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POSITIVE SOLUTIONS OF NONRESONANT

SINGULAR BOUNDARY VALUE PROBLEM OF

SECOND ORDER DIFFERENTIAL EQUATIONS

ZHONGLI WEI1 and CHANGCI PANG

Abstract. This paper investigates the existence of positive solutions of nonres-
onant singular boundary value problem of second order differential equations. A
necessary and sufficient condition for the existence of C[0, 1] positive solutions
as well as C1[0, 1] positive solutions is given by means of the method of lower
and upper solutions with the fixed point theorems.

§1. Introduction

The theory of singular boundary value problems has become an im-

portant area of investigation in recent years (see [1-7] and the references

therein). Consider the singular boundary value problems of second order

ordinary differential equation

(1.1)

{

−x′′ + ρp(t)x = f(t, x), t ∈ (0, 1),

ax(0) − bx′(0) = 0, cx(1) + dx′(1) = 0,

where ρ > 0 is such that

(1.2)

{

−x′′ + ρp(t)x = 0, t ∈ (0, 1),

ax(0) − bx′(0) = 0, cx(1) + dx′(1) = 0

has only the trivial solution, and where p(t) ∈ C(0, 1), p(t) ≥ 0, t ∈ (0, 1),

a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 0, a + b > 0, c + d > 0, δ = ac + ad + bc > 0. For

convenience, we list the following hypothesis.

(H1)

(1.3)

∫ 1

0
t(1 − t)p(t)dt < ∞; also
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(1.4) lim
t→0+

t2p(t) = 0 if

∫ 1

0
(1 − t)p(t)dt = ∞; and

(1.5) lim
t→1−

(1 − t)2p(t) = 0 if

∫ 1

0
tp(t)dt = ∞;

(H2)

(1.6)

∫ 1

0
tp(t)dt < ∞; also

(1.7) lim
t→0+

t2p(t) = 0 if

∫ 1

0
p(t)dt = ∞;

(H3)

(1.8)

∫ 1

0
(1 − t)p(t)dt < ∞; also

(1.9) lim
t→1−

(1 − t)2p(t) = 0 if

∫ 1

0
p(t)dt = ∞;

(H4)

(1.10)

∫ 1

0
p(t)dt < ∞;

(H5) f(t, x) ∈ C((0, 1) × (0,+∞), [0,+∞)), f(t, 1) 6≡ 0 for t ∈ (0, 1), and

there exist constants λ, µ, N, M(−∞ < λ < 0 < µ < 1, 0 < N ≤ 1 ≤ M),

such that, for t ∈ (0, 1) and x ∈ (0,+∞),

(1.11) `µf(t, x) ≤ f(t, `x) ≤ `λf(t, x) if 0 ≤ ` ≤ N ;

(1.12) `λf(t, x) ≤ f(t, `x) ≤ `µf(t, x) if ` ≥ M.

Typical functions that satisfy the above sublinear hypothesis are those

taking the form

f(t, x) =
n

∑

k=1

pk(t)x
λk ;

here pk(t) ∈ C(0, 1), pk(t) > 0 on (0, 1), λk < 1, k = 1, 2, . . . , n.
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By singularity we mean that the functions p, f in (1.1) are allowed

to be unbounded at the end points t = 0 and t = 1. A function x(t) ∈

C[0, 1] ∩ C2(0, 1) is called a C[0, 1] (positive) solution of (1.1) if it satisfies

(1.1) (x(t) > 0 for t ∈ (0, 1)). A C[0, 1] (positive) solution of (1.1) is called

a C1[0, 1] (positive) solution if x′(0+) and x′(1−) both exist (x(t) > 0 for

t ∈ (0, 1)).

