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Introduction. The theory of isoparametric functions and a family of isoparametric
hypersurfaces began essentially with E. Cartan in 1930's. He defined a real valued
function V defined on a Riemannian space form to be isoparametric if ||gradu||2= T° V
and AV = S° V for some real valued functions S, T. Then a family of hypersurfaces M, is
called isoparametric if M, = V~'(f) where f is a regular value of V.

Equivalently an isoparametric (family of) hypersurface(s) can be characterized as a
(family of parallel) hypersurface(s), (each of) which has constant principal curvature. The
isoparametric submanifolds in UN and HN are almost trivial, but in SN the study of such
submanifolds is quite interesting and many mathematicians have contributed to the
subject. The generalization of this subject to higher dimensions was done by Carter-West
[1] and Terng [5].

Nomizu [4] and Magid and Hahn [2] generalized the notion of isoparametric hyper-
surface and function to semi-Riemannian spaces. In this paper we generalize their work
and study the notion of isoparametric submanifolds and maps of codimension at least 2 in
semi-Riemannian spaces.

We observe that there are some similarities and many crucial differences between the
theory in UN and in Up. In fact the tangent bundle TM of each isoparametric submanifold
M in UN has a decomposition as TM = 0?=i E, where each £, is an integrable distribution.
The principal curvatures of M are all real with fixed algbraic multiplicities on M. Each £,
is generated by eigenvectors of the principal curvatures of M. Using these facts one gets a
finite reflection group (the Coxeter group of M) acting on the normal bundle of M. This is
the key to the study of isoparametric submanifolds in UN. By using this group one can
prove many important facts about such submanifolds. For example, the reducibility of
each isoparametric into the product of irreducible ones, the fact that each isoparametric
submanifold M in UN is algebraic, the classification of isoparametric submanifolds.

All these results need serious investigation for an isoparametric submanifold M in
Up. Since in sharp contrast to the Riemannian case the principal curvatures of M are not
real (in general). The algebraic and geometric multiplicities of a real (if it exists) principal
curvature can be different. The geometric multiplicity of a real principal curvature can
vary by varying the point J: in JW, etc. A major consequence of these facts is that
isoparametric submanifolds in Up are not in general algebraic. This is one of the crucial
differences between the theory in RN and in Up. An example of a nonalgebraic
isoparametric submanifold in Up is given at the end of the paper. Another consequence
of the above facts is that in general we do not have a decomposition of TM into integrable
distributions, but we just have some partial results in this direction. So the lack of such a
decomposition (in general) which results from the lack of any group (similar to the
Coxeter group) associated to M makes the study of isoparametric submanifolds in Up
quite different and more difficult than the study of such submanifolds in UN, and as
mentioned above not all the facts which are true for isoparametric submanifolds in UN can
be generalized to similar facts for such submanifolds in Up. Throughout the paper we
have pointed out the differences quite explicitly.
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1. Main Results.

DEFINITION 1. A smooth function / = (/„+,,. . . ,fn+m):Up+m->Mm is called
isoparametric if

0) (gr/<v>8r/^) a nd A/o. = div(grfa) are (continuous) functions of/for each a, /3;
n + l<a, P^n + m,

(ii) [grfa, grfp] is a linear combination of gr/n+1,. . . , gr/n+m with coefficients being
continuous functions of / for each a,/3;« + l<a - , /3<n + /n.

DEFINITION 2. A connected semi-Riemannian submanifold M" of Up+m is called
isoparametric if

(i) the normal bundle NM is flat with trivial holonomy group,
(ii) the characteristic polynomial of the shape operator of M along any parallel

normal vector field is the same at all points of M.

THEOREM 3. Let f:Up'
+m—*Um be an isoparametric function, c a regular value off

such that 4> i=f~x{c) and (, ) |r(/-'(c)> & nondegenerate. Let M be a connected component
°ff "(c); tnen M is an isoparametric submanifold.

