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DEVELOPABILITY AND SOME NEW REGULARITY 
AXIOMS 

N. C. HELDERMANN 

1. Introduction. In a recent publication H. Brandenburg [5] intro­
duced D-completely regular topological spaces as a natural extension of 
completely regular (not necessarily T\) spaces: Whereas every closed 
subset A of a completely regular space X and every x £ X\A can be 
separated by a continuous function into a pseudometrizable space 
(namely into the unit interval), D-completely regular spaces admit such 
a separation into developable spaces. In analogy to the work of O. Frink 
[16], J. M. Aarts and J. de Groot [19] and others ([38], [46]), Brandenburg 
derived a base characterization of D-completely regular spaces, which 
gives rise in a natural way to two new regularity conditions, ^-regularity 
and weak regularity. 

It is the purpose of this paper to derive fundamental structural proper­
ties of these classes of spaces, to elaborate their relationships, and, what 
will prove to be quite laborious, to give examples. The most important 
among these are modifications of a regular, but not completely regular, 
TYspace due to J. Thomas [39]. 

Further results concerning D-complete regularity and related proper­
ties may be found in [4], [6], [7], [9], [20], and [32]. 

2. Fundamental definitions. Subcategories of Top are always 
assumed to be full and isomorphism-closed. "Space" means throughout 
"topological space". All properties discussed, in particular regularity and 
complete regularity, are not assumed to be automatically 7\. Ro-spaces 
[13], [36] are defined by the property that every open set is a union of 
closed sets. 

Let X be a space. We then call a family Se of subsets of X an Fa-base 
if Se is a base for the open sets and for every B ^ Se there exists a count­
able subfamily {B Ï) f6N of Se such that 

B = U { * \ S < | t € N } . 

Similarly, we call a family & a G$-base if @ is a base for the closed sets 
and if for every G £ & there exists a countable subfamily ( G ^ ^ N of & 
such that 

G =C\ \X\Gt\ie N}. 

Clearly, {X\G\G £ &} is an Tvbase if & is a Gs-base, and conversely. 
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In [20] the existence of a developable TVspace D was proved, such 
that the equivalences stated in the following definition hold. In [32] a 
space was constructed with similar properties. 

Recall that a space X is called developable [2] if there exists a countable 
collection {£ët)iÇN of open covers of X such that for every x ^ I 
{St(x, SSi)\i G N} is a neighborhood base at x. 

2.1. Definition. A space X (not necessarily 7\) is called D-completely 
regular if it satisfies the following equivalent conditions: 

(1) X has an Tvbase; 
(2) whenever A is a neighborhood of some point x £ X then there 

exists an open subset B of D and a continuous function f:X —» D such 
that 

x£f-i[B]CA; 

(3) whenever i is a neighborhood of some point x £ X then there 
exist an open subset B of D and finitely many continuous functions 
ft :X —» D, i — 1, . . . , n, such that 

x£ C\fi-l[B]CA. 

The category of ^-completely regular spaces is denoted by D CompReg. 

Note that P-completely regular spaces were called D-regular in [4], [5], 
[7], [10]. This notation, however, does not reflect the fact that ^-com­
pletely regular spaces are derived in analogy to completely regular 
spaces, which is clearly expressed in our terminology. Moreover, our 
terminology is widespread (though not common usage) in papers on 
categorical topology (see e.g. [15], [30] [31], [41]). We are thus free to use 
the notion D-regular for a property motivated by investigations on 
developable spaces [20], which embodies, similar to regularity, informa­
tion on the local character of a topology. 

2.2. Definition. A space X is called 
(1) D-regular, if every point of X has a neighborhood base consisting 

of open ivsets . The subcategory of D-regular spaces is denoted D Reg. 
(2) weakly regular, if every point of X has a neighborhood base con­

sisting of Tvsets. The subcategory of weakly regular spaces is denoted 
WReg. 

2.3. Recall that spaces in which every closed set is a Go-set are called 
perfect. The implications contained in the diagram (see top of next page) 
are easily verified. In this diagram no further implications are valid (see 
also 7.1). 
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developable 

perfect 

pseudometrizable 

D -completely regular 

D -regular 

completely regular 

regular 

weakly regular 

Ro 

3. D-completely regular spaces, /^-completely regular spaces were 
introduced in [4] and further studied in [5], [6], [7], [20], and [32]. As is 
expressed by condition 2.1(3) DCompReg is a bireflective subcategory 
of Top, i.e., J9CompReg is closed under the formation of initial sources 
(for an explicit proof see [20], Theorem 3.5 or [5]). We assume the reader 
to be familiar with the basic notions of categorical topology, which can be 
found in [23]. 

The following theorem, partially contained in [4] and [5], follows 
directly from the property mentioned above. 

3.1. THEOREM. DCompReg is closed under the formation of inverse 
images, subspaces, products and inverse limits. 

3.2. For any bireflective subcategory £8 of Top, i.e., a subcategory 
closed under the formation of arbitrary initial structures, there exists a 
functor 5 : T o p - ^ ^ , called the associated bireflector, which assigns to 
every space (X, 3£) a space (X, &~b) such that the following conditions 
are fulfilled: 

(1) (Xt3Tb) e o b ( ^ ) ; 
(2) 1*: (X} 3f) -> (X, 3Fb) is continuous; 
(3) whenever ( F , $ 0 is a ^-object and / : (X, Sf) -> ( F , $ 0 a con­

tinuous function, t h e n / : X —* F, viewed as a function from (X, 3Th) to 
(F, $ 0 , is continuous. 

3.3. A first attempt to describe the bireflector DCR : Top —» Z^CompReg 
in [5] remained unsatisfactory because it involved transfinite construc­
tions relying on subsets defined externally. We derive here a characteriza­
tion of DCR that uses only intrinsic properties. 