In the special cases i): b = d = 0, p(t) = 0, f(t, x) = p1(t)x
−λ1 , λ1 > 0

and ii): b = d = 0, p(t) = 0, f(t, x) = p1(t)x
λ1 , 0 < λ1 < 1, where

p1(t) ∈ C(0, 1), p1(t) > 0 on (0, 1), the existence and uniqueness of positive

solutions of (1.1) have been studied completely by Taliaferro in [3] with the

shooting method and by Zhang in [4] with the method of lower and upper

solutions, respectively. A sufficient condition for the existence of C[0, 1]

solutions of the singular problem (1.1) in the case b = d = 0 was given by

D. O’Regan in [5] with a continuous theorem. In the special cases iii): p(t) =

0, f(t, x) = p1(t)x
−λ1 , λ1 > 0 and iv): p(t) = 0, f(t, x) = p1(t)x

λ1 , 0 <

λ1 < 1, where p1(t) ∈ C(0, 1), p1(t) > 0 on (0, 1), the existence of positive

solutions of (1.1) has been studied by Wei in [6] and [7] with the method of

lower and upper solutions.

Now, in this paper, we shall give a necessary and sufficient condition

for the existence of C[0, 1] positive solutions as well as C1[0, 1] positive

solutions of the singular problem (1.1) by using the method of lower and

upper solutions with the fixed point theorems, which is different from that

of [3-5].

§2. Several lemmas

Lemma 1. Suppose (H1) holds.

(i) Then

(2.1)

{

−x′′ + ρp(t)x = 0, t ∈ (0, 1),

x(0) = 0, x′(0) = 1

has a unique positive increasing solution e1(t) ∈ C[0, 1] ∩ C1[0, 1).

(ii) Then

(2.2)

{

−x′′ + ρp(t)x = 0, t ∈ (0, 1),

x(1) = 0, x′(1) = −1

has a unique positive decreasing solution e2(t) ∈ C[0, 1] ∩ C1(0, 1].

In addition, if (H2) holds, then e1(t) ∈ C1[0, 1]; if (H3) holds, then

e2(t) ∈ C1[0, 1]; therefore, if (H4) holds, then e1(t), e2(t) ∈ C1[0, 1].
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Proof. Similar to that of Theorem 2.1 in [5], we can obtain that there

exists a unique w1 ∈ C[0, 1] with

(2.3) w1(t) = 1 +
ρ

t

∫ t

0

∫ s

0
τp(τ)w1(τ)dτds

and e1(t) = tw1(t) ∈ C[0, 1]∩C1[0, 1) is a solution of (2.1). In the following,

we shall prove that e1(t) is a positive increasing function. In fact, if e1(t) is

not increasing, then from e1(0) = 0, e′1(0) = 1, there exist positive numbers

0 < t∗ < η < 1 such that e′1(t
∗) < 0 and e1(t) > 0 for t ∈ (0, η). Therefore,

∫ t∗

0

(

−e′′1(t) + ρp(t)tw1(t)
)

dt ≥ −e′1(t
∗) + 1 > 0,

which contradicts

−e′′1(t) + ρp(t)tw1(t) = 0, t ∈ (0, 1).

Hence, e1(t) is an increasing function. From e1(t) > 0 for t ∈ (0, η), we

have e1(t) > 0 for t ∈ [0, 1]. Consequently, w1(t) ≥ 0 for t ∈ [0, 1] and

w1(1) = e1(1) > 0.

Similarly, we can obtain that there exists a nonnegative function w2 ∈

C[0, 1] with

(2.4) w2(t) = 1 +
ρ

1 − t

∫ 1

t

∫ 1

s
(1 − τ)p(τ)w2(τ)dτds

and e2(t) = (1− t)w2(t) ∈ C[0, 1]∩C1(0, 1] is a positive decreasing solution

of (2.2).

Obviously, if (H2) holds, then e1(t) ∈ C1[0, 1]; if (H3) holds, then e2(t) ∈

C1[0, 1]; therefore, if (H4) holds, then e1(t), e2(t) ∈ C1[0, 1]. The proof is

complete.

Remark 1. If p(t) = 0, then e1(t) = t, e2(t) = 1− t, w1(t) = w2(t) = 1.

By Lemma 1, we can obtain Lemma 2.

Lemma 2. (i) Suppose that (H3) holds. Then

(2.5) u(t) = (ae2(0) − be′2(0))e1(t) + be2(t) ∈ C[0, 1] ∩ C1[0, 1)
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is a positive increasing solution of the following problem

(2.6)

{

−x′′ + ρp(t)x = 0, t ∈ (0, 1),

ax(0) − bx′(0) = 0.

