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Abstract

In this paper we investigate subtractive varieties of algebras that are Fregean in order to get structure
theorems about them. For instance it turns out that a subtractive variety is Fregean and has equationally
definable principal congruences if and only if it is termwise equivalent to a variety of Hilbert algebras
with compatible operations. Several examples are provided to illustrate the theory.
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o~

1. Introduction

A few words on general notation. If A is an algebra, then 1, and 04 always denote
the largest and the smallest congruence on A. If X € A?, then 9, (X) is the smallest
congruence containing all pairs in X. If X = {a, b}, we write 9,(a, b). Finally, if
Y € A, Sub, (7) is the smallest subalgebra of A containing Y.

The idea of distinguishing between Fregean and non-Fregean logics is mainly due
to Roman Suszko and it originates with a proposal for formalizing the logical system
of Wittgenstein’s Tractatus. The main feature of a non-Fregean logic is the distinction
made between denotation of a sentence and its truth value. This distinction, in
Suszko’s work, was embodied by a new binary connective called identity. Connecting
two sentences via the identity connective expresses the fact that they refer to the
same thing (that is, they are ‘identical’), while the ordinary equivalence connective
expresses merely the fact that they have the same truth value. A Fregean logic is
simply a logic in which identity and equivalence coincide.
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We can give this property a more transparent algebraic meaning. Consider a
classical logic L and let B be the Lindenbaum algebra of L. Then B is a Boolean
algebra and, via the strong completeness theorem, a classical logic can be interpreted
fully in the variety of Boolean algebras (that is, the variety of Boolean algebras is the
equivalent algebraic semantics [8] of classical logic). If p, g € B, then p and q are
identical in the above sense, if p = g in B. On the other hand, if p and g have the
same truth value, then p and g generate the same Boolean filter in 8. But for any
Boolean algebra A and a, b, € A

Ua(l,a) =0a(1,b) ifandonlyif a=2b.

This, via the usual description of Boolean filters and congruence regularity at 1, implies
that two elements generate the same Boolean filter if and only if they are equal. Hence
a classical logic is Fregean, a well-known fact.

The normal modal logic S4 is an example of a non-Fregean logic. The Lindenbaum
algebral of S4 is an interior algebra and the variety of interior algebras is the equivalent
algebraic semantics for S4. For p, g € I, being identical again means p = g and
having the same truth value means that p and g generate the same open filter in I. But
for any interior algebra A and a, b € A

~.

Ua(l,a) = 04(1,b) ifandonlyif a°=>0°

where ° denotes the interior operation. Since, in general, a° # a, via the description
of open filters and congruence regularity at 1, one sees that S4 is non-Fregean (for the
axiomatization and the main properties of interior algebras the reader can consult {7]
or [6]).

Since in many cases being Fregean (or non-Fregean) is a purely algebraic matter,
one may wish to abstract from the logical origin of the notion. To be more precise let
¥ be a pointed variety (and this time O be the distinguished element) and let A € 7.
Then one is led naturally to the study of the equivalence relation =, on A defined by

a=x~, b ifandonlyif 0,(0,a) = 9,(0, b).

The pointed varieties for which =, = 0, for any algebra A have been introduced
by Biichi and Owens in [11] and have attracted some attention recently [12, 18, 20].
However, there is an ongoing debate among the specialists, regarding what these
varieties should be called. In particular the question is: Do they deserve to be called
Fregean? The name seems entirely plausible. However, in [18] it was observed that
in many cases the assumption of point-regularity is crucial in proving that a variety is
‘Fregean’. On the other hand, some maintain (with some reason) that from the point
of view of connections with logic it is more natural not to assume point regularity.
We do not wish to take sides here, but nonetheless a choice must be made. Since this

https://doi.org/10.1017/51446788700002998 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700002998

[3] Fregean subtractive varieties 355

investigation was mainly inspired by [18] we have decided to adopt their terminology.
Thus we say that a pointed variety ¥ is congruence orderable if ~,= 0, for each
A € ¥. A pointed variety is Fregean if it is congruence orderable and point regular.
Fregean varieties are known to admit a relevant structure theorem in two cases.