3.4. We call a collection Se of subsets of a space X an open complemen-
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tary system if 38 consists of open sets such that for every B Ç 3S there 
exist Bu B2} . . . 6 38 with B = U { X \ £ ^ ' 6 N}. Recall that a collec­
tion of subsets of a set X is called a ring if it is closed under the formation 
of finite intersections and finite unions. Finally, a subset A of a space X 
is called a strongly open Fa-set if there exists a countable open comple­
mentary system 38(A) with 4 G 3$(A). 

3.5. LEMMA. (1) E^ery open complementary system 38 of a space X with 
cardinality less than K(CO < K) is contained in an open complementary ring 
ty> with cardinality less than K. 

(2) If 38\, . . . , 38 n are finitely many open complementary systems, then 
(38\ A . . . A 38 n) W (381 V . . . V 38n) is an open complementary system. 

Proof. (1) One obtains ty> by taking all finite unions of finite inter­
sections of elements of 38 (see also [4; 3.1.17]). (2) follows from a straight­
forward computation. 

3.6. COROLLARY. Finite intersections of strongly open Fa-sets are strongly 
open Fa-sets. 

3.7. THEOREM. The bireflector 

DCR:Top -» DCompReg 

associated to DCompReg assigns to every space (X, Stf") the D-completely 
regular space (X, S£~dCT) which has the set of all strongly open Fa-sets of S£ 
as a base. 

Proof. It follows from 3.6 that 

Ĵ ~ = {A\A is a strongly open ivse t in 3tf\ 

forms a base for a topology 9facr on X. Since for every strongly open 
/Vset A in X 38(A) C^F clearly holds, IF is an /vbase . Hence, 
(X,3rdcr) is D-completely regular. Let now / : (X, 3f) - > ( F , ^ ) be a 
continuous map into a D-completely regular space, and let A Ç & be 
given, where ^ is an ivbase for &. It is easy to prove that f ~l<& = 
\f~l[G]\G £ &} is an open complementary system in 3ff containing 

f~1(A). Thus, f~l(A) is a strongly open /vse t , proving that 
/ : (X, Tacr) -> (Y,<2/) is continuous. 

3.8. COROLLARY. A space X is D-completely regular if and only if every 
point x G X has a neighborhood base consisting of strongly open Fa-sets. 

Let us now turn to the investigation of final structures of D-com­
pletely regular spaces. 

3.9. PROPOSITION. Coproducts of D-completely regular spaces are D-
completely regular. 

Proof. Let (X*)*€/ be a family of D-completely regular spaces whose 
coproduct is X. We consider X as the disjoint union of the XJs and refer 
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to each Z j a s a subspace of X. For every i £ I there is an TV-base J ^ 
for Zf. Define 

^ : = U ( [ F U ( A ^ ) l ^ ^ l K e 7}UU{.T<|i<E 7}. 
Clearly, &~ is a base for X. Now let G 6 Ĵ ~ be given. In case G = 
F U (X\Xi) for some T7 6 J ^ , there exists a countable family 

(^»)»€N C^t with T̂  = U { X ; \ T > G N}. 

This implies G = U {X\TV|w G N}, and each TV belongs to #". In case 
G = F for some .T G J^~\ one proceeds analogously. 

3.10. Quotients of ^-completely regular spaces, however, need not be 
7)-completely regular. The Sierpinski space, for example, is a quotient of 
the unit interval with its natural topology without being weakly regular, 
not even RQ. This poor behaviour with respect to quotients which In­
completely regular spaces share with almost all other classes of spaces 
determined by separation axioms can be remedied for regular and com­
pletely regular TVspaces by imposing stronger assumptions on the quo­
tient map, namely open-closed [11], or by assuming that the identifica­
tion process is of a special nature [3]. We ignore whether an analogous 
result holds for Incompletely regular spaces in the first case, but in the 
latter, the results partially carry over. 

3.11. LEMMA. If a compact subspace A of a D-completely regular space 
X is contained in an open set C, then there exists a strongly open Fa-set F 
with A C F C C. 

Proof. We may assume that X has an TV-base J ^ closed with respect 
to finite unions (3.5(1)). By virtue of the compactness of A finitely many 
elements of J^, disjoint from X\C, suffice to cover A. Their union F belongs 
to Ĵ ~ and is therefore a strongly open TV-set. 

3.12. PROPOSITION. Let X be a D-completely regular space and (Ai)iei 

a pairwise disjoint closure-preserving family of closed compact sub spaces of 
X. The space Y is obtained from X by identifying each Ai to a point. Then 
Y is D-completely regular. 

Proof. Let y G F and a neighborhood I^of y be given. In case y = q{x) 
for some x £ X\ U {A^i £ 7}, where q is the quotient map, a strongly 
open TV-set G with 

x e G C r i n n (x\u{At\i e i}) 
exists. It is easy to see that g[G] is a strongly open TV-set with y Ç 
q[G] C V. In case y = q[Aj] for some j £ 7 Lemma 3.11 enables one to 
proceed analogously. 
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Since q:X —> F in 3.12 is perfect, (i.e., continuous, closed, onto, and 
f~l(y) is compact for all y £ F) one might be led to believe that In­
complete regularity is invariant with respect to perfect maps. Although 
we do not know a counterexample we hold this assumption more likely 
to be invalid, even between Hausdorff spaces. A related question is 
whether D-complete regularity is invariant under open-closed surjective 
mappings between T\ or Hausdorff spaces (like completely regular spaces 
[11]) or at least under open perfect mappings. 

Concerning inverse invariance we have the following example. 

3.13. Example. P-complete regularity is not inversely preserved under 
open perfect mappings. Let X denote the disjoint union of R and [0, 1) 
equipped with the following topology: Subsets of [0, 1) are open if and 
only if they are open in the natural topology on [0, 1) ; neighborhoods of 
points r Ç R contain almost all points of R and a set of the form 
(1 — e, 1) for some e, 0 < e < 1. As the space F we take the unit interval 
[0, 1). Then q'.X —> F, which identifies all the points of R to 1 is open 
perfect. X contains the reals with cofinite topology as a subspace. Since 
the reals with this topology are not even weakly regular (see also 7.12) 
and since subspaces of weakly regular spaces are again weakly regular (see 
5.2) X cannot be weakly regular. This implies in particular that X is not 
£>-regular. 