(ii) Suppose that (H2)holds. Then

(2.7) v(t) = de1(t) + (ce1(1) + de′1(1))e2(t) ∈ C[0, 1] ∩ C1(0, 1]

is a positive decreasing solution of the following problem

(2.8)

{

−x′′ + ρp(t)x = 0, t ∈ (0, 1),

cx(1) + dx′(1) = 0.

In addition, if (H4) holds, then u(t), v(t) ∈ C1[0, 1] and the Wronskian

(2.9) ω = ω(t) =

∣

∣

∣

∣

v(t) v′(t)

u(t) u′(t)

∣

∣

∣

∣

= constant > 0,

where e1(t) and e2(t) are given by Lemma 1.

Lemma 3. Suppose that (H4) holds. Let x(t) be a C1[0, 1] positive so-

lution of (1.1). Then there are constants I1 and I2, 0 < I1 < I2, such that

(2.10) I1u(t)v(t) ≤ x(t) ≤ I2u(t)v(t), t ∈ [0, 1],

where u(t) and v(t) are given by Lemma 2.

Proof. Assume that x(t) is a C1[0, 1] positive solution of (1.1). Then

x′(0) ≥ 0 and x′(1) ≤ 0, x(t) > 0 for t ∈ (0, 1). By integration of (1.1), we

have

(2.11)

∫ 1

0
f(t, x(t))dt ≤ −x′(1) + x′(0) + ρ max

t∈[0,1]
|x(t)|

∫ 1

0
p(t)dt < ∞.

Let t0 ∈ (0, 1) and let a1 be a constant sufficiently small satisfying x(t0) −

a1u(t0) ≥ 0, and let y(t) = x(t) − a1u(t), t ∈ [0, t0]. Then

{

−y′′(t) + ρp(t)y(t) = f(t, x(t)) ≥ 0, t ∈ (0, t0],

ay(0) − by′(0) = 0, y(t0) = x(t0) − a1u(t0) ≥ 0.
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By the maximum principle, we have y(t) ≥ 0 for t ∈ [0, t0]. Therefore,

(2.12) x(t) ≥ a1u(t), t ∈ [0, t0].

On the other hand, let a2 be a constant sufficiently large such that

a2u(t0) − x(t0) = r0,

r0 ≥ (2u(t0)/ω∗)

∫ t0

0
y2(0)f(s, x(s))ds,

r0 ≥ (2u(t0)/ω∗)

∫ t0

0
y2(s)f(s, x(s))ds.

Here, y2(t) is a unique decreasing positive solution of the problem

{

−y′′(t) + ρp(t)y(t) = 0, t ∈ (0, t0],

y(t0) = 0, y′(t0) = −1;

and

ω∗ =

∣

∣

∣

∣

y2(t) y′2(t)

u(t) u′(t)

∣

∣

∣

∣

= constant > 0.

Let y(t) = a2u(t) − x(t). Then

(2.13)

{

−y′′(t) + ρp(t)y(t) = −f (t, x(t)), t ∈ (0, t0],

ay(0) − by′(0) = 0, y(t0) = a2u(t0) − x(t0) = r0 > 0.

By (H4), (2.11) and Theorem 2.2 in [5], (2.13) has a unique solution y(t)

satisfying

y(t) =
u(t)

u(t0)
r0 −

1

ω∗

∫ t

0
y2(t)u(s)f(s, x(s))ds

−
1

ω∗

∫ t0

t
y2(s)u(t)f(s, x(s))ds

≥ u(t)

[

r0

2u(t0)
−

1

ω∗

∫ t0

0
y2(0)f(s, x(s))ds

]

+u(t)

[

r0

2u(t0)
−

1

ω∗

∫ t0

0
y2(s)f(s, x(s))ds

]

≥ 0, t ∈ [0, t0].

Hence,

(2.14) x(t) ≤ a2u(t), t ∈ [0, t0].
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Similarly, we can verify that there exist two numbers b1 and b2 satisfying

(2.15) b1v(t) ≤ x(t) ≤ b2v(t), t ∈ [t0, 1].