Proof. The proof is very much like the Riemannian case (see [1] or [5]) and we give
just a sketch of it. We prove (i) by finding a global parallel normal orthonormal frame
field {ea} on M. In order to prove (ii) we show first that the mean curvature vector field

1 "
of M, i.e., H = — E EjII(ej,ej) = Yi Haea ({e,} is any (local) orthonormal tangent frame

field on M) is parallel on M or, equivalently, each mean curvature Ha is constant on M.
Then we get the benefit of parallel surfaces M, of M. Explicitly by choosing a parallel
normal vector field ea on M and pushing out each point of M in the ea direction we get
the map q>,:M—*Up+m defined by q>,{x) = x + tea(x). If t is small enough then (locally)
M, = (p,{M) is an n-dimensional immersed submanifold of R"p

+m which has a global
parallel normal orthonormal frame field and its mean curvature with respect to any
parallel normal vector field is constant on A/,. Then by using Nomizu's method in [4] in
our context which says that "a hypersurface No has constant principal curvature if each of
its parallel surfaces N, (for small t) has constant mean curvature" we get (ii).

REMARK 4. We see that each M,, as defined above, is an isoparametric submanifold.
The one parameter family {M,} is called the isoparametric system associated with M in the
ea direction; note that Mo = M.

The next two propositions deal with the curvature foliation on M.

PROPOSITION 5. Let M" be an isoparametric submanifold of Up+m, let % be a parallel
unit ( (£,£) = ±1) normal vector field on M and S the shape operator of M along §. If K is
a real eigenvalue of S, Tk = Ker(S-KIn) and if the dimension of Tk (=geometric multiplicity
of K) is a fixed number I, then

(i) Tk is integrable,
(ii) if Tk is nondegenerate, the integral manifold Mk of Tk is totally geodesic in M,
(iii) if the algebraic multiplicity of K is equal to its geometric multiplicity, then Tk is

nondegenerate.
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Proof, (i) if X, YeTk, by using the Codazzi equation ((VVII)(U, W) = (VJI)
(V,W)VU, V,WeX(M)) we prove that VxYeTk. Thus [X, Y] e T, i.e., Tk is
integrable.

(ii) In this case M is a semi-Riemannian submanifold of M and by part (i) we see
that the second fundamental form of Mk in M is identically zero, hence Mk is totally
geodesic in M.

(iii) Let the characteristic polynomial of 5 be (t - K)r'{p2(t))
n • • • (ps(t)Y

s, where
each Pi(t) is an irreducible polynomial in R[t]. We know that

TM = Ker(5 - KI)r< © Ker(/?2(S))'i © . . . © Ker(p,(S))r\

These kernels are mutually orthogonal, hence each one is nondegenerate. If the algebraic
multiplicity of K is equal to its geometric multiplicity, the Ker(S — KI) = Ker(S + KI)n.
Thus Ker(5 - KI) is nondegenerate.

PROPOSITION 6. Let M" <z Up
+m be a (geodesically) complete isoparametric

submanifold, let {ea} be a parallel normal orthonormal frame field on M and Sa the
corresponding shape operator of M, let the characteristic polynomial of each Sa be
pa(t) = (t- Kay°'(pa.2(t)Y°>. . . (Pa,Sa(t)Y"J° and put TKa = {X €X{M):SaX = KaX}.
Suppose that V = Pi TKa is a nondegenerate 2l-dimensional subbundle of TM(l s 1). Put

or

v = E eaKaea e KX(M); then

(i) V is integrable and its integral manifold L is totally geodesic in M,
(ii) ifv = 0, the integral manifold L of V through xeM is the plane x + U'S in Up+m,

where s is the index of (, ) | v,
(iii) if (v,v) =£0, L is (a component of) an l-dimensional sphere or pseudosphere if

(v,v)>0 or pseudohyperbolic space if (v,v)<0 with radius —. — and centre

Proof, (i) By Proposition 5(i), if X, Y e V, then VXY e V so V is integrable and its
integral manifold L is totally geodesic in M.