From the remarks preceding 3.1 we know that the lattice of D-com-
pletely regular topologies on a fixed set X is closed under the formation of 
suprema (initial structures). In analogy to results in [27] concerning 
(among others) regular and completely regular topologies, we obtain a 
negative answer for infima: 

3.14. Example. The infimum of two D-completely regular topologies 
needs not to be Incompletely regular. 

Consider an uncountable set X and let p and q be distinct points of 
X. We define a tology 3£v on X by declaring each point distinct from 
p open, and every complement of a finite subset of X. The topology 3t\ 
is defined analogously. Clearly, S£v (and for reasons of symmetry, &q) is 
a compact Hausdorff space and hence D-completely regular. This can 
also directly be derived by observing that 

J r = ( i C X\{p)\A finite} U ( ^ C X\p G B, X\B finite} 

is an /vbase for 3CV, The infimum 3£ of 3£v and 3£\ is, however, not 
even weakly regular. This can be seen by indirect argument. Assume 9£ 
were weakly regular. Since {p\ and \q\ are closed in SC there exists an 
open subset A of 3£ and countably many closed subsets Bi, B2, . . . of 
(X, 3C) such that 

P e AC^J {Bt\i e N} CX\{q\. 
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This, however, is impossible since each B{ is finite so that the uncount­
able set A cannot be contained in VJ {Bt\i 6 N}. 

4. D-regular spaces. The following lemma establishes that the class 
DReg of D-regular spaces is bireflectively contained in Top. 

4.1. LEMMA. The class of D-regular spaces is closed with respect to initial 
sources. 

Proof. Let X be a space equipped with the initial topology with respect 
to a class {}\'.X —» Yi)iÇ.I of maps into D-regular spaces Yt. Let x ^ X 
and an open neighborhood A of x be given. Then there are finitely many 
indices iu . . . . in G I and open sets A3• C Y7 for every j G N: = 
{1, . . . , n) such that 

/ (r
1[i,]n.. .n/J n- iK]ci. 

For every j (z N there exists an open Fa-set Fj with fij(x) £ Fj (Z Aj 
since F^ is D-regular. It is easy to see that fi~l[Fj\ is an open Tvset 
containing x for every 7, and if we define 

F: =fn-1[Fi)^...r\fin-i[Fn], 

then F is the desired open /^-neighborhood of x. 

A direct consequence of 4.1 is: 

4.2. THEOREM. DReg is closed under the formation of inverse images, 
sub spaces, suprema, products and inverse limits. 

4.3. Finite intersections of open Tvsets are open Fff-sets. This implies 
that the class mapping 

P : Top —> Top 

which leaves every function unchanged and assigns to every space 
(X, &) the space (X, 2fv) where the open Tvsets of 3C are a base for 
3CV, is a functor. Since (X, 3£) is D-regular if and only if 3C = 3£v, P is 
called a prereflector for DReg. The bireflector associated to DReg can now 
be obtained in a transfinite procedure described in [28]: Define Po- = P 
and for every ordinal number a 

Pa+1:= PoPa. 

If ($ is a limit ordinal, Pp is obtained as the functor which assigns to every 
space (X, SUf) the final topology on X with respect to the sink 

(lx:Pa(X13T)->X)a<e. 

Likewise, the functor Q'Top—-> Top is defined as the class mapping 
which assigns to every space (X, 3f) the infimum of all spaces Pa{X, 3£), 
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a G Ord. Since Q(X, SC) is always D-regular, we may restrict the image 
of Q and obtain: 

4.4. THEOREM. The bireflector DR:Top —» DReg associated to DReg is 
obtained as the image restriction of Q. 

4.5. In [40] the bireflector associated to the category Reg of regular 
spaces was constructed by means of a transfinite iteration of an "ultra-
closure" operator. We may similarly define for subsets A of a space X 

uc\A:= r\{B CX\A C B, B closed G8}. 

Then u cl defines the same topology as the functor P described above and 
the transfinite procedure above corresponds to the one in [40]. 

4.6. PROPOSITION. Coproducts of D-regular spaces are D-regular. 

Proof. Let X be the coproduct of D-regular spaces Xu i £ I, and let 
jt'.X* —> X denote the injections. If A is a neighborhood of some x £ X, 
then x G j%[X{] for some i G I, and since there exists an open Tvset F 
with 

jCl(x) CFCjr'lA], 

ji[F] is an open Tvset in X satisfying x G ji[F] C A. 

4.7. Quotients or infima of D-regular spaces need not be D-regular 
(see 3.10, 3.14). However, the invariance of regularity under open, closed, 
continuous and surjective maps known from [11] carries over to ir­
regularity. 

4.8. THEOREM. Whenever X is D-regular, f:X —> Y is an open, closed 
and continuous mapping onto some space Y, then Y is D-regular. 

Proof. Let y Ç Y and a neighborhood V of y be given. Then, for 
x ê /""H^)» U: = f~l[V] is a neighborhood of x. Hence there exists an 
open Tvset F satisfying x G F C U. Clearly,/ [F] is an open /vse t in Y 
satisfying y G / [F] C In­

certain identifications, similar to those in [3], preserve D-regularity. 
To demonstrate this we start with a lemma. 

4.9. LEMMA. Let A and B be two disjoint subsets of a space X with B 
closed. If A is a Lindelof space or, in case A is closed, the boundary of A is 
Lindelof, the following statements hold: 

(1) If X is weakly regular, then there exists an F0-set F such that 

ACintFCFC X\B. 