For t ∈ [0, t0], from (2.12) and (2.14), we have

(2.16) x(t) ≥
a1

v(0)
v(0)u(t) ≥

a1

v(0)
u(t)v(t),

(2.17) x(t) ≤
a2

v(t0)
v(t0)u(t) ≤

a2

v(t0)
u(t)v(t).

For t ∈ [t0, 1], from (2.15), we have

(2.18) x(t) ≥
b1

u(1)
u(1)v(t) ≥

b1

u(1)
u(t)v(t),

(2.19) x(t) ≤
b2

u(t0)
u(t0)v(t) ≤

b2

u(t0)
u(t)v(t).

Let

I1 = min

{

a1

v(0)
,

b1

u(1)

}

, I2 = max

{

a2

v(t0)
,

b2

u(t0)

}

.

Then, (2.16)–(2.19) imply that (2.10) holds. The proof of Lemma 3 is com-

plete.

§3. Main results

A function α(t) is called a lower solution of (1.1) if α(t) ∈ C[0, 1] ∩

C2(0, 1), and satisfies

{

−α′′(t) + ρp(t)α(t) ≤ f(t, α(t)), t ∈ (0, 1),

aα(0) − bα′(0) ≤ 0, cα(1) + dα′(1) ≤ 0.

Similarly, a function β(t) is called an upper solution of (1.1) if β(t) ∈

C[0, 1] ∩ C2(0, 1), and satisfies

{

−β′′(t) + ρp(t)β(t) ≥ f(t, β(t)), t ∈ (0, 1),

aβ(0) − bβ′(0) ≥ 0, cβ(1) + dβ′(1) ≥ 0.

Now, we state the main results of this paper which are the following two

theorems.
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Theorem 3.1. Suppose that (H4) and (H5) hold. Then a necessary and

sufficient condition for problem (1.1) to have C1[0, 1] positive solutions is

that the following inequality holds :

(3.1) 0 <

∫ 1

0
f(t, e(t))dt < ∞,

where e(t) = u(t)v(t), u(t), v(t) are given by (2.5), (2.7), respectively.

Theorem 3.2. Suppose (H5) holds.

I) If b = d = 0, and (H1) holds, then a necessary and sufficient condi-

tion for problem (1.1) to have C[0, 1] positive solutions is that the following

integral conditions hold :

(3.2) 0 <

∫ 1

0
t(1 − t)f(t, 1)dt < ∞, also

(3.3) lim
t→0+

t

∫ 1

t
(1 − s)f (s, 1)ds = 0 if

∫ 1

0
(1 − s)f (s, 1)ds = ∞,

and

(3.4) lim
t→1−

(1 − t)

∫ t

0
sf (s, 1)ds = 0 if

∫ 1

0
sf (s, 1)ds = ∞.

II) If b = 0, d > 0, and (H2) holds, then a necessary and sufficient

condition for problem (1.1) to have C1(0, 1] positive solutions is that the

following integral conditions hold :

(3.5) 0 <

∫ 1

0
tf (t, 1)dt < ∞, also

(3.6) lim
t→0+

t

∫ 1

t
f(s, 1)ds = 0 if

∫ 1

0
f(s, 1)ds = ∞.

III) If b > 0, d = 0, and (H3) holds, then a necessary and sufficient

condition for problem (1.1) to have C1[0, 1) positive solutions is that the

following integral conditions hold :

(3.7) 0 <

∫ 1

0
(1 − t)f(t, 1)dt < ∞, also

(3.8) lim
t→1−

(1 − t)

∫ t

0
f(s, 1)ds = 0 if

∫ 1

0
f(s, 1)ds = ∞.
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Remark 2. When b = d = 0, p(t) = 0, f(t, x) = p1(t)x
−λ1 , λ1 > 0, we

obtain the main results of paper [3]. When b = d = 0, p(t) = 0, f(t, x) =

p1(t)x
λ1 , 0 < λ1 < 1, we get the Theorems 1 and 2 in paper [4]. When

p(t) = 0, f(t, x) = p1(t)x
−λ1 , λ1 > 0, we obtain the main results of paper

[6]. When p(t) = 0, f(t, x) = p1(t)x
λ1 , 0 < λ1 < 1, we get the Theorems 1

and 2 in paper [7].

