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AN ALGEBRAIC CHARACTERIZATION OF 
REMAINDERS OF COMPACTIFICATIONS 

BY 

J A M E S H A T Z E N B U H L E R , D O N A. M A T T S O N A N D W A L T E R S. S I Z E R 

ABSTRACT. Let X be a locally compact, completely regular 
Hausdorff space. In this paper it is shown that all compact metric 
spaces are remainders of X if and only if the quotient ring 
C*(X)/Cœ(X) contains a subring having no primitive idempotents. 

1. Introduction. Let X be a locally compact, completely regular Hausdorff 
space and let aX be any Hausdorff compactification of X. Then aX-X is a 
remainder of X. In the theory of compaerifications one of the major problems 
has been that of characterizing when all members of a certain class of spaces 
can serve as remainders for each member of another class of spaces (cf. [1], [2], 
[3], [5], [7], [9], etc.). In this paper we characterize when all compact metric 
spaces are remainders of X in terms of the ring C*(X) of bounded continuous 
real-valued functions on X. 

Specifically, if C^X) is the set of functions in C*(X) which "vanish at 
infinity," we show that all compact metric spaces are remainders of X if and 
only if the quotient C*(X)/Coo(X) contains a subring with no primitive idempo­
tents (see [6], p. 74). Other characterizations of when all compact metric spaces 
are remainders of X may be found in [5]. 

2. The characterization theorem. Notation and terminology concerning the 
ring C*(X) and the Stone-Cech compactification |3X of X will follow that of 
[4]. N denotes the positive integers and all rings under discussion are com­
mutative rings with identity. 

THEOREM. Let X be a completely regular, locally compact Hausdorff space. 
Then all compact metric spaces are remainders of X if and only if C*(X)/Coo(X) 
contains a subring with no primitive idempotents. 

Proof. For each feC*(X), let / 3 be the continuous extension of / to 0X 
and let f* be the restriction of / 3 to | 3 X - X The mapping <p of C*(X) into 
C*(/3X-X) defined by <p(f) = f* is a homomorphism. Since &X-X is C*-
embedded in j3X, <p is a surjection. Now / e kernel <p if and only if /*(p) = 0, for 
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all pe(3X-X. Thus, kernel <p = Cao{X) since C^iX) is the intersection of all 
free maximal ideals in C*(X). (See 7.F.1 of [4]). Hence C*(X)/C«,(X) is 
isomorphic to C*( |3X-X). 

Now assume that C*(X)/Coo(X) contains a subring with no primitive idempo-
tents. Then C*(j3X —X) contains a subring R having no primitive idempotents. 
Let 1R be the identity in R. It follows that \R = e\ + e\, where e\ and e\ are 
non-trivial orthogonal idempotents in R. 

Set R\ = Re\ and R\ = Re\. Then R\ and R{
2 are ideals of R and R = 

R\®R\. LOW e\ and e\ are the respective identities of R\ and i?2, so that the 
preceding argument can be applied to obtain decompositions R\ = R\(BR\ and 
R'2 = RJ®Ri. Thus, R = R2

x® — ®Rl. Inductively it follows that for each 
neN, R = R"(B' • • (BR?*, where each R" is, in turn, a direct sum of non-
trivial ideals R^_\ and jR£+1. 

Since e\ and e2 are characteristic functions of disjoint clopen sets V} and V2, 
respectively, in jSX —X, it follows that 0 X - X can be partitioned into disjoint 
non-empty clopen subsets U\ and U2, where Vj ç U\ and V2<^ U2. 

Inductively, if e,n is the identity of R", then e? is the characteristic function of 
some clopen subset V*n of j3X-X, with V?^ U?. Since e? = e$?L\ + eX\ it 
follows that U[ can be partitioned into non-empty clopen subsets U2i^\ and 
Ult\ where V^.\ ç U^-\ and V£+1 ç U^\ 

Now for each ft e N, set Kn = U WI 1 ^ i^2n, i odd} and K; = 
(J {L/" | l < i < 2 n , i even}. Then each Kn and K„ is open and compact. For 
each neN, let hn be the characteristic function for Kn. Each hn is continuous 
and we define a mapping h of |8X —X into the countable product XnGN {0> 1} 
of the discrete two-point space {0,1} by h(x) = (hn(x)). Evidently, h is 
continuous. 