(2) If X is D-regular, then there exists an open F^-set F such that 

A C F C X\B. 

https://doi.org/10.4153/CJM-1981-051-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1981-051-9


DEVELOPABILITY 649 

Proof. (1) We assume that A is closed and has a boundary K = ^4\int^4 
which is a Lindelôf space. This implies that there exist countably many 
points xi, x2l . . . in K and Tvsets F\, F2, . . . such that xt G int Ft and 

K C int G C G = U {F<|i G N} C A ^ -

Clearly, F: = A \J G is an Tvset with A C int F C F C X\B. The 
remaining assertions are proved analogously. 

4.10. PROPOSITION. Let X be a D-regular space and (A{)iei a pairwise 
disjoint closure preserving family of closed sets with Lindelôf boundaries. 
Then the space Y, which is obtained from X by identifying each Ai to a 
point, is D-regular. 

Proof. Using 4.9, the proof can be modelled as in 3.12. 

4.11. Uf:X —» F is a perfect map, and Y is D-regular, then X need not 
be D-regular (3.13). What happens in case X is assumed to be Haus-
dorff? Under what assumptions does X D-regular imply that Y is Ir­
regular? We have so far no answers to these questions. 

4.12. PROPOSITION. Let X be a space with the property that every inter­
section of countably many open sets is open. Then the following conditions 
are equivalent: 

(1) X is weakly regular; 
(2) X is D-regular; 
(3) X is D-completely regular; 
(4) X is regular; 
(5) X is completely regular; 
(6) X is zerodimensional, i.e., has a base consisting of clopen sets. 

The proof is elementary and hence omitted. Consequently, all these 
regularity concepts coincide for P-spaces in the sense of [29] or in the 
sense of [18]. In particular, finite Po-spaces, discrete and indiscrete spaces 
fulfill all the properties listed above. 

4.13. PROPOSITION. For an R0-space X the following conditions are 
equivalent: 

(1) X is D-regular; 
(2) Every open covers^ of X has a refinement consisting of open Fff-sets. 

Proof. (1) implies (2) trivially. To show the converse let an open 
neighborhood A of x G X be given. Then {A, X\c\ {x}} is an open cover 
of X which has a ref inement^ consisting of open Tvsets. Choose some 
F G ^~ with x G F, then F is an open ivse t with F Q A. 

5. Weakly regular spaces. Most of the results of the preceding section 
can analogously be derived for weakly regular spaces. The proofs given 
there need not essentially be altered and are therefore omitted. 
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The class WReg of weakly regular spaces is bireflectively contained in 
Top. This is expressed by the following lemma. 

5.1. LEMMA. WReg is closed with respect to initial sources. 

5.2. THEOREM. WReg is closed under the formation of inverse images, 
sub spaces, suprema, products, coproducts and inverse limits. Quotients or 
infima of weakly regular spaces, however, need not be weakly regular (see 
3.10, 3.14). 

5.3. Consider the following property P for open sets Oof a topological 
space (X, 3£)\ 

(P) For every point x £ 0 there exists an ivse t F such that 

x e int F C F C 0. 

Since the intersection of any two sets satisfying (P) is itself a set satisfying 
(P), a topology 3CV can be derived from (X, 3f) by taking as a base for 

2£p all sets satisfying (P). This defines a functor P lTop —> Top, 
P(X, 3f) '. = (X, 3tv), P(f ) : = / . Clearly, a space X is weakly regular 
if and only if X = PX. Hence, P is a prereflection for WReg, and the 
bireflector WR'.Top —» WReg associated to WReg is obtained from P in 
the way described in 4.3 and 4.4. 

5.4. In analogy to 4.5 and the procedure in [40] the prereflection P 
can be described alternatively by means of an ultraclosure operator. 

uclA : = {B C X\A Q B, B closed and for every x Ç X\B there 

exists an Pff-set Fx with x G int Fx C Fx C X\B}. 

5.5. WReg is not simply generated, i.e., there is no weakly regular 
space X such that every weakly regular space is homeomorphic to a sub-
space of a power of X. This follows from a theorem of [22], stating that 
for every Pi-space R there exists a regular Pi-space S such that all con­
tinuous functions from 5 to R must be constant. See also [28; 4.4.5], [31]. 

5.6. THEOREM. Whenever X is weakly regular, andf'.X —> Y is an open, 
closed and continuous mapping onto some space Y, then Y is weakly 
regular. 

5.7. We call a mapping f:X —* Y Lindelôf-perfect if / is continuous, 
onto, closed and every set of the form f~x(y) for y G F is a Lindelof 
space. Perfect maps are clearly Lindelôf-perfect. It is well known [25; 
p. 148] that regularity is preserved under perfect mappings. This can be 
generalized for weakly regular spaces to Lindelôf-perfect mappings. 
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5.8. THEOREM. Whenever X is weakly regular, and f:X —> Y is a 
Lindelof-perfect mapping onto some space Y, then Y is weakly regular. 

Proof. Let an open neighborhood V of some y Ç Y be given. Then 
f~l(y) is a Lindelôf subspace of the open s e t / - 1 [ F ] . By virtue of 4.9(1) 
there exists an /vse t F such that 

f-*(y) CintFCFCf-m 

Since U: = Y\f [X\ int F] is open and satisfies y (~ U C / [F], we con­
clude that the F.-setf [F] fulfills y £ i n t / [F) C f [F] C V. 

Obviously, the preceding theorem remains true if we assume X to be 
a TVspace and, instead of e a c h / - 1 (y) being Lindelôf, e a c h / - 1 (y) having 
a Lindelof boundary. 

5.9. THEOREM. Let X be a weakly regular space and (^4 t)^7 a pairwise 
disjoint closure preserving family of closed sets with Lindelôf boundaries. 
Then the space Y, obtained from X by identifying each At to a point, is 
weakly regular. 