o If a variety ¥ is Fregean and the join of any two principal ideals is principal,
then it is termwise equivalent to a variety of Skolem semilattices with compatible
operations [20]. This means that there are terms m(x, y) and e(x, y) of ¥ such
that for any algebra A € ¥, (A, m, e, 0) is a Skolem semilattice and Con(A) =
Con({A, m, e)). Therefore any such variety has equationally definable principal
congruences. In [18] it is shown that this class coincides with the class of arithmetical
(that is, congruence permutable and congruence distributive) congruence orderable
varieties. Boolean algebras, Heyting algebras and Brouwerian semilattices are the
main examples of varieties of this kind.

o If a variety ¥ is congruence orderable and congruence permutable, then it is
Fregean and there is a term e(x, y) of ¥ (said to be an equivalential term) such that for
any A € ¥, (A, ¢, 0) is an equivalential algebra [18]. Moreover any basic operation
f (xy, ..., x,) of A satisfies a weak form of compatibility

e(f @, ....a), f (bi, ..., b)) € \/ (@i, bi)a.

i=1
The variety of Boolean groups is an example of a variety of this kind that is not
congruence distributive (and hence does not have equationally definable principal

congruences).

There is an important example of a Fregean variety that falls outside either one of
the above classes. The variety of Hilbert algebras is Fregean, congruence distributive,
has equationally definable principal congruences but it is not congruence permutable.
We deal with it in Section 3.

2. Preliminaries

2.1. Ideal theory All classes of algebras we are going to consider are pointed,
that is, there is a constant in their type set which is always denoted by 0. If % is

a class of similar algebras, a term p(xi, ..., Xpm, Yis - - - » Yn) is @ K -ideal term in y
=~ b AN N
and we wite px, ) € YT e G i the 1dentiny p .0, ..., Q) == O holds in
&onempty sub;)et IofAc A is a J -ideal of A if for any p(%,3) € ITx (). for
n

GeAandb € I, p(@ b) € I. Under inclusion, the set L (A) of all J-ideais

of A is an algebraic lattice. If H C 4, the ideal (H ) generated by H is the set
{p(a, b) p(X,y) € ITx(¥),a €A, be H }. In contrast with the previous notation
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we write (a)¥ whenever H = {a}. Note that (0)¥ = {0}. When ¥ is {A} (or,
equivalently, the variety YA generated by A), then a J¢ -ideal is called an ideal and
we drop all the affixes and suffixes in sight.

Using just the definition of ideal term one sees easily that, for any reflexive subal-
gebraSof A x A,

0/S ={a:(0,a) e S}

is an ideal of A. Thus 0/8 € I(A) for any 6 € Con(A). A set of the form 0/6 for
some 6 € Con(A) is called a normal set. Normal sets form an algebraic lattice N(A)
under inclusion. The normal set generated by X C A is denoted by N, (X). Note that

Na(X) = 0/9a(X x {0})

and hence N, (a) = 0/394(a, 0). Of course N(A) C I(A) C I (A) whenever A € ¥
and for any A € ¥ the following are equivalent:

(1) The mapping from Con(A) into I (A) defined by 6 — 0/6 is a lattice homo-
morphism.
(2) N(A) is a sublattice of [ - (A). .
A variety ¥ (respectively an algebra A) has normal ideals if 1y (A) = N(A) for all A
in ¥ (respectively if I(A) = N(A)). The following are equivalent [1]:
(1) A has normal ideals.
2) 1 =0/0 xI)forl €I(A).
3) I1/9( xT)y=1IvJforl, Jel(A).
4) (X x X) is injective from I(A) into Con(A).
In particular, if A has normal ideals, then Na(a) = (@)a.
A class of pointed algebras ¥ is subtractive if for some binary term s(x, y)

s5(x,0) = x s(x,x)=0

hold in J¢". Several characterizations of subtractive varieties can be found in [1, 21, 2].
Here we recall that the following are equivalent:

(1) ¥ is subtractive,

(2) The congruences of each algebra in ¥ permute at 0, that is, for any A € ¥,
8,9 € Con(A)anda € A if (0,a) € 8 o g, then (0,a) € p 0 6.