The proof of Theorem 3.1.

1. Necessity. Suppose that x(t) is a C1[0, 1] positive solution of (1.1).

Then both x′(0) ≥ 0 and x′(1) ≤ 0 exist. By Lemma 3, there are constants

I1 and I2, 0 < I1 < I2 such that

(3.9) I1e(t) ≤ x(t) ≤ I2e(t), t ∈ [0, 1].

Let c0 be a constant satisfying c0I2 ≤ N, 1/c0 ≥ M . Then (1.11), (1.12)

and (3.9) lead to

f(t, x(t)) ≥ (1/c0)
λ f

(

t,
c0x(t)

e(t)
e(t)

)

≥ (c0)
µ−λ

(

x(t)

e(t)

)µ

f(t, e(t))

≥ (c0)
µ−λIµ

1 f(t, e(t)), t ∈ (0, 1).

Consequently,

0 <

∫ 1

0
f(t, e(t))dt ≤ (c0)

λ−µI−µ
1

∫ 1

0
f(t, x(t))dt

≤ (c0)
λ−µI−µ

1

(

x′(0) − x′(1) + I2ρv(0)u(1)
∫ 1
0 p(t)dt

)

< ∞.

Thus (3.1) holds.

2. Sufficiency. Suppose that (3.1) holds. Let

h(t) =
v(t)

ω

∫ t

0
u(s)f(s, e(s))ds +

u(t)

ω

∫ 1

t
v(s)f(s, e(s))ds, t ∈ [0, 1].

Then h(t) ∈ C1[0, 1] ∩ C2(0, 1) and (3.9) holds if x(t) is replaced by h(t),

and

I1 =
1

u(1)v(0)ω

∫ 1

0
e(s)f(s, e(s))ds, I2 =

1

ω

∫ 1

0
f(s, e(s))ds.
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Suppose that constant c1 satisfies c1I1 ≥ M, 1/c1 ≤ N . Let α(t) =

k1h(t), β(t) = k2h(t), t ∈ [0, 1]; here

k1 = min

{

1,
(

Iλ
2 cλ−µ

1

)1/(1−µ)
}

and

k2 = max

{

1,
(

Iµ
2 cµ−λ

1

)1/(1−µ)
}

.

For t ∈ (0, 1),

f(t, α(t)) ≥

(

k1

c1

)µ

f

(

t,
c1h(t)

e(t)
e(t)

)

≥ kµ
1 cλ−µ

1 Iλ
2 f(t, e(t)),

f(t, β(t)) ≤

(

1

c1

)λ

f

(

t,
k2c1h(t)

e(t)
e(t)

)

≤ kµ
2 cµ−λ

1 Iµ
2 f(t, e(t)),

−α′′(t) + ρp(t)α(t) = k1f(t, e(t)) ≤ kµ
1 cλ−µ

1 Iλ
2 f(t, e(t)) ≤ f(t, α(t)),

−β′′(t) + ρp(t)β(t) = k2f(t, e(t)) ≥ kµ
2 cµ−λ

1 Iµ
2 f(t, e(t)) ≥ f(t, β(t)).

So, α(t), β(t) ∈ C1[0, 1] ∩ C2(0, 1) are, respectively, lower and upper solu-

tions of (1.1) satisfying 0 < α(t) ≤ β(t) for t ∈ (0, 1), and aα(0)− bα′(0) =

0, cα(1)+ dα′(1) = 0, aβ(0)− bβ′(0) = 0, cβ(1)+ dβ′(1) = 0. Additionally,

when t ∈ (0, 1) and α(t) ≤ x ≤ β(t), we have

(3.10)

0 ≤ f(t, x) ≤

(

k1

c1

)λ

f

(

t,
c1x

k1e(t)
e(t)

)

≤

(

k1

c1

)λ (

c1x

k1e(t)

)µ

f(t, e(t))

≤

(

k1

c1

)λ−µ

(k2I2)
µ f(t, e(t)) = F (t).