Regularity is an inverse invariant between Hausdorff spaces under per­
fect mappings [21]. As the following result shows, this relationship can 
be generalized to weakly regular spaces. The condition that X is Haus­
dorff is necessary and cannot be weakened to T\, even if f is additionally 
assumed to be open, as was shown in 3.13. 

5.10. THEOREM. Suppose f is a perfect mapping from a Hausdorff space 
X onto a weakly regular space Y. Then X is weakly regular. 

Proof. Let U be an open neighborhood of x £ X. I f / _ 1 ( / ( x ) ) C U, 
there exists an Fa-set F in Y with 

f{x) e'mtFCFC Y\f[X\U], 

which implies that / - 1 [ .F] is an Fa-set satisfying 

x G int/ -1[7^] Cf~l[F] C U. 

Now suppose/ - 1 ( / (x)) C\ (X\U) ^ 0. Since this set is compact and X 
is Hausdorff, there exists an open set V with 

/ - 1 ( / ( x ) ) n (X\U)C F C c l F C X\{x}. 

Hence Y\f [X\(U U V)} is an open neighborhood of/(x) which implies 
the existence of an /vse t F in Y with 

/(*) 6 int F C F C Y\f [X\(UV V)]. 

It is easily verified tha t / _ 1 [ .F ] \F is an Fc-set in X with 

xe int (f~l[F]\V) Cf-l[F]\VC U. 
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Finally, we give a characterization of weak regularity by means of 
covers. W h e n e v e r ^ is a family of subsets of a space X we define 

i n t j / : = {int4|i4 G s/). 

5.11. PROPOSITION. For an Ro-space X the following conditions are 
equivalent: 

(1) X is weakly regular; 
(2) every open covers^ of X has a refinement 38 consisting of Fa-sets, such 

that int B covers X. 

6. Relations between regularity conditions and developability. 
In analogy to Urysohn's classical metrization theorem, H. Brandenburg 
[7] established the equivalence of the conditions (2) and (3) of the 
following proposition. It is easily seen that this equivalence can further 
be extended to weakly regular spaces. 

6.1. PROPOSITION. For a topological space X the following conditions are 
equivalent: 

(1) X is weakly regular and second countable; 
(2) X is D-regular and second countable; 
(3) X is developable and second countable. 

The assumption of second countability in the implication (1) => (3) 
is unnecessarily strong. A base 38 for the open sets of a topological space 
X is called locally countable if every point of X has a neighborhood inter­
secting at most countably many members of 38. 

6.2. PROPOSITION. Every weakly regular, open hereditary Lindelôf space 
with locally countable base is developable. 

Proof. For every open subset A of X and x £ A there exists a neighbor­
hood FX1 contained in A, which is an Fa-set. Since X is open hereditary 
Lindelôf there are countably many points Xi, x2, . . . of A such that 

A = KJ {Fzi\i£N}. 

Hence A is itself Fff. By virtue of [8; 2.5] this implies that X is develop­
able. 

6.3. A space X was called subnormal in [12] if every pair of closed and 
disjoint subsets of X can be separated by G^-sets. This notion should not 
be confused with subnormality as defined in [26] and what is usually 
referred to as finitely subparacompact. X was called D-normal in [7], [20] 
if every pair of closed and disjoint subsets of X can be separated by closed 
GVsets. Perfect spaces are D-normal, and every D-normal i?o-space is 
D-completely regular. The following results are modelled after a classical 
theorem essentially due to A. Tychonoff [43] which states that every 
regular Lindelôf space is normal. 
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6.4. THEOREM. Let X be a Lindelof space. 
(1) If X is weakly regular, then X is subnormal. 
(2) [7] If X is D-regular, then X is D-normal. 

Proof. (1) Let A and B be two disjoint closed sets. For every x £ A 
there exists an Tvset Fx with x £ int Fx C Fx C -X\B. Since X is 
Lindelôf, countably many int Fxi suffice to cover A. Hence 

G'- == Oz(EN X\Fxi 

is a Gs-set with B C G C G C -ST\-4. By applying the same procedure 
again a second G^-set L can be obtained, satisfying ACL and 
L H G = 0. 

7. Examples. The implications of 2.3 are illustrated in the figure below. 
The inserted numbers refer to examples described in what follows. 

(7.5) (7.7) (7.4) 

(7.2) 
completely 
regular, 1\ 

(7.5) (7.7) (7.4) (7.3) regular, 1\ 

(7.9) 

(7.8) developable, 1\ 

(7.11) 

(7.9) D -completely regular, 1\ 

(7.11) 

(7.10) D -regular, I\ 

(7.11) weakly regular, 'I\ 

(7.12) Tl\ 

FIGURE 7.1 

In cases where we had to choose among a variety of candidates we 
tried to find the simplest. Note also that we only specify properties 
relevant to our considerations here. 

7.2. The open ordinal space (cf. [37], p. 175) is a completely regular 
perfect, but not developable TVspace. Further examples are the Sorgen-
frey line and the bow-tie space (loc. cit.). The closed ordinal space (loc. 
cit.) is a completely regular, but not perfect TVspace, since {co}, the 
singleton having the first uncountable ordinal as unique element, is not a 
Gô-set. This shows also that for Z)-completely regular spaces the system 
of all closed sets need not to be a Grbase. 

https://doi.org/10.4153/CJM-1981-051-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1981-051-9


654 N. C. HELDERMANN 

In a recent paper [34] it was shown that the power NHl of the discrete 
space of natural numbers is not perfect, not even subnormal, but, 
obviously, completely regular. 

We turn now to regular, but not completely regular, TVspaces. Exam­
ples of such spaces are legion but exclusively nontrivial. However, since 
the first example was found by A. Tychonoff [42], the complexity of such 
spaces decreased continuously, and with Thomas' space [39] an example 
of acceptable simplicity is available. It will play a crucial role in what 
follows. 