(3) For all A € ¥, the mapping 0/ is a lattice homomorphism from Con(A) into
I(A).

Moreover any subtractive variety has normal ideals, thus 0/ is in fact a lattice
epimorphism. A variety ¥ is ideal-determined [15] if it is subtractive and point
regular. In this case O/ is a lattice isomorphism between I(A) and Con(A).
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Finally let us emphasize that having normal ideals, being subtractive and being
ideal-determined are increasingly stronger conditions. The variety of pointed sets has
normal ideals but it is not subtractive. The variety of pseudocomplemented distributive
lattices is subtractive but not ideal determined [2].

2.2. Fregean varieties We repeat here the main definition for reader’s sake. If ¥ is
a class of pointed algebras, for any A € ¥ we consider the relation &4 on A defined
by

a=, b ifandonlyif 84(0,a) = 9,(0, b).

When =24, = 04 for any A € ¢, then ¥ is congruence orderable in {18]. A
congruence orderable O-regular variety is Fregean. Note that:

e The variety of Hilbert algebras and the variety of equivalential algebras are
Fregean.

e The variety of pointed sets, the variety of lower bounded semilattices and
the variety of lower bounded distributive lattices are congruence orderable but non
Fregean.

Congruence orderable varieties seem very hard to classify mainly for two reasons.

o The variety of pointed sets is congruence orderable, hence one can hardly
expect nice structure theorems for congruence orderable varieties.

¢ Locally finite congruence orderable varieties exhaust all the spectrum of types
in the sense of Hobby-McKenzie’s Tame Congruence Theory [17]. The examples
above imply that no ‘omitting type’ theorem is possible for congruence orderable
varieties.

The situation changes drastically for Fregean varieties. Congruence regularity for
a variety implies in fact congruence modularity and congruence n-permutability for
some n [16]. On the Tame Congruence Theory side such a variety can have only 2
or 3 in its type set and all tails of minimal sets of algebras therein must be empty.
This is a very strong condition whose proof is contained in [17, Theorem 8.7 and
Theorem 9.14].

All the examples of Fregean varieties given so far are subtractive. This fact is not
entirely coincidental. Both in [20] and in [18] it is stated (explicitly or implicitly) that
a lot of the ideal structure of Brouwerian semilattices and equivalential algebras is
used to get the representation. This becomes very clear once we express the Fregean
property in terms of normal sets. For any algebras A and u, v € A,

Oalu, v) = 0x({u} x u/P(u, v)).
If A is pointed, taking ¥ = 0 and v = a or v = b we get at once

a=~, b ifandonlyif Nu(a)= Ns(b).
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Thus, if A belongs to a subtractive variety and a, b € A
a=~, b ifandonlyif (a)y = (b)a,

since any subtractive variety has normal ideals. The fact that in a subtractive varieties
ideals can be always described via (ideal) terms, propagates nicely to the relation =2,.

THEOREM 2.1. A congruence orderable subtractive variety ¥V is Fregean.

PROOFE. Let s(x, y) be any term witnessing subtractivity for . We show that the
implication

s(x,y)zs(y,x) “—> Xx=Yy

holds in ¥. Thus ¥ is O-regular and therefore Fregean. The right-to-left implication
holds in any subtractive variety, since s(x,x) = 0. Suppose that A € ¥, a,b € A
and s(a, b), s(b,a) =0. If

ulx,y,z) =s(x,s(s(x,y), 7)),

then the equations u(x,0,0) =~ 0 and u(i,y, s(x,y)) = x both holdin ¥. In
particular, u(x, y, z) is an ideal term in y, z and thus

a=ula,b,s(a,b))=ula,b,0)ec(b)a, b=u(b,a,sb, a))=u(b, a,l)e(a),.