From (3.1), we have

∫ 1

0
F (t)dt < ∞. In the following, we shall show that

problem (1.1) admits a positive solution x(t) ∈ C1[0, 1]∩C2(0, 1) such that

α(t) ≤ x(t) ≤ β(t) for t ∈ [0, 1].

First of all, we define an auxiliary function

(3.11) g(t, x) =







f(t, α(t)), if x < α(t),

f(t, x), if α(t) ≤ x ≤ β(t),

f(t, β(t)), if x > β(t).
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Consider the singular problem

(3.12)

{

−x′′ + ρp(t)x = g(t, x), t ∈ (0, 1),

ax(0) − bx′(0) = 0, cx(1) + dx′(1) = 0,

and the corresponding integral equation

(3.13) x(t) = Ax(t) =

∫ 1

0
G(t, s)g(s, x(s))ds,

where

(3.14) G(t, s) =















v(t)u(s)

ω
, s < t,

v(s)u(t)

ω
, t ≤ s,

ω is given by (2.9). Obviously, if x ∈ C[0, 1]∩C1[0, 1] is a solution of (3.13),

then x is a C1[0, 1] solution of (3.12).

By virtue of (3.1), (3.10) and (3.11), it is easy to verify that A : X →

X = C[0, 1] is completely continuous and A(X) is a bounded set. Using the

Schauder fixed point theorem, we assert that A has at least one fixed point

x∗ ∈ X ∩ C1[0, 1].

We claim that

(3.15) α(t) ≤ x∗(t) ≤ β(t), t ∈ [0, 1]

and hence x∗(t) ∈ C1[0, 1] is a positive solution of (1.1). Indeed, suppose

by contradiction that there is t∗ ∈ [0, 1] such that x∗(t∗) > β(t∗). Then the

relationships between x(t) and β(t) must be one of the following four cases:

Case 1: x∗(t) > β(t), t ∈ [0, 1];

Case 2: there exists 0 < s ≤ 1 such that x∗(s) = β(s), x∗(t) >

β(t), t ∈ [0, s), and t∗ ∈ [0, s);

Case 3: there exists 0 ≤ r < 1 such that x∗(r) = β(r), x∗(t) >

β(t), t ∈ (r, 1], and t∗ ∈ (r, 1];

Case 4: there exist 0 ≤ r < s ≤ 1 such that x∗(r) = β(r), x∗(s) =

β(s), x∗(t) > β(t), t ∈ (r, s), and t∗ ∈ (r, s).

For the Case 1: for t ∈ [0, 1], we have that g(t, x∗(t)) = f(t, β(t)) and

therefore

−x∗
′′

(t) + ρp(t)x∗(t) = f(t, β(t)), t ∈ (0, 1).
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On the other hand, as β is an upper solution of (1.1), we also have

−β′′(t) + ρp(t)β(t) ≥ f(t, β(t)), t ∈ (0, 1).

Then, setting

z(t) = β(t) − x∗(t), t ∈ [0, 1],

we obtain −z′′(t)+ρp(t)z(t) ≥ 0, t ∈ [0, 1], and az(0)−bz′(0) = 0, cz(1)+

dz′(1) = 0. By the maximum principle, we can conclude that z(t) ≥ 0, t ∈

[0, 1], that is β(t) ≥ x∗(t), t ∈ [0, 1], a contradiction to the assumption

β(t∗) < x∗(t∗). The proof for the cases 2, 3 and 4 is analogous to that of

the case 1. Similarly, we can show that α(t) ≤ x∗(t), t ∈ [0, 1]. Therefore,

(3.15) holds, and x∗(t) is a C1[0, 1] positive solution of (1.1). The proof of

Theorem 3.1 is complete.

The proof of Theorem 3.2. The proof for the case I): b = d = 0.