7.3. Examples of regular, developable TVspaces ( = Moore spaces), 
not being completely regular are contained, for example, in [1], [45], and 
announced in [35]. These examples, howrever, are all modifications of a 
space due to F. B. Jones [24] whereas a space of A. Mysior [33] seems to 
be different in nature. 

7.4. We show further properties of Thomas' space X [39] which is 
known to be a regular, not completely regular ZVspace. To make the 
investigations self-contained we start by giving an outline of this space. 
Consider the following subsets of the Cartesian plane. For a fixed even 
integer n, L(n) is the set of points (n, y) with 0 ^ y < 1/2. Si is the 
union of the sets L{n). For a fixed odd integer n, and k è 2, p(n, k) = 
(n, 1 — (1/&)), and T(n, k) is the set of points of the form (n ± t, 
1 — t — (l/k)) as t ranges over the interval (0, 1 — (l/k)]. These are 
the points on the legs of an isosceles right triangle with hypotenuse lying 
along the x-axis, and p(n, k) the vertex at the right angle. S2 is the set of 
all p(n, k) and S3 is the union of the sets T(n, k). The underlying set of 
Thomas' space X is the union of Si, S2, and S3, plus two additional points 
p~ and p+. Its topology is defined by specifying the neighborhoods of 
each point. The topology is discrete at each point of S3. A neighborhood 
of the point p(n, k) must contain all but finitely many points of T(n, k). 
A neighborhood of a point (n, y) of L(n) contains all but finitely many of 
the points in X which have the same ordinate as y, and an abscissa which 
differs from n by less than 1. A neighborhood of p~ contains a set of the 
form 

U{c) = {(«, ^ ) U i U 5 2 U S*\u <c}KJ {p~\ 

for some real number c, and a neighborhood of p+ contains a set of the 
form 

V(c) = {(«, v) e S1 U S2 U S,\c < u\ U {£+} 

for some real number c. 
We assert that 
(a) X is incompletely regular; 
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(b) X is subnormal (X is even subparacompact, which is stronger than 
subnormal. For the définition of subparacompact see [10]); 

(c) X is not Z}-normal (and hence not perfect). 

ad (a). Let N: = {2, 3, . . .}. For every even integer n and every finite 
set K C N we define 

F(n,K) = U{n) U L(n) U U {T(n, k)\k £ N,kZ K] 

U [p(n,k)\k e N\K], 

G(n,K) = V(n) U L(n) U U {r(w,fe)|* £ N,k £ K] 

and 

«a? = {F(w, 2£)!w a n even integer, K Q N finite} 
U {G(«, 2£)|wan even integer, K C A" finite} U j ^ C X|5clopen}. 

Clearly, Se is a base for the open sets of X. Si is an Tvbase, since for every 
clopen set B £ ^? we have X \ 5 G ̂ , and because 

F(n,K) = W {X\G(w + 2, {&})|£ G N \ i q , 

G(», K) = U {X\F(» - 2, {&})|& G iV\i£}. 

ad(b). Let two disjoint sets A and 5 of I be given. Whenever 
p(n, k) G A (resp. 5 ) then there exists an open neighborhood 

W(n,k) C (T(n,k)U {p{n,k))) 

of p(n, k) such that B C\ W(n, ft) = 0 (resp. ^ H ÏF(w, ft) = 0). Con­
sider 

i ' : = i U U {WX», ft)|£(», ft) 6 A) 

and 

5 ' : = 5 U U \W(n,k)\p(n,k) G J3}. 

Suppose there exists x £ A' C\ B'. Then x Ç W(n, ft) H W^n', ft') for 
some p(n, ft) G A and />(»', ft') G B. This, however, is impossible. Let 

x G 4 \ U {IF(», k)\p(n, ft) e A} 

be given. Then x (E 7\w, ft) for some w and ft, or x G L(w) for some w, or 
x = p~ or x = £+ . In any case {x} is a Gs-set, i.e., 

{x} = H {i?/K G N} 

where each i ? / is an open set containing x: if x G T(n, ft) choose 
Rix = {x} for all i, if x £ £(w) choose i ? / as a decreasing chain of basic 
neighborhoods, and if x = p~ (resp. p+) choose R* = [/(2i) (resp. 
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V(2i)). This implies 

A' = r\ { U {W(n,k)\p(n,k) G 4} VJ 

U{i?/ |x G 4 \ U {W(n, &)|£(n, &) G i4}}|i G N}, 

i.e., A' is a Gs-set. For reasons of symmetry B' is also a Gs-set, and there­
fore A and 5 are separated by disjoint Gs-sets. 

ad(c). Let an even integer n be given. Clearly, A — X\V(n) and 
B = X\U(n + 1 ) are disjoint and closed sets. Suppose there were dis­
joint and closed Gô-sets C and D with A C C and BCD- Whenever F is 
an open set containing^, then F contains almost all points of T(n + 1, k) 
for all k G N. Hence D contains U {T(n + 1, fe)|fe G N] except for at 
most countably many points. Consider the set R of all y G L(n) with the 
property that there exists x G T(n + 1, &) such that x G X). Obviously, 
i^ is countable, and there exists z G L(n)\R. Since Z) is closed and z d D, 
z is contained in an open set which is disjoint from D. This, however, is a 
contradiction to z G R and X is therefore not D-normal. 

It was proved in [22] that for every TYspace Y a regular IVspace X 
exists such that every continuous function from X to F is necessarily 
constant. By virtue of 2.1(2) this provides us immediately with an 
example of a regular, not D-completely regular space. We prefer, how­
ever, to use in what follows modifications of Thomas' space to construct 
examples, mostly because we think it advantageous to avoid cardinal 
arithmetic as employed in [22]. 