Hence (a)a = (b)a and since ¥ is congruence orderable a = b. ad

The converse of the theorem above is false. There are Fregean varieties that fail to
be subtractive. To show that this is the case we need a characterization of congruence
orderable varieties that appears in [18]. We reproduce here the short proof.

PROPOSITION 2.2. A pointed variety ¥ is congruence orderable if and only if for
every subdirectly irreducible A € ¥ with monolith i we have |0/u| = 2 and all
others w-blocks are trivial.

PROOF. Let A be a subdirectly irreducible algebra in a congruence orderable pointed
variety ¥ and let i be the monolith of A. If a,b € A, a,b # 0 and (a,b) € u,
then for every 8 € Con(A) we have (0, a) € 0 if and only if (0, b) € 8. This implies
940, a) = #4(0, b) and, since ¥ is congruence orderable, we have a = b.

Conversely, suppose that A € ¥ and for some a,b € A we have 3,(0,a) =
UA(0, b) but a # b. Then

0x < Ua(a, b) € 34(0, a) v 9a(0, b) = 3,(0, a).
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Pick 6 to be a maximal congruence of A that does not contain 4 (a, b). Then A/0 is
subdirectly irreducible with monolith 4, (a, b) v 6/6. Moreover a/6 # b/8 and they
both lie in the same block of the monolith of A/6. By hypothesis 0/6 € {a/6, b/0}
and we may assume 0/6 = a/6. But then

Pala, b) € 9,(0,a) €0,
a contradiction. O

The following example of a Fregean variety that is not subtractive is essentially due
to Kearnes and Szendrei. We reproduce it here with their kind permission.

EXAMPLE 2.3. Let B = (B, +,-,, 0, 1) be the eight-element Boolean algebra. If
we label the three atoms as a, b and ¢, then B = {0, a, b, c,a’, V', ¢/, 1}. We shall
construct an algebra A that is a polynomial subreduct of B. First A = B \ {a'}; next
we define

di(x,y) =xy'a+x'yb,

dy(x,y) =xy'a+x'yc,

m(x,y,z,w) =xyz +xyw + xzw + yzw,

ex,y,z,w) = Z(xyz’w’ +xy’zw' +xy’z’w +x/yzw/ +x’yz’w +xlylzw),

tix,y,z, w) =m(x,y, z, w) + &(x, ¥, z, w).
Let A = (A, d,, d>, t,0). Itis easy to check that A is closed under 4, d; and ¢ and
that ¢ and m are both near-unanimity polynomials (but A is not closed under m). Let
¥ = VY(A). Since all operations on A are Boolean polynomials, the restrictions of the
eight congruences of B to A are distinct congruences of A. Since # is a near-unanimity
term, the variety ¥ is congruence distributive and so the congruence of A are exactly
the eight congruences mentioned above. It follows that A is a subdirect product of
three two-element algebras and the same can be said of its subalgebras. Hence, via
Jonsson’s lemma, the only subdirectly irreducible members of ¥ are the two-element
quotients of A. From Proposition 2.2 it follows that ¥ is congruence orderable.

Let now a = 9,4(0, a), B = ¥4(0, b) and y = 9,(0, ¢). Then the three subdirectly

irreducible algebras in ¥ are

Si=A/avVv§B, S;=A/avy, Ss=A/8vy.
It is easy to check that

S Fdix,y)=0, d(x,y)=x'y,
S2 I=dl(xvy)=x’yv dz(x,}’)=0,
SS F=d1(x»)’)=d2(xJ’)=xyl

https://doi.org/10.1017/51446788700002998 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700002998

360 Paolo Agliano (8]

and hence VY(S;), i = 1,2, 3, is congruence distributive, semisimple, congruence
orderable and ideal determined. Moreover each §; satisfies the quasi-identity

dix,y)=di(y,x) =dy(x,y) =dy(y,x) =0 —> x=y

and hence the quasi-identity holds in ¥ (since a variety is the quasivariety generated
by its subdirectly irreducible algebras). Thus ¥ is O-regular and therefore Fregean.
¥ is not subtractive, though, since the congruences of A do not permute at 0. In fact,
the reader can check thatin A, (0, 1) e o (B Vv y)but (0,1) ¢ (bV y)oa. This also
shows that the join of three ideal determined subvarieties of a 0-regular variety does
not need to be ideal determined.

