconnection between equation (N) for the 
cyclic case and equation (B) for the general case is perhaps of greater interest 
than the precise range of excluded values. 

Singer has established the existence of difference sets for v = p2n + pn + 1, 
k = pn -f 1, and X = 1, where p is a prime [9]. Let e be an arbitrary positive 
divisor of v. By the preceding theorem, the equation 
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x2 = pny2 + (__ Ijh(e-l) ^ 2 

possesses a non-zero solution in integers. 
Recently Bhattacharya [5, p. 122] has exhibited a solution of the v, k, X 

problem for v = 25, k = 9, and X = 3. However, cyclic solutions do not 
exist. For let e = 5. Then the equation of the theorem becomes 

x2 = 6;y2 + 5s2, 

and this does not possess a non-zero solution in integers. 

3. The multipliers of a difference set. If d1} . . . , dk are a difference set 
mod v, following [4] we say that / is a multiplier of the set if for some 5 the 
residues td\, . . . , tdk (mod v) are d\ + s, . . . , dk + s (mod v), apart from order. 
Clearly, if / is a multiplier, then for some i, j , m, and n, we have 1 = di + 5 
— (dj + s) = /(dm — dn) (mod A). This implies that (/, v) = 1. Moreover, it 
is clear that the multipliers form a multiplicative group mod v. 

Letting 6{x) = xdl + . . . + xdk, it follows that 

d(x)6(x-1) = k - X + ATX*) mod x r - 1, 

where r (x ) = 1 + x + . . . + xv~l. The existence of a multiplier £ is equiva­
lent to an identity 

6{xl) = xs0(x) modx* - 1 . 

THEOREM 3.1. Let p be a prime divisor ofk — X such that p \ v and p > X. 
Then p is a multiplier of the difference set d\, . . . , dk (mod v). 

In the notation of [4], 
e(x)d(x~1) = 0 modd p, T(x). 

Since 6(xp) = (6(x))p (mod p), it follows that 

d{xp)d{x~l) = 0 modd p, T(x), 
whence 

d(xp)6(x-1) = aT(x) + pRi(x) mod xv - 1. 
Setting x = 1 implies that k2 = a^ (mod£). Since &(& — 1) = \(v — 1), 

it follows that k2 = XZJ (mod £). But (y, /?) = 1 so that a = X (mod />), and 
hence 

^(xp)(9(x~1) E= \T(x) + ^R(x) mod x* - 1. 

Now 6(xp)6(x~l) = e0 + e\X + . . . + ev-\x
v~l mod xv — 1 consists of powers 

of x with non-negative coefficients. Since p > X, it follows that R(x) consists 
of powers of x with non-negative coefficients, and the sum of these coefficients 
must be (k2 — \v)/p = (k — X)/_p. Similarly, 

0(x)6(x-p) = X T » + pS(x) mod xv - 1. 

Now trivially 6(xp)6(x~p) = & — X + \T(x) mod xv — 1. Hence upon noting 
that X*JT(X) = 7X#) mod x r — 1 and comparing the two values obtained for 
e(xp)e(x~1)6(x)6(x-p), it is clear that 
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p2R(x)S(x) = (k - X)2 mod xv - 1. 

But since both R(x) and S(x) consist of non-negative terms whose coefficients 
total (k — X)/p, this relation can hold only if both R(x) and S(x) consist of a 
single term with coefficient (k — \)/p. Hence R(x) = {k — \)/p . xs and 
S(x) = (k — X)/p . xv~s, whence 

e(x*)B{prl) = \T(x) + (k - \)x* mod xv - 1. 

Multiplication by 6(x) implies 

6(xp)(k - X + \T(x)) = 6(x)\T(x) + (k - \)x96(x) mod xv - 1, 

and since xiT{x) = T(x) mod xv — 1, it is clear that 

(jfe - X)6(xp) = (k - \)xsd(x) mod xv - 1. 

Thus 6(xp) = xs0(x) mod x r — 1, and the theorem follows. 
The existence theorem for multipliers raises an interesting complication 

which does not arise in the case of the cyclic projective plane. The restriction 
p > X was used in the derivation of Theorem 3.1. However, the authors 
have been unable to show by means of an example that this restriction is an 
essential part of the hypothesis. 

THEOREM 3.2. Let t be a multiplier of a difference set d\,..., dk (mod v), and 
let (t — 1, v) = 1. Let a be an odd prime divisor of v, and let t be a primitive 
root mod q. Then the integer k — X is a square. 

Since t is a multiplier, (/, v) = 1, and r <^>tr constitutes a biunique mapping 
of the integers mod v upon themselves. The only integer left fixed by this 
mapping is r = 0. Let Tu denote the difference set 

d\ + u, d2 + u, . . . , dk + u. 

Now the multiplier t maps di + u into tdi + tu = dj + s + tu, and hence t 
maps the difference set Tu into the difference set Ts+tu- Hence the mapping 
leaves fixed the unique difference set Tu with (/ — Y)u = — 5 (mod v). Upon 
applying the multiplier t to the elements of this difference set, it follows that 

6(xt) = 6{x) mod xv - 1. 

Now let e be a primitive çth root of unity. For n = T (mod q), it follows that 
0(en) = 6(e), and consequently 6(e) is rational. Hence 0(e)0(€-1) = k — X is 
a square. 

THEOREM 3.3. Let t be a multiplier belonging to the exponent e mod v. Then 
the mapping z-^zt — s permutes the elements of the difference set dh d2) . . . , dk 

(mod v) in cycles of length dividing e. 