1. Necessity. Let x(t) ∈ C[0, 1] be a positive solution of (1.1). Then

x(0) = x(1) = 0 and there is a t0 ∈ (0, 1) such that x′(t0) = 0. Let c0 > 0 be

a constant such that c0x(t) ≤ N for t ∈ [0, 1] and 1/c0 ≥ M . From (1.11)

and (1.12), we have

f(t, x(t)) ≥ (1/c0)
λf(t, c0x(t)) ≥ cµ−λ

0 xµ(t)f(t, 1) for t ∈ (0, 1).

According to (1.1), we have

(3.16) cµ−λ
0 f(t, 1) ≤ −x−µ(t)x′′(t) + ρp(t)x1−µ(t), t ∈ (0, 1).

For t ∈ (0, t0), by integration of (3.16), we obtain

(3.17)

cµ−λ
0

∫ t0

t
f(s, 1)ds ≤ −x′(s)x−µ(s)|t0t +

∫ t0

t
(−µx−µ−1(s))(x′(s))2ds

+ρ

∫ t0

t
p(s)x1−µ(s)ds

≤ x−µ(t)x′(t) + ρ

∫ t0

t
p(s)x1−µ(s)ds, t ∈ (0, t0).

Integrating (3.17), we have

cµ−λ
0

∫ t0

0

∫ t0

t
f(s, 1)dsdt ≤

x1−µ(t0)

1 − µ
+ ρK

∫ t0

0

∫ t0

t
p(s)dsdt

=
x1−µ(t0)

1 − µ
+ ρK

∫ t0

0
sp(s)ds < ∞,
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where K = max
t∈[0,1]

x1−µ(t), so,

(3.18) 0 <

∫ t0

0
sf (s, 1)ds < ∞.

For t ∈ (t0, 1), by integration of (3.16), we obtain

(3.19) cµ−λ
0

∫ t

t0

f(s, 1)ds ≤ −x−µ(t)x′(t) + ρK

∫ t

t0

p(s)ds, t ∈ (t0, 1).

By integration (3.19), we have

cµ−λ
0

∫ 1

t0

∫ t

t0

f(s, 1)dsdt ≤
x1−µ(t0)

1 − µ
+ ρK

∫ 1

t0

(1 − s)p(s)ds < ∞,

i.e.,

(3.20) 0 <

∫ 1

t0

(1 − s)f (s, 1)ds < ∞.

Then, (3.18) and (3.20) imply that (3.2) holds.

For t ∈ (0, t0), by integration of (3.17), we have

cµ−λ
0

∫ t

0

∫ t0

s
f(τ, 1)dτds ≤

x1−µ(t)

1 − µ
+ ρK

∫ t

0

∫ t0

s
p(τ)dτds

=
x1−µ(t)

1 − µ
+ ρK

∫ t

0
ds

(
∫ t

s
+

∫ t0

t

)

p(τ)dτ,

therefore,

(3.21) cµ−λ
0 t

∫ t0

t
f(τ, 1)dτ ≤

x1−µ(t)

1 − µ
+ ρK

(
∫ t

0
sp(s)ds + t

∫ t0

t
p(τ)dτ

)

.

Letting t → 0 in (3.21) and noting condition (H1) and x(0) = 0, we have

(3.22) lim
t→0+

t

∫ t0

t
f(s, 1)ds = 0.

These imply that (3.3) holds.

For t ∈ (t0, 1), by integration of (3.19), we have

cµ−λ
0

∫ 1

t

∫ s

t0

f(τ, 1)dτds ≤
x1−µ(t)

1 − µ
+ ρK

∫ 1

t
ds

(
∫ t

t0

+

∫ s

t

)

p(τ)dτ.
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Therefore,

(1 − t)

∫ t

t0

f(τ, 1)dτ(3.23)

≤ cλ−µ
0

(

x1−µ(t)

1 − µ
+ ρK

(

(1 − t)

∫ t

t0

p(τ)dτ +

∫ 1

t
(1 − τ)p(τ)dτ

))

.

Letting t → 1 in (3.23) and noting condition (H1) and x(1) = 0, we obtain

(3.24) lim
t→1−

(1 − t)

∫ t

t0

f(s, 1)ds = 0.

These imply that (3.4) holds.