Then one is led to wonder if any congruence orderable variety has normal ideals.
The answer is again negative and an example is easily found.

EXAMPLE 2.4. Let .% be the variety of lower bounded join semilattices and let us
denote the lower bound by 0. An ideal term #(X, y;, ..., y,) in y,..., y, of & is
just y; V...V y, and hence any ideal is a subalgebra. Trivial examples show that the
variety . does not have normal ideals. However, if S € . anda € §

N(a) = 0/95(0.a) = (b: b < al.

It follows that if a &g b, then N(a) = N(b) and by the above a = b, hence .# is
congruence orderable.

3. Equationally definable principal ideals

A Hilbert algebra [13] is an algebra (A, —, 1) such that for any a, b, c € A

() a—=>1=1;
2 a>b—>a)=1,
B)a->b->c)—> {(a—=>b)—>(a@a—0)=1;
4) ifa—> b=1landb— a=1,thena = b.
The following facts are well known:

e The class of Hilbert algebras is a variety J€.# [13].

e Any Hilbert algebra satisfies 1 — x = x, hence the variety 5¢ .7 is subtractive
and, by 4. above, ideal determined.

A Brouwerian semilattice [19] is an algebra (A, —, A, 1) such thatforanya, b,c € A

(1) (A, A, 1) is an upper bounded semilattice;
2) a—>a=1,
B (a—>byra=(b—a)Ab;
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4) (anb)—>c=a— (b— o).

If A is a Brouwerian semilattice and a, b, ¢ € A, then
c<a-—>b ifandonlyif bAc<a.

Hence a — b is the relative pseudocomplement of a and b. The variety #.% of
Brouwerian semilattices is ideal determined. Moreover it can be shown that the class
of —-subreduct of #.% coincides with the variety J#.# of Hilbert algebras and that
the congruences (hence the ideals) of a Brouwerian semilattice coincide with those of
its —-reduct.

A dual Brouwerian semilattice is a join semilattice with dual relative pseudocom-
plementation, that is, an algebra (A, *, v, 0) such that

axb<c ifandonlyif b<ave.

A dual Hilbert algebra is a %-subreduct of a dual Brouwerian semilattice. The
distinction between Brouwerian semilattices (Hilbert algebras) and dual Brouwerian
semilattices (dual Hilbert algebras) is purely notational and terminological, like in
the more familiar case of meet and join semilattices. However, we deal mainly with
(semi)lattices of compact and principal ideals of an algebra. They are pointed ordered
structures in which the constant is the smallest element in the ordering, hence we feel
that the dual concepts are more suitable in our case.

A pointed class J¢ of algebras has equationally definable principal ideals (EDPI) if
there are terms p;(x, y), ¢;(x,y),i =1,...,nsuch thatforany A € ¥ anda,b € A

ac (b)* ifandonlyif pi(a,b) =gqi(a,b), i=1,...,n.

Subtractive varieties with EDPI are investigated at length in [2] and [4]. We collect
the main facts about them in the theorem below.

THEOREM 3.1. (1) ([4, Theorem 3.1]) An ideal determined variety has EDPI if
and only if it has equationally definable principal congruences.
(2) ([2, Theorem 4.4)) A subtractive variety ¥ has EDPI if and only if there is a
single binary term p (x, y) such that forany A € ¥ anda,b € A

ac (b)* ifandonlyif p(a,b)=0.

