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The theory of relativity shows that the times measured by two observers
will in general be different if they are in relative motion, so that their respec-
tive times between any two coincidences will differ. Bergmann [1] has
investigated the problem of a particle moving in a small simple harmonic
motion in a static gravitational field, and has found that the time difference
for this particle and an observer at rest becomes zero whenever the particle
passes through the centre and limits of its swing. This problem will now be
dealt with in a different manner, using Schwarzschild’s interior solution of
the gravitational equations. The exterior solution for a point mass is not
suitable in the present case, due to the singularity of the field at a point in
the path of the particle.

Mgller [2] gives Schwarzschild’s interior solution in the form

2

ds? = rd:zm + 72(d6? 4 sin? 60 - dg2) — {4 — B(1 — r?/R2)}c2az.
Making the substitutions » = R sin (p/R) and ¢ = ©/(4 — B), and using the
time-like instead of the space-like form, this becomes

2
A — Bcos—
ds? = — dp? — R?sin? ”1%' (@* + sin?0 - dg?) + | ——5—|
The coordinate p determines the distance from the origin and so, for a
motion which does not depart too far from the origin, the metric can be
taken in the approximate form

1) ds? = — dp?—p?(d6? + sin?6 - dg?)+yctdr?
where .
(2) y =1+ 5p?

7 being a constant which is small for ordinary fields.
The equations of motion of a particle are the geodesic equations
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3 =
®) ds ds
Evaluating the Christoffel symbols for a static spherically symmetric system,
it is seen that the 6- and ¢-components of the equations (3) are satisfied by
6 = n/2 and ¢ = constant. The r-component is

atr 1 dy dpdrx

dst 'y dp dsds ’

a2zt :e dx* dx¥
ds? ,uv}

which can be integrated to give
dr 1
(4) =
s cay
Instead of the p-component of (3), it is more convenient to take the expres-
sion (1). In the radial type of motion under consideration, this reduces to
(5) ds? = —dp? + yc2dr3.
Eliminating ds from (4) and (5),
dp\ 2

(}2%) = Ay—a?y?).
If the field is not too strong, 72 is negligible, and so, approximately,
(d—p)2 = c3(1—a?)—c?(2e2 — 1)ne2

dr

This is the equation of a simple harmonic motion. It shows that « is less than
unity by an amount of the order of »2/2¢? where v is the maximum velocity
of the motion. The equation can be integrated to the form

(8) p = asin wr,
where
(7) ® = c{n(2e2 — N}
and

1 —a
(8) ] = {17_(2—“3_—_15} .

Let R be an observer remaining at the origin, and M an observer.on the
moving particle. Times measured by the observers on any suitable physical
apparatus are given by measurements of interval, [ds/c. So, from (1) and (2),
the time measured by R between the initial coincidence and the event that,
in R’s estimation, M is at a given point in space is

fran
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where T is the time coordinate of this event. The corresponding time meas-
urement for M is, by (4).

f:a‘ydt,

the range of integration being the same since the coordinate system is used
to specify events, irrespective of any observer. Using (2) and (6), the differ-
ence in these two times is

A=T —J.:'cx(l + nat sinfwr)dr,

or
2
A= (1 —a— }ana?)T + f‘fa—sin 20T.
/)]
Using (8),
— )2 1 — &2
(9) A= A= @PGet DT al—o) o001

2{2a% — 1) 40 (202 — 1)
Since « is less than unity by an amount of the order of v2/2c2 where v is the

maximum velocity of the motion, the first term on the right hand side of the
equation (9) is of the order of (v%/c*)T. Hence

— % sin 20T.

vt 1
A=O(T)T+
C

The second term on the right hand side becomes zero when, in the estimation
of the observer at rest, the moving particle is at the centre and limits of its
path. For a similar motion produced by a force other than gravity so that
special relativity could be used, the time difference would be of the order
(v?/c?)T. Hence, in the case of harmonic motion under gravity, the time
difference is comparatively negligible whenever the moving particle is at the
centre and limits of its path. This agrees with the result of Bergmann.
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