7.5. The "Mountain Chain Space" is obtained from Thomas' space in 
the following way. Let p~ and p+ be two distinct points not belonging to 
the Cartesian plane. Consider the following subsets of the plane enlarged 
by {p~,p+}: 

(V« € Z) P(n): = U {(« , r ) | l /2 < r < 1} 

Si: = U {P(n)\n G Z} 

(Vw G Z; \/r, 1/2 < r < 1) T(n, r): = {(n + 1, r - *)|0 < * g r) 

"U {(n - t,r - t)\0 <t^t). 

S2: = \J {T(n,r)\n G Z, 1/2 < r < 1), 

(Vc G R) 27(c) : = {(x, y) G Si U S2|x < c} \J {p~}, 

(Vc G R) V(c): = {(x, y) G 5i U S2|x > c ) U { p + ) , 

and finally 

X has the shape of a mountain chain: 
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n — 1 n w + 1 n + 2 

The topology on X is determined by the following neighborhood systems. 
Each point of S2 is declared open. A neighborhood of a point in, r) of 
S\ contains all but finitely many points of T(n, r). A neighborhood of 
p~ contains some U(c), and a neighborhood of p+ contains some V(c). 
It is trivial to check the neighborhood system at each point has a basis 
of closed sets and every point is closed. Hence, X is a regular TYspace. 
Consider an open ivse t A. We assert that, if A contains almost all points 
of Pin), then A contains almost all points of Pin — 1) and Pin + 1). 

Suppose there is an infinite subset B of Pin + 1) disjoint from A. 
Since A is an Tvset there are countably many closed sets A(k), k G N, 
such that A = U A(k). Hence, for every K N and (n + 1, r) G B 
there is a neighborhood of in + 1, r) disjoint from A (k). We may assume 
that this neighborhood is T{n + 1, r) reduced by finitely many elements. 
This implies that for every (n + 1, r) £ B there exists a set Rr which is 
obtained from Tin + 1, r) by deleting countably many points disjoint 
from A = \J A(k). Consider (n, s) G A C\ P(n). Since A is open there 
is a neighborhood Ws of (n, s) contained in A. We may think of this 
neighborhood as T(n, s) reduced by finitely many points. Since Ws P\ 
RT = 0 for every (n + 1, r) G J3, the singletons 7"(w, 5) P\ T(w + 1, r) 
must have been deleted from T(n + 1, r) for almost all (w + 1, r) Ç J3. 
This implies that at most countably many elements of P(n) belong to A, 
a contradiction. Hence, A contains almost all points of P{n + 1) and 
also, for reasons of symmetry, of Pin — 1). 

Assume now that X is D-regular. We would then find for U(c), c G R, 
an open Fa-set A satisfying p~ G A C U(c). But for some d G R U(d) 
C -4 clearly must hold, which implies by virtue of the argument above 
that A contains almost all points of P(n) for every n G Z. Thus, A Çf U(c), 
a contradiction. Therefore, X is not D-regular. 

7.6. Since Thomas' space [39] is a subspace of the mountain chain 
space X it is clear that every real-valued function of X takes the same 
values at p~ and p+. This is even true for continuous functions into first 
countable Hausdorff spaces. Using techniques due to [14] or [17] X may 
be used to obtain a regular space Y such that every real-valued function 
of Y is constant. 
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7.7. The "Skyline Space" is obtained by combining properties of 
Thomas' original space and the "Mountain Chain Space" introduced in 
7.5. Again, the underlying set X is a subset of the Cartesian plane en­
larged by two distinct points p~ and p+. Consider the following sets: 

(Vw e Zeven) L(n) = {(n,y)\0 g y < 1/2}, 

(Vw e Z odd, K N even) R(n, k) = {(x, k)\ 

n + 1 < x < (2n + l) /2} 

(V» Ç Z o d d , £ Ç Nodd) R(n, k) = {(x,k)\(2n - l ) / 2 

< x < » + 1} 

(Vw e Zodd, fe G N) P(«,*) = {(n,y)\k - (l/2)2k<y< k}. 

For (w, s) (E P(w, fe) we define furthermore 

r(«,5) - i (x ,s) | (n- i) + (i/2)« 
+ (k - s) < x < (n + 1) - (1/2)2* - (k - s)} U 

W {(x, y)\x = {n - 1) + (l/2)2fc + (fe - s) or 

x = (w + 1) _ (1/2)2* - (jfe - 5), 0 < y < s\, 

and 

(V« G Zodd,& G N) (?(»,*): = U { r ( « , s)|(w, 5) eP(n,k)\. 

If (£, fe) G R(n, k) we define 

5 ( ^ , * ) : = {(P,y)\k- (1/2) < 3; < & + ! } . 

The underlying set of the Skyline Space is then 

X: = Y\J [p-,p+), where 

Y: = VJ {L(n)\n e Z, even} U VJ {Ç(«, k)\n £ Z odd, £ 6 N} VJ 

VJ {S(p, k)\0 < \n - p\ < 1/2, « <E Z odd, k G N}. 

X has the shape in the figure following. We topologize X by specifying 
neighborhood systems for its points: A neighborhood of a point 
(», y) 6 £(») contains a set of the form 

W(n,y)\KJ{Q(n + l,k)\k£ I), 

where 

W (̂«, y) = \(x,y) £ Y\n - \ < x < n + §} 

and 7 is some finite subset of N. If (n, y) G P(ny k), then a neighborhood 
of (w, ;y) contains all but finitely many points of T(n, y). A neighborhood 
of a point (x, k) £ i£(w, fe) contains all but finitely many points of 
S(x} k). 
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3 H 

m 

Q(n - 1. : 

(?(w - 1. 1) 

P(w + 1.3) Q(n + 1,3) 

P(n + 1,2) V C?(«+i,-)) 

Q(n + 1, 1) 

I\n + 1,1) 

Ç(w + 3. -2) 

<2(w + 3, 1) 

n + 1 « + 2 

Neighborhoods of £~ contain a set of the form 

U(c) = {(x,y) G Y\x <c} KJ [p-\ 

for some cÇ R, and symmetrically, neighborhoods of p+ contain a set 
of the form 

V(c) = {(x,y) e Y\c<x\ W \p+} 

for some c ^ R . All other points of X are declared open. It is easily 
checked that the neighborhood systems just specified induce a topology 
such that every point is closed and has a neighborhood base consisting of 
closed sets. Hence X is a regular TVspace. 

