A GENERALIZATION OF A THEOREM OF JACOBI ON
SYSTEMS OF LINEAR DIFFERENTIAL EQUATIONS

CLYDE M. CRAMLET

Jacosr proved a curious theorem regarding the solutions of the system of

equations
det _ dx® _ dx”
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for functions A*(x!,..., x™) satisfying
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showing that the knowledge of # —2 independent integrals of the system leads,
with this condition, to an exact differential equation for the last integral of
the system. When the coordinates are Euclidean the left member is called the
divergence of the vector A*. If the divergence of A* is non-vanishing there exists
a factor M such that the divergence of M\. vanishes. Jacobi’s ‘‘theorem of the
last multiplier’’* states that the determination of this factor is tantamount to
finding the last integral of the linear system.

Here a theorem is proved regarding a special system of k vectors, which we
choose to call a Jacobian system of vectors. For 2 = 1 this theorem reduces
to Jacobi's theorem of the last multiplier.

1. Conventions. The symbols A%(a = 1,...,n;72 =1,..., k) will re-
present functions of # independent variables x = [x!, ..., x™]. The ordered
set of functions associated with a fixed 7z (a = 1,. .., n) will be called a vector,

k linearly independent vectors, a basis. A vector a"™\%|, the a’s dependent on the
x's, will be said to belong to the basis. The totality of vectors belonging to the
basis constitutes a k-uple. Repeated Latin letters indicate a summation from
1 to &, repeated Greek, from 1 to #. All functions will be assumed to have such
character as to satisfy the existence theorems that are applied. Only a finite
number of derivatives need be assumed to exist in any case.
A coordinate transformation will be indicated formally by the equations

ox

ox =0,

(1.1) xe = xo(x) q =

and the inverse by
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We shall have occasion to use the equations
(1.3) a2~ o,
: 0x°
1 2 n
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defining quantities #, and M under suitable conditions. When these exist they
will be defined in a new coordinate system by the following conventions. The
function #(x) with the x’s replaced from equations (1.2) will determine a
function

(1.6) a(x) = u(x),

which will represent the scalar # in the new coordinates x. The product M(x)p
with x replaced by (1.2) determines a representative M (%) in the new co-
ordinate system

(1.7) M(x) = M(x)p.

In this case M is said to be a relative invariant of weight 1.

Vectors A%, representatives of A%;|, will be defined in a new coordinate system

ox

— a
by the law of transformation of contravariant tensors: A%;| = A%y P With
xl’

these conventions, the left members of (1.3) are invariant, and the left
members of (1.5) are relative invariants of weight 1. The equations (1.3), (1.4)
and (1.5) will imply like equations in new coordinates. If % and M are solu-
tions of (1.3) and (1.5), # and M will be solutions of their representatives in
the new coordinates. If # = ¢ is an integral of (1.4), 4 = ¢ will be a repre-
sentative integral in the new coordinates.

2. Complete basis. From the two contravariant vectors A%;] and A%| an
associated contravariant vector is defined by the equations
NS INE; |
Jv >\aj[ i .
9x°

(2.1) TF; = N

When the associate vectors of all pairs in a basis belong to the k-uple, the basis
will be said to be complete. This is in agreement with the classical terminology
that the system (1.3) is complete when the equations

(2.2) T8 Pyl 0,
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are dependent on (1.3). Similarly, when the associate vectors are null vectors
the basis is said to be Jacobian. Some theorems in the theory of the linear
systems of partial differential equations (1.3) will be restated in terms of these
definitions:?

(2.3) A system of k linearly independent vectors is always complete if k = n. If
k < n and the system is not complete, vectors T#;;| may be adjoined to the system
o form a sei of k'> k independent vectors. When the new system is not complete
the process may be repeated until a complete system is obtained. Completeness is
a property of the k-uple.

(2.4) A complete k-uple has bases that are Jacobian. This is a property of a
basis.

(2.5) These properties are invariant under coordinate transformations.