(ii) Since v=0, Ka = 0 for all ff,n + l < f f £ n + m, and the second fundamental
form of L in IR;+m is IIL{X, Y) = ULA{X, Y) + IIL,2(X, Y) where IILA{X, Y) e TM/V and
HL2(X,Y)eX±(M) for each X, YeV. In (i) we proved that IIL,t(X, Y) = 0, we also
have 0 = ( 5 ^ , Y) = (IIL,2(X, Y), ea) for each a, and X, Y e V, so IIL,2(X, Y) = 0, thus
IIL(X, Y) = 0. Hence L is totally geodesic in Up+m, since M is complete, L is isometric to

(iii) We see that the map (p(y) =y + -. r maps L to a constant vector c € M"+m

\v,v)
and that IlL{X, Y) = (X, Y)v, VA", YeV, i.e. L is totally umbilic in Mp

+m. The claim is
obtained from these two facts.

DEFINITION 7. Let M" c Up+m be a semi-Riemannian submanifold and {t^} be a
normal frame field on M, let <p: M x IR"1-^ R;+m be defined by <p(jc, z) = x + E ^ ^ ( J C )
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VJC e M, Vz = (zn+l,. . . , zn+m) e U"'. A point e = x + £ z^i;^*) is called a /oca/ /winf of
a

M if e is a critical value of <p (i.e., the Jacobian of cp at some point (x, z) e cp~l(e) is
singular). The set of all focal points of M is called the focal set of M. If z e IR"' is such that
for each point x e M, cp(x, z) is a critical value of q>, then <p(A/ x {z}) is called a focal
manifold of A/ associated to z, {u^}.

PROPOSITION 8. Let M" be an isoparametric submanifold of Up
+m, % be a (local)

parallel normal vector field on M, ( § , §) ¥=0, S the shape operator of M along £ which has
K as a non-zero real eigenvalue.

(i) / / K has multiplicity I, define cp:Mn-+Un
p

+m by q>(x) = x + — %(x) then cp is a
K

submersion of M (at least locally) onto a nondegenerate submanifold of Up
+m of

codimension I + m that will be denoted by VK and is the focal manifold of M associated
with §, K.

If (sK,l — sK) is the signature of TK, the eigendistribution of S associated with K, then
VK has signature (s — sK, n + sK — / — s). The integral submanifold MK of TK through x e M
is mapped by cp onto the single point cp(x).

If the shape operator of M at x is given by S = — — relative to the orthogonal
L \) J\ J

decomposition TZM = TK(x) © (TK(x)Y, then the shape operator of VK associated with
%K = £ (%K is the parallel transport of § along the curve t <-^> x + tt;(x)) is SK =

M l / „ _ , - - .

(ii) / / the geometric multiplicity of K is constant but different from its algebraic
multiplicity, then cp is a submersion onto a submanifold with degenerate metric.

(iii) //cp,: A/-» Wp
+m is defined by q>,(x) = x+- §(*) and cp,(M) = V,is a submanifold

with nondegenerate metric of signature (s - s,, n + s, — I — s), l> 0, then t is a principal
curvature of M of multiplicity I and V, is the focal manifold of M associated with §, t. The
eigendistribution T, has signature (s,,l- st), the shape operator of M along £ at x is given
by

til

.0
o-
A

relative to the orthogonal decomposition TZM = TK(x) © (Tk(x)Y, where A is
t(tln_i + S,)'^, and S, is the shape operator of V, along | ' .

Proof. The proofs of (i) and (iii) are almost the same as in the Riemannian case. For
(ii) we suppose that the claim is false, i.e., TVK is nondegenerate, then its normal bundle
TK(&NM is nondegenerate, so TK is nondegenerate and we have TM = TK(B T£.

By using the fact that algebraic and geometric multiplicities of K are different and
representing the shape operator of M with respect to a basis adapted to the decomposi-
tion TM = TK(BTK we get that TK is degenerate, which is a contradiction, hence TVK

must be degenerate.
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Here we look at another problem about isoparametric submanifolds. The problem
concerns the product of two isoparametric submanifolds. The proof of the following
proposition is exactly the same as in the Riemannian case.