(3) ([4, Theorem 3.4]) If a subtractive variety has EDP], then there is a binary term
x * y witnessing both subtractivity and EDPI in the above sense.

(4) ([2, Proposition 4.2]) If ¥ is a subtractive EDPI variety, then for any algebra
A € ¥ the join semilattice CI(A) of compact ideals is a dual Brouwerian semilattice.
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Let (S, v, 0) be a lower bounded join semilattice. If for some a, b € S the set
{c: b < aV c} has a smallest element, then it is denoted by a * b and called the dual
relative pseudocomplement of a and b. The following lemma is purely computational
and it is a variation on the fact that any dual Hilbert algebra is embeddable into a
reduct of a dual Brouwerian semilattice.

LEMMA 3.2. If each two elements from a nonempty subset H of a join semilattice
S have a dual relative pseudocomplement that belongs to H, then (H, x) is a dual
Hilbert algebra.

LEMMA 3.3. Let ¥ be a subtractive variety with EDPIL. There exists a binary term
x *y of ¥ such that the following hold.

(1) ForanyAe¥,1I1€l(A)anda,bec A
#) axbel ifandonlyif be (a)sV I

(2) The set PI(A) of principal ideals of A is closed under dual relative pseudocom-
plementation and hence is a dual Hilbert algebra.

(3) The mapping g : (A, *,0) — PI(A) defined by a — (a)a is a onto homomor-
phism (of dual Hilbert algebras) and ker(g) = {(a,b) :a* b= bxa =0}.

PROOF. By Theorem 3.1(3) there is a binary term x * y witnessing both subtractivity
and EDPI for ¥ and for any A € ¥ the semilattice CI(A) of compact ideals is a dual
Brouwerian semilattice. We denote again by * the dual relative pseudocomplemen-
tation in CI(A). Let a x b € I. Since ¥ has normal ideals, then I = 0/6 for some
8 € Con(A). Thus, a/8 x /6 = 0/0, which in turn implies that b/9 € (a/0)as. So
there is an ideal term ¢(X, y) in y such that b/6 = t(u/6, a/0) for some u € A. This
in turn implies

b6 t(ua,a) 9.00,a) t(u,0)=0
and so
b€ 0/(0o034(0,a)) =0/8,(0,a) v0/0 = (a)a VI,

where we have used the fact that in subtractive varieties congruences permute at 0.
The converse implication is proved similarly and hence 1. holds.
From (#) one sees at once that in CI(A),

(@)a * (b)a = (@ * b)a

and so by Lemma 3.2, the set PI(A) of the principal ideals of A is a dual Hilbert
algebra and 2. holds.
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Finally g is clearly a homomorphism from (4, %, 0) to PI(A) and by (#) (a, b) €
ker(g) if and only if (@) = (b), if and only if a € (b)4 and b € (a), if and only if
axb=bxa=0. a

An n-ary operation f on a dual Hilbert algebra A is compatible if for any i < n
andanya,be A

(axb)* ((bxa) * (fi(@) * () =0

where fT(x) = f(21,.--+2Zi1, X, Ziv1s ---» Zn). One sees easily that a compatible
operation is an operation that preserves all dual Hilbert algebra congruences and
viceversa. A dual Hilbert algebra with compatible operations is an algebra A =
(A, *,0, f1)ien, Where (A, *, 0} is a dual Hilbert algebra and any f, is compatible. It
is clear that Con(A) = Con({A, %, 0)).

THEOREM 3.4. A pointed variety is congruence orderable, subtractive and has
equationally definable principal congruences if and only if it is termwise equivalent
to a dual Hilbert algebra with compatible operations.

PROOF. It is obvious that any dual Hilbert algebra with compatible operations is
congruence orderable, subtractive and has equationally definable principal congru-
ences.

Conversely let ¥ be subtractive withi"EDPI and let x * y be the term witnessing
subtractivity and EDPI simultaneously. By Lemma 3.3 for any A € ¥ the mapping
g 1 a > (a), is a homomorphism and (A, *, 0}/ ker(g) is a dual Hilbert algebra. If
¥ is also congruence orderable, then it is Fregean, by Theorem 2.1. It follows that
ker(g) = =, = 0,, thus (A, %, 0} is a dual Hilbert algebra.