3. Normal form for a complete basis. The equation of (1.3) with 2 = 1 has
n — 1 independent solutions ¢*(x)(A = 2, . . ., n). Adjoin to these a function
¢'(x) such that the » functions are functionally independent. In new
coordinates %* = ¢*(x) (e = 1,..., n); this equation has solutions Z*.
Hence M1 = 0. Since ;| is a non-null vector A% | is non-null and Al;| = 0.
Consequently there is no loss in generality in taking M|, 0,..., O as the
components of the first vector in the original coordinates. By a subsequent

. . - ox® axe . _
transformation of coordinates A\*;| = N4 r = Ay Pl By choosing &*
X X

independent of x! and &' = J dx'/A\|, the vector transforms to 1, 0,..., 0,
and the corresponding equation takes the form % =0
X

Because of the hypothesis that the vectors form a complete basis the equa-
tions (1.3) have #» — & solutions ¢* (A = 4+ 1,..., n) that are now inde-
pendent of x'. Adjoining functions ¢!= x!, ® (B = 2, . .., k) independent of
x!, so that ¢*(a = 1, ..., n) are independent, a transtormation of coordinates
may be defined by x%* = ¢%(x). In the new coordinates the equations (1.3)
are satisfied by *, which implies that X\*;| =0. The components of the vector
1,0,...,0, are unchanged by this transformation. Hence:

3.1} A complete k-basis can be transformed to

M= 6(a=1,...,n), N =0(@>k;i=2,...,k).

4. Normal form for a Jacobian system. It will be proved that:

(4.1) A coordinate system exists in which a Jacobian system takes the normal
form

A%l = 0% G=1,...,k;a=1,...,n).
2Goursat-Hedrick, op. cit., Section 89, p. 267.
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To construct a proof by induction let 2 — 1 < & of the vectors be assumed to
be in the form of the theorem. The Jacobian condition T%;| = 0, implies on
some remaining vector A% that:

(4.2) Nl _ @=1,...,mi=1,...,h—1)
ox*
so that the components A%,| are functions of y = [x",. .., x"]. The equations
(1.4) © = h have integrals ¢*= ¢% a # h such that
¢AE xA—fA(y) A=1,.,.,k—1),
¢t = ¢*(y) A=h+1,...,k).

Let ¢*(y) be any function such that a proper transformation of coordinates
may be defined by = ¢*(x, ¥): In the new coordinates only the Zth com-
ponent of A%, is non-vanishing, and it is a function of the variables y so may
be reduced to unity by a transformation on these variables. These trans-
formations do not affect the components of the vectorsA%|(z = 1,...,k — 1).
This completes the induction and the theorem follows.

5. Multipliers. A function M, satisfying an equation (1.5) has been called
by Lagrange, a multiplier of the vector A\%;{. In this case the vector M\%;| is
said to be solenoidal. To investigate the conditions that the system of & vectors
6)\““
Jx®
M implicitly by an unknown function Q(x, M) = 0. The equations then take
the homogeneous form

EYe) a0
5.1 A%t — Muy; —= =
(5-1) l dx® + My oM

admit the same multiplier, set u;= — and define the dependent variable

Every solution Q of these equations that depends on M yields, with Q = 0, a
solution M of (1.5). Every solution M = ¢(x) of (1.5) givesa Q = M — ¢(x)
satisfying (5.1) for Q = 0. The problem of solving (1.5) for M therefore reduces
to the problem of finding solutions of (5.1) that are dependent on M.

The completeness conditions of (5.1), the analogues of (2.2) are

aQ 90
5.2 TP — + Mit; —= = 0,
(5.2) W i 317
My O _ d
ti; = %] Ay — = — — T
’ xe 7 dae dx® ’
90

The coefficients of 317 in (5.2) and in (5.1) are the same functions of the re-

maining differential coefficients, hence (5.2) may be assumed to be included
in (5.1) which consequently, when integrable, may be assumed to be complete.
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This requires that the basis A\%;| is also complete. The converse is not true.

But when the basis is complete and (5.1) is not complete an equation 9Q =0

may be deduced as an essential condition on a solution of (5.1). These facts
may be summarized in the theorem:

(6.3)  Sufficient conditions that a basis admit a muliiplier are that the basis is
complete, that is, that functions a’; exist such that
Tey; = aN*y,

and that these functions also reduce the equations

aTﬁ,-j . OB, |

Py = Qq “ ——

dxP Ix8

b

to identities. These conditions are necessary when the basis has been completed.