PROPOSITION 9. If M"' is an isoparametric submanifold in Mp'.+Ii, i = 1, 2, then A/, x M2

is isoparametric in K ; ^ + ' + '

REMARK 10. The converse of the above proposition is far from being obvious, that is
the question of when an isoparametric submanifold M" c U.np

+m decomposes into two
lower dimensional isoparametric submanifolds is open and needs a serious investigation.
The solution to this problem is well known in the Riemannian case, in fact if M" cM"+m

(or S"+m or Ho+m) is an isoparametric submanifold, then it decomposes into "irreducible"
isoparametric submanifolds if and only if the Coxeter group of M decomposes into
irreducible subgroups. In contrast, in Up+m we have no group associated to the
isoparametric submanifold M" a Up+m.

REMARK 11. We defined an isoparametric submanifold to be in Up+m and an
isoparametric map to have Up+m as its domain. We can define an isoparametric
submanifold in a component of Sp+m or Hn

p
+m, and an isoparametric map with domain

Sn
p

+m or H"p
+m exactly as we did for U"p

+m. Then almost all the material of the paper goes
through with only slight changes.

REMARK 12. It is a well-known fact that, if M" a U"+m is an isoparametric
submanifold, there exists a polynomial mapf:M"+m-+Um such that/ is isoparametric and
M is a regular level of/. The situation in Up+m is far from being obvious and the following
example shows that, in contrast to the Riemannian case, in general we fail to have such
an/. So the questions in Up+m are as follows.

If M" <= Up+m is an isoparametric submanifold, is there any isoparametric map
f:Up+m—*Um such that M is a component of a nondegenerate regular level /~'(c)? A
weaker question is under what conditions there is an isoparametric function f:Un

p
+m-+

Um such that M is a component of /~'(c)?

EXAMPLE 13. In this example we illustrate an isoparametric submanifold M2clR?
which is not algebraic.

Let , 4 = ^ ( 1 , - 1 , 0 , 0 ) , B = ^ - ( 1 , 1 , 0 , 0 ) , C, = (0,0,1,0), C2 = (0,0,0, l ) and

define M2<zW\ by M = {VCM) = tA + C{sint +tC2 + sB:s,t e U} = Ix = \-j^(t + s),

1 \ 1 d\l) dip
-r(-t + s),sint,t\:t,s eU . Then — = B, —- = A + C2 + C, cost is a frame field for
V2 / J ds at
TM and {B cos t + C,, C2 + B) is a frame field for NM. Let 5,, 52 be shape operators of M
along (Bcost + C{) and (C2 + B) respectively. Obviously 52 = 0, by a routine calculation
we see that Sifl = 0 and S{(A + C2 + CX cos t) = 4B sin T. So with respect to the chosen
tangent frame field

= ro 4 sinn
Lo o J
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The calculation also shows that M has a global parallel normal orthonormal frame field.
As can be seen, the principal curvature (and its algebraic multiplicity) of M is constant on
M in any parallel normal direction. Thus M is isoparametric. The example is interesting
from different points of view. The geometric multiplicity of the eigenvalue of 5! is not
constant on M. Thus the minimal polynomial of S, is not the same at all points of M. M is
not algebraic since if there exists a polynomial map /:IR?-»IR2 such that M is a
component of f~l(c), then gr/ , , gr/2 must be polynomial functions in x = (*,,. . . ,xA) e
M. Thus B cos t + C, must be a polynomial function of x, which certainly it is not, in fact

Bcosf

.\"p- It is theThe following is an interesting example of an isoparametric m a p / :
only nontrivial one (except the quadratics) which we have found.

EXAMPLE 14. Let M be the space of 3 X n matrices over IR, define the scalar product
on M by (x,y) = trxJy', where 5 ' means the transpose of the matrix S and

/ =
o L_

Define f/,M->R by fr(x) = tx{xJx')r for reZ+. Let us check that the map f:M-*U3

defined by f(x) = (fi(x),f2(x),f3(x)) is an isoparametric map.

Proof. Easily we get that gr/,(x) = 2x, grf2(x) = 4xJx'x and gr/3 = 6(xJx')2x. Thus
(gr/ , ,gr/ ,)=4/, , (gr/1,gr/2) = 8/2, (gr/,, gr/3) = 16/3, (gr/2, gr/2) = 16/3,
(gr/2, gr/3) = 24/4, (gr/2, gr/3) = 36/5.