To conclude the proof we must show that any basic operation of A is compatible
in the above sense. Let then f (x) a basic operation, which can be taken to be unary
without loss of generality. Leta, b € A and let

(axb)p VvV (bxa)y,=0/0

for some 6 € Con(A). Then of course a/f * b/6 = b/6 x a/8 = 0/8 and so
(a/6)ase = (b/O)ase, implying (a, b) € 6. It follows that (f (a), f (b)) € 6 and by
the properties of *,

f@xf(b) €0/ = (axb)aV (b*a.
Now (#) applied twice gives
(axb)*x((bxa)x(f(@*f(») =0

and hence f is compatible. O
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4. Final remarks

4.1.  Subtractivity cannot be removed from the hypotheses of Theorem 3.4. The
variety of lower bounded distributive lattices (which is congruence orderable and has
equationally definable principal congruences) is a witness of this fact.

4.2.  An investigation on a topic closely connected to Theorem 3.4 has been
conducted by Czelakowski and Pigozzi in [12]. They take a more ‘abstract logical’
approach to the subject and deal mostly with quasivarieties, which are the natural
counterpart of deductive systems. An Hilbert quasivariety is a quasivariety which is
relatively point regular, congruence orderable and has relative equationally definable
principal congruences. The main theorem in [12] is a characterization of Hilbert
quasivarieties in the same fashion as Theorem 3.4. Under certain conditions, which
turn out to be equivalent to subtractivity, their theorem can be specialized to our result.

4.3. The problem of determining the structure of a generic subtractive congruence
orderable variety remains open, though Proposition 2.2 could be of some help. In fact,
if ¥ is a subtractive congruence orderable variety, any binary term s(x, y) witnessing
subtractivity for ¥ turns the O-block of the_ monolith of any subdirectly irreducible
algebra A € ¥ either into a (dual) Hilbert algebra or into an equivalential algebra.
Therefore a good starting point for solving the general problem would be to find a
subtractive congruence orderable variety which is neither congruence permutable, nor
has equationally definable principal congruences.

4.4. We have explained in the introduction how Fregean varieties become a subject

of a separate investigation and thus form a branch of Universal Algebra. We briefly
describe here the existing connections. It is now classical to regard a logic (or a
deductive system) on a language as a closure operator C on the formula algebra F of
that language (see for instance [9] and the bibliography therein). Then one usually
writes, for T U {¢} C F,

Fky for ¢ € C(I).
To any subtractive variety ¥ one can associate a logic in the following way. Let
F be the absolutely free algebra on countably many generators in the language of ¥;
thenif ', o € F
' ifandonlyif I'(ay,...,a,)=0 —> ¢(a,...,a,) =0

forany A € ¥ and q,, ..., a, € A. Such logic has been called the ideal assertional
logic of ¥ in [3] (but see also [20] for an earlier treatment and [10] or [5] for the
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latest developments). It turns out that a subtractive variety is Fregean if and only if its
(ideal) assertional logic is Fregean and strongly and regularly algebraizable.

However, one should be aware of the fact that the are several ways to ‘associate’ a
logic to a (quasi)variety of algebras, or to get a class of algebras that are amenable to
a given deductive system (as one realizes perusing the existing literature). It is in fact
perfectly possible for a Fregean variety to be ‘associated’ (in different but sensible
ways) to two different deductive systems one of which is Fregean, but the other is not
(an example of this can be found in [14]).

4.5. Itis also true (thanks to D. Pigozzi for pointing it out to me) that some of the
facts we proved in Section 2 hold in the more general case in which the assertional logic
of the variety is protoalgebraic and normal sets are used instead of ideals. However,
the subtractivity assumption seems to be crucial for proving all the structural results
about dual Hilbert algebras.
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