We show that X is D-regular. Points belonging to Y even have neigh­
borhood systems consisting of clopen sets. If suffices to prove that p~ has 
a neighborhood base consisting of open Tvsets since the assertion follows 
for p+ for reasons of symmetry. Consider U(n + 2) for an even integer n. 
Clearly, U{n + 2) is open. For every i f N w e define 

A(i): = U(n) U L ( » ) VJ VJ {Q(n + l,k)\k g i) VJ 

U {S(p,k)\(p,k) G R(n+ l,k),k <i). 

Then every A(i) is closed and t/(w + 2) = VJ {4(i) | i Ç N}. Hence, X 
is D-regular. 
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Suppose now that A C X is an open Tvset such that for some even 
integer n an uncountable subset B(n) of L(n) belongs to A. We assert 
that then for every k G N almost all points of P(n + 1, k) and 
P(n — 1, k) belong to A. 

We assume first that for every K N an infinite subset P'{k) of 
P{n + 1, k) is disjoint from A. There exist closed sets A (i), i Ç N, such 
that A = yj A(i). Let i G N be fixed. We then conclude that for every 
K N and (n + 1, s) G P'(k) there exists a neighborhood of (w + 1, s) 
disjoint from ^4(i). One may think of this neighborhood as T(n + 1, s) 
with at most finitely many points deleted. Hence, A (i) contains for every 
(n + 1, s) G P''(k) and K N at most finitely many elements of 
T(n + 1,5), which implies by virtue of A — \J A (i) that A contains for 
every (n + 1, s) G P' (k) and K N at most countably many elements 
of T(n + 1,5). Clearly, for every i f N there is at most a countable set 
C(k) of points (n, y) G A such that W(n, y) C\ Q{n + 1, k) C -4. Since 
4̂ is uncountable there exists 

( » j ) ^ \ U {C(fc)|fe G N}, 

and since 4 is open, there exists a finite subset / of N such that 

W(n,y)\V \Q(n+ l,l)\l G /} C A. 

Consequently, (n,y) G U {C(fe)|& G N}, a contradiction. We conclude 
that there exists H N such that almost all points of P(n + 1, fe) belong 
to ^4. The same argument as employed in 7.5 can now be used to show 
that almost all points of P(n + 1, k) belong to the open Fa-set A for all 
k G N. For reasons of symmetry the assertion is also true for P(n — 1, k), 

Now suppose X is .D-completely regular. Then X has an ivbase Ĵ ~. Con­
sider the neighborhood U(c) of £~ for some c G R. There exists F G J ^ 
with p~ £ F C. U(c), and, since #~ is an ivbase, there exist moreover 
a countable subfamily (F(w))n6N of Ĵ ~ such that 

F = U {Jï\F(w)|w G N}. 

Since U(d) C F C U(c) for some ^ R, 

w: = max {i G Z|i is even and uncountably many points of 
L{i) belong to F] 

exists. It follows from the preceding argumentation that almost all points 
of P(m + 1, k) for every H N belong to F. Note that every F(n) is also 
an open Tvset. Since uncountably many points of L{m + 2) are con­
tained in F(n) for every n G N, it follows that for all n G N almost all 
points of P(m + 1, k) are contained in F{n) for every k G N. Hence 
H F(w) contains for every k G N all but at most countably many points 
of P{m + 1, k). This implies 

Fr\ C\ [F{n)\n G N} ^ 0 
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in contradiction to F = VJ {X\F(n)\n £ N}. Hence, X is not D-com-
pletely regular. 

7.8. The set N of positive integers equipped with the cofinite topology 
is a developable, not regular TVspace. If for k, l £ N A(k, I) — 
{1, 2, . . . , k}\{l}, then (s/(k, /))(*, ZKNXN is a development for N, where 

j*(k,l) = {N\4(*, / ) ,N\{/}}. 

Another example is the real line X with neighborhoods of any nonzero 
point being as in the usual topology, while neighborhoods of 0 will have 
the form U\A, where U is a neighborhood of 0 in the usual topology and 
A = {l/n\n 6 N}. Then X is Hausdorff but not regular [44; 14.2]. X is 
second countable since all finite intersections of elements of a countable 
base of the usual topology enlarged by {5(0, l/n)\A\n Ç N} is a base for 
X. X is weakly regular: The only critical point is 0. Consider 5(0, e)\A. 
For every n G N let U(n, k) denote the open neighborhood 

5 ( l / n , ((1/n) - l / ( n + l ) ) / 2 * ) 

of l /« . Then 

5(0, e/2)\A C U {[ - e/2, €/2] H (X\ U { £/(», *)|n G N}) 

|* G N} CS(0,e)\A. 
By virtue of 6.1 X is developable. 

In the following considerations X may be used instead of N to yield 
Hausdorff spaces with all other properties unchanged. 

7.9. The product X of the closed ordinal space (7.2) and N with 
cofinite topology (7.8) is a Z>-completely regular 7Vspace, not being 
regular or perfect, since (a) the class of D-completely regular spaces is 
product-closed, (b) perfectness and regularity are hereditary, and (c) 
the components of X are subspaces of X. 

7.10. A similar argument as in 7.9 yields that the product of the 
Skyline Space (7.7) and N with cofine topology (7.8) is a Z)-regular, not 
regular, not P-completely regular TVspace. 

7.11. The same reasoning yields that the product of the Mountain 
Chain Space (7.5) and N with cofinite topology is a weakly regular, not 
regular, not J9-regular TVspace. 

7.12. The real line equipped with the cofinite topology is a simple 
example of a TVspace, not being weakly regular. 
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