We must prove that/4 and/5 are functions of/,,/2,/3. Since (xJx'Y is a real symmetric
matrix for each r e Z+, it can be brought into diagonal form. So (xJx'Y is similar to

0

0

for some X(x), (i(x), v(x)eU. Thus fr = (A(*))r + (fi(x)Y + (v(x))r. By using Newton's
formulae for elementary symmetric polynomials in three variables A,/i,v we get that
/4 = 6(/t + 3/2-6/?/2 + 8/1/2). Hence (gr/2, gr/3) =24/4 can be expressed in terms of
/,,/2,/3. Similarly we obtain that /5 = ^ ( / ? - 5/?/2 + 5/?/3 + 5/2/3), so (gr/3, gr/3) = 36/5
can be expressed in terms of/,,/2,/3.

Now we are going to look at [grfa,grfp]. Let D be the Levi Civita connection in
M = Uln

p then we have [gr/r,gr/^j] = Dgrfa gifp -Dgr/ f )gr/a, so [gr/,, gr/2] = 4 gr/2,
[gr/i,gr/3] = 8gr/3, [gr/2,gr/3] = 48(£/x')3x = 6gr/4. By using the relation / , = !(/? +
3/ l -6 /? / 2 + 8/,/3) we get that [gr/2,gr/3] = (4/?gr/, + 6/2gr/2- 12/,/2gr/, -6 /?gr / 2 +
8/3gr/, + 8/,gr/3). Now we begin to calculate A/, £ = 1,2,3. A/, = div(gr/,) = 6n,
A/2 = div(gr/2) = L e(>(Z?2iy gr/2, ^ ) , where £,y = ( ^ , X,,) = -1, if 1 < i < 3, 1 <

/ ^p and £y = +1 if 1 < / ̂  3, p + 1 ^ / ^ n, if we write the points of M as

x = •*21 • • • X2n
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Then X^.M^TM, TZM = M = U3
3"p is defined by X0(x) = the 3 x n matrix with its (i,j)

component one and other components zero. Thus {Jf,-,: 1 < / <3 ,1 < / <n} is an
orthonormal frame field on M. So we have

A/2(*) = E eijiXijixyx'x + xJXji(x)x + xJx'Xijix), Xijix)) = (3n + 2)/,.

Similarly we obtain that A/3 = (3n + 4)/2. Thus / is an isoparametric map. It is an
interesting problem to study the geometry of nondegenerate regular levels of / and also
the focal manifolds associated with these regular levels.

The following is an example of an isoparametric submanifold of codimension 2 in
IR2^2 which has complex principal curvatures. It is sharply in contrast to the Riemannian
case.

EXAMPLE 15. Let / : R2/^2-* U2 be defined by

[ n+\ i , n + \ 2n+2 •. -1

1=1 2 \ ,=i y=n+2 ' J

let us check that / is a (quadratic) isoparametric map and find a nondegenerate regular
level of it.

Let

^ 1 = ;

then {i4i,/t2} is a linearly independent set in SymfIR2",.'*;2] and we have v42
+i = — ihn+2 so

{At,A2} generate a 2-dimensional algebra, it is easily seen that / is a (quadratic)
isoparametric map [3]. Consider the level /~'((0, {b2)), b=£0. Since b¥=0, obviously
{Atx,A2x} is a linearly independent set, so/~'((0, 2b

2)) is a regular level.
For the nondegeneracy of/~'((0, {b2)) we examine the system of equations

+ l3A2x,A,x) = 0 = a(x,x) = ab2^ a = 0,

So /" ' ( (O,^2)) is nondegenerate. If M is a component of /~'((0, 2b
2)) then M is a

quadratic isoparametric submanifold of codimension 2 and signature (n,n). The shape
operator of M along (-V42JC) is /42|rM> which is real and diagonal and the shape operator
of M along -v4,Jt is At \TM. Note that A2 = -{l2n+2 hence the minimal polynomial of A} is
t2 +1. So /4, has no real eigenvalue, but complex eigenvalues ±2i, thus Ax \TM has no real
eigenvalue.
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