These conditions are satisfied for Jacobian bases. The a";; being identically
equal to zero, hence:

(5.4) Each Jacobian basis of a complete k-uple admits a common multiple M
such that the contravariant vectors of weight 1, MA%;| are solenoidal.

6. Vector product. The vector product (non-metric) of » — 1 vectors may
be defined by the covariant vector of weight —1 :

(61) )\a = €goy . . . an)\alll e )\dkkh kE=n—1.
For a scalar u of weight 1, u\« is a covariant vector and
OuA Oudg
(6.2 Qg = —2 — IZF
) x5 Ix®

is the covariant tensor known as the curl. From (6.1) it appears that
(6.3) AP = 0 (G=1,..., k=pn—1).

Conversely these equations determine X« to within a factor of proportionality.
By differentiating these the definition (6.2) leads to

(6.4) pTPi;1 N = aapN®s| N1 .

The elimination of the factor p from these equations gives
ONea OAs

6.5 TB.:1\g = (— — —> A% N

(6.5) i o o i

From (6.1) it is apparent that the vanishing of the left members of either of
these sets of identities implies that the (# — 1)-uple be complete. For u to be
an integrating factor of Nedx® that is, for pA. to be a gradient, it is necessary
and sufficient that a«.s= 0. Then by (6.4) the basis is complete. For a com-
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plete # — 1 basis in normal form, by Theorem (3.1)Ae=0(a = 1,...,n — 1),
A #0. Choosing p = ¢/\,, ¢ an arbitrary function of x", phe is a gradient.
Hence

(6.6) The necessary and sufficient condition that the vector product of an n — 1
basis be proportional to a gradient is that the basis be complete.

This theorem may be stated in the equivalent form:

(6.7) The necessary and sufficient conditions that the vector field \o be lamellar
1s that the basis be complete.

The vector product of £ = » — 1 gradients may be defined by the relative
contravariant tensor of weight 1

ou OUn
(6.8) o= eanaop L
dx’1 0xk
where #y, ..., u; are n — 1 scalars. It is interesting to compare Theorem

(6.7) with the well known theorem?® that A* is solenoidal, and that any solen-
oidal vector is the vector product of #» — 1 gradients.

7. Generalization of a theorem of Jacobi. When the Jacobian system of
k = n — 1 vectors A% is represented in the normal form (4.1), their vector
product Ae = §,, and all factors u are given by p = ¢(x™), ¢ being any integ-
rable function. All multipliers of the basis are given by M = ¢(x™) and there-
fore:

(7.1) A Jacobian basis with n — 1 vectors N\*;| has multipliers M. For all such
the vectors MA%;| are solenoidal and M\a is a gradient. Conversely all factors M
such that Mo is a gradient imply that the vectors MN%;| are solenoidal.

A system of contravariant vectors satisfying the hypotheses of (7.1) may be
obtained as follows: Let ¢**2,. .., ¢" be # — B — 1 integrals of a Jacobian
system (1.3). Adjoin functions so that ¢* are # independent functions. The
transformation x*= ¢°(x) reduces this system to a Jacobian system of % equa-
tions in k 4 1 independent variables. With & 4+ 1 playing the role of 7 the
conditions of the theorem are satisfied.

Let 6 = C be the integral of the exact equation u).dx* = 0; then gi— = ul,.
xﬂ

It follows from (6.3) that

(7.2) g 2 =,
ax®

and 6(x) is the “last’” solution of the system (1.3). Although the index a is
assumed to run from 1 to 2 4+ 1 in these equations, it may as well run from

3Goursat-Hedrick, op. cit.
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1 to n, the remaining terms vanishing. The equations are invariant and imply
the following theorem:

(7.3) Every system of equations of the form (1.3) is equivalent to a complete
system

i@ =0 @=1,....mi=1,...,k<n),
ox®
such that the vectors u*;| admit a common multiplier M for which
a
— (M.U-“i|) = 0.
9x°

The system has n — h independent soluttons: and a knowledge of n — h — 1
independent integrals, together with such a multiplier M, leads to an exact differ-
ential equation for the last solution.

University of Washington,
Seattle
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