Take a = (an) e XneN {0, 1}- For each ft G N, define An by A„ = Kn if a„ = 1 
and An = K'n if an = 0. It follows that fl {Ak | k = 1,. . . , ft} = U", for some /. 
Thus, for each n, f] {Ak \ k. = 1,. . . , n}^ 0 . Since each An is compact, select 
x e p | {An | n G N}. Now h(x) = a so that h is a surjection. But X n £ N {0. U *s a 

homeomorph of the Cantor set % and each compact metric space is a 
continuous image of c€. Thus, it follows from Magill's Theorem [8] that all 
compact metric spaces are remainders of X. 

Conversely, suppose that all compact metric spaces are remainders of X. 
Then % is a remainder and there is a continuous mapping t of |3X — X onto %. 
Let R be the ring C*(^). If e is a non-zero idempotent in R, then e is the 
characteristic function of a clopen subset A of c€. Let B be a subset of ^ such 
that A H B and A — B are non-empty and open in c€. If g is the characteristic 
function of A H B and if h is the characteristic function of A—B, then e is the 
sum of the orthogonal idempotents g and h. Hence e is not primitive. 

Now t induces an isomorphism t' of # into C*(j3X-X). (See 10.3A of [4].) 
It follows that C*(X)/Coc(X) contains a subring with no primitive idempotents. 

This completes the proof. 
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3. Examples. (A) Consider any space X which is the (topological) free union 
of a locally compact space Y and an infinite discrete space D. Let S be the 
subring of C*(X) consisting of all functions / which map Y onto 0 and which 
are integer-valued on D. Then R ={f+COD(X) \ fe S} is a subring of 
C*(X)/Coc(X) which contains no primitive idempotents. Hence all compact 
metric spaces are remainders of X. 

(B) Let X be the subset of the plane consisting of all points (x, y), where 
- l < x , y < l , and with the set S={(l/(n + l), 0) | n e N}U{(0, 0)} deleted. Set 
R = C*(X)/Coo(X). To apply the theorem it suffices to consider subrings T 
of JR where T contains the identity 1 in R. Suppose T contains no primitive 
idempotents. Now 1 is an idempotent, so that 1 = /+g(mod CJX)) , where / 
and g are non-trivial idempotents in T. Then f2 = f and g2 = g, but /, g^ Coo(X). 

Take 0 < e < {. Then there is a compact subset K of X such that on X - K we 
have | l - ( / + g ) | < e , \f-f\<e/2 and | g 2 - g | < e / 2 . From this it follows that 
either |1 — f(x)\<e or | / (x) |<e , for each xeX — K, and a similar result 
holds for g. Moreover, the sets A={xeX~K\ \f(x)\ < e} and B = 
{xeX-K | |g(x) |<e} are disjoint, non-empty, and partition X-K. 

Since S is bounded away from K, there exists an open disc D1 centered at 
(0, 0) which does not meet K and whose boundary (in the plane) contains no 
point of S. Let P = (l/(m + l), 0) satisfy l/(m + 1)<radius Dx and 1/m >radius 
Dx. Let D2 , . . . , Dm be pair-wise disjoint, open discs in X - K centered at the 
points (l/(rc + 1), 0) of S with n = 1,. . . , m — 1, and where for n > 2 each Dn is 
disjoint from D,. 

Now D1 is connected so that both A and £? cannot meet Dx. Suppose B does 
not meet Dx. Then | / (x) |<e, for all xeDx. But f£Cœ(X) hence B covers at 
least one Dn, n > 2, so that |1 — f(x)\ < e on all such Dn. Since / is not primitive, 
f=h + k, where h and k are non-trivial idempotents in T. Now / is close to 
zero at all points of Dx so that h and k can be close to 1 only near those points 
(l/(n 4-1), 0), n < m, near which / is close to 1. Hence there are discs centered 
at a subset of the points (l/(n +1), 0), n<m, on each of which h and k are 
either close to zero or close to 1. Moreover, whenever h is close to 1 on such 
discs, then k is close to zero and vice-versa. Since h<£ CJ^X), there is at least 
one such disc on which h is close to 1 and a similar result holds for k. Since the 
set of points (l/(n + 1), 0), n < m, is finite, this process cannot continue indefin­
itely, which is a contradiction. 

Thus, every subring of JR contains a primitive idempotent so that not all 
metric spaces are remainders of X (In particular, ^ is not.) However, we note 
that X has a countably infinite remainder so that ]3X — X contains infinitely 
many components (see [7]) and since X is not pseudocompact, all Peano spaces 
are remainders of X (see [9]). 
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