By hypothesis the mapping z —» zt carries the difference set d\, . . . , dk into 
tdi, . . . , tdk, which is dx + s, . . . , dk + s in some order. Hence z —> zt — s 
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maps the difference set onto itself. Upon iterating this process e times, we 
obtain 

z-+zte - s(l +t + ... + te-1), 

which maps the difference set onto itself. Since te = 1 (modz/), this yields 
z —• z - A, with A = s(l + t + . . . + te~l). If A & 0 (mod v), then the 
difference A occurs at least k > X times. Since this cannot happen, A = 0 
(mod v), and the period of the permutation must be a divisor of e. 

The condition s(l + / + . . . + te~l) = 0 (mod v) may often be used to 
show that 5 is divisible by common factors of t — 1 and v. The condition that 
5 be divisible by (t — l,v) is of course sufficient to show that an n exists such 
that (z + n)t = zt + s + n (mod v), whence the difference set d\ + n, . . . , 
die + n is mapped onto itself by the multiplier /. 

The following examples exhibit the various ways in which the use of the 
multipliers is effective. 

Example 1. Let v = 37, k = 9, and X = 2. Here k — X = 7 is a multi­
plier and since (7 — 1, 37) = 1, there is a fixed difference set. Multiplying 
by an appropriate factor, one element of the set may be taken as 1. Hence 
we have 

1, 7, 9, 10, 12, 16, 26, 33, 34 mod 37, 

viz., the powers of 7, and these numbers do form the required difference set. 

Example 2. For the cyclic plane with v = 273, k = 17, and X = 1, we have 
k — X = 16, and hence 2 is a multiplier. The line through 91 and 182 is 
necessarily a fixed line. Here 212 =• 1 (mod 273), and so the cycles may have 
lengths 1, 2, 3, 4, 6, or 12. Now 24x = x (mod 273) implies 22x = x (mod 
273), and x = 0, 91, or 182. We cannot have 0 with 91 and 182 since 91 
cannot occur twice as a difference. Hence besides 91 and 182 we will have 
elements with cycles of lengths 3, 6, or 12 to make up the remaining 15. Hence 
there must be at least one cycle of length 3, and 23x = x means x = 0 (mod 39). 
Thus the number of x = 0 (mod 39) is at least 3, and cannot be greater with­
out repeating differences. The remaining twelve d's cannot all be divisible by 
13. Hence there is a d whose common factor with 273 is at most 21. This 
belongs to a cycle of length 12. But we cannot have 12 .13 = 132 differences 
which are multiples of 3 or 7. Hence the remaining cycle includes numbers 
prime to 273, of which one may be taken as 1. Thus we have 

1, 2, 4, 8, 16, 32, 64, 91, 128, 137, 182, 205, 239, 256 

and either 39, 78, and 156 or 117, 195, and 234. Since 39 - 32 = 8 - 1, the 
first alternative is out, and we have only the possibility 

1, 2, 4, 8, 16, 32, 64, 91, 117, 128, 137. 182, 195, 205, 
234, 239, 256 mod 273, 

which is in fact a difference set mod 273. 
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Example 3. Let v = 15, k = 7, X = 3, and k — X = 4. If we assume that 
2 which divides & — X is a multiplier, we readily find the difference set 0, 1,2, 4, 
5, 8, 10 (mod 15). Since 2 < 3, Theorem 3.1 does not apply. But by Todd's 
enumeration of these designs [10], this is in fact the only cyclic solution. 

Example 4. Let v = 41, k = 16, X = 6, and k — X = 10. Here the prime 
divisors 2 and 5 of k — X are both less than X and so Theorem 3.1 does not 
apply. But 53 = 2 (mod 41). Hence 

0(x2) = 0(x125) mod x41 - 1 
and 

d(x2)6(x-1) = (0(x))125 dix'1) = 0 modd 5, T(x), 
dlx^dlx-1) = (d(x))2 d(x~l) BE 0 modd 2, T(x). 

Hence 0{x2)6{x-1) = 0 (modd 10, T(x)), and d^dix'1) = aT(x) + 10Ri(x) 
mod x41 — 1. As in Theorem 3.1, we may conclude that 2 is a multiplier. 
But 2 belongs to the exponent 20 mod 41, and so we readily see that no cyclic 
solution exists. 

The method of this example may be expanded to show that in general if 
t == p!el = p2

e2 = = . . . = pr
er (mod v) is prime to v, where pXl . . . , pr are distinct 

primes dividing k — X whose product exceeds X, then / is a multiplier. 

Example 5. It has been conjectured by Paley that in the Hadamard case, 
v = 4:m — 1, k = 2m — 1, and X = m — 1, the design always exists [6]. The 
first case in doubt is v = 91, k = 45, and X = 22. Here k — X = 23 > X is 
a prime and therefore 23 is a multiplier. Now (23 — 1, 91) = 1, and so there 
is a difference set fixed by the multiplier 23. Of the 45 residues mod 91, let 
there be ai congruent to i mod 7, where i = 0, . . . , 6. Since 23 = 2 (mod 7), 

#3 = a$ = a6 = y, 
and 

a0 + 3x+ 3y= 45. 

Now T! at-a;+i — 286, which is the total number of differences congruent to 
1 (mod 7). This yields 

a0(x + y) + x2 + 3xy + y2 = 286. 

Moreover, the period of 23 mod 91 is 6. Hence a0 is divisible by 6. Thus 
in the pair of equations 

a0 + 3x + Sy = 45, 

a0(x + y) + x2 + Sxy + y2 = 286 

we need try only a0 = 0, 6, 12. In no one of these cases do integer values 
for x and y exist, and hence for v = 91 there is no cyclic solution. 
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