2. Sufficiency. Suppose that (3.2)–(3.4) hold. By Theorem 2.2 in

[5], we know

(3.25) ω0 = e2(0) = e1(1) =

∣

∣

∣

∣

e2(t) e′2(t)

e1(t) e′1(t)

∣

∣

∣

∣

= constant > 0.

Here, e1(t), e2(t) are given by Lemma 1. Choose a constant m ≥ 2 such that

m(µ − λ) > 1, and let

(3.26) q(t) =
1

ω0

(

e2(t)

∫ t

0
e1(s)f(s, 1)ds + e1(t)

∫ 1

t
e2(s)f(s, 1)ds

)

,

(3.27) Q(t) = (q(t))1/(m(µ−λ)).

Then q(t), Q(t) ∈ C[0, 1]∩C2(0, 1) satisfying q(t) > 0, Q(t) > 0, t ∈ (0, 1),

and

−q′′(t) + ρp(t)q(t) = f(t, 1), −Q′′(t) + ρp(t)Q(t) ≥ 0, for t ∈ (0, 1)

and from (3.2)–(3.4), we have q(i) = Q(i) = 0, for i = 0, 1. By the proof

of Lemma 1, we obtain

(3.28) 0 < q(t) ≤
1

ω0

∫ 1

0
s(1 − s)w1(1)w2(0)f(s, 1)ds < ∞, t ∈ (0, 1)
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and such that

(3.29)

e2(t)

∫ t

0
e1(s)Q

−(µ−λ)(s)f(s, 1)ds

≤ e2(t)

∫ t

0
e1(s)

(

e2(s)

ω0

∫ s

0
e1(τ)f(τ, 1)dτ

)

−1/m

f(s, 1)ds

≤ (e2(t))
1−1/mω

1/m
0

∫ t

0
e1(s)

(
∫ s

0
e1(τ)f(τ, 1)dτ

)

−1/m

f(s, 1)ds

= ω
1/m
0 (1 − 1/m)−1(e2(t))

1−1/m

(
∫ t

0
e1(s)f(s, 1)ds

)1−1/m

≤ ω
1/m
0 (1 − 1/m)−1

(
∫ 1

0
e1(s)e2(s)f(s, 1)ds

)1−1/m

< ∞.

Similarly, we have

(3.30)

e1(t)

∫ 1

t
e2(s)Q

−(µ−λ)(s)f(s, 1)ds

≤ ω
1/m
0 (1 − 1/m)−1

(
∫ 1

0
e1(s)e2(s)f(s, 1)ds

)1−1/m

< ∞.

Let

h1(t) =
e2(t)

ω0

∫ t

0
e1(s)

(

e1(s)e2(s)

e1(1)e2(0)

)µ

f(s, 1)ds

+
e1(t)

ω0

∫ 1

t
e2(s)

(

e1(s)e2(s)

e1(1)e2(0)

)µ

f(s, 1)ds

h2(t) =
e2(t)

ω0

∫ t

0
e1(s)Q

−µ(s)f(s,Q(s))ds

+
e1(t)

ω0

∫ 1

t
e2(s)Q

−µ(s)f(s,Q(s))ds + Q(t).

Let c1 > 0 such that (1/c1)Q(t) ≤ N < 1, c1 ≥ M > 1. From (1.11) and

(1.12), we have

(3.31)
Q−µ(t)f(t,Q(t)) ≤ Q−µ(t) (Q(t)/c1)

λ f(t, c1)

≤ Q−µ(t) (Q(t)/c1)
λ cµ

1f(t, 1) = cµ−λ
1 Qλ−µ(t)f(t, 1).
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Thus, (3.28)–(3.31) imply that

0 ≤ h1(t) < ∞, 0 ≤ h2(t) < ∞, for t ∈ [0, 1].

One can check that hi ∈ C[0, 1]∩C2(0, 1), hi(0) = hi(1) = 0, i = 1, 2, and

L1
e1(t)e2(t)

e1(1)e2(0)
≤ h1(t) ≤ L1, Q(t) ≤ h2(t) ≤ L2, t ∈ [0, 1],

(3.32) −h′′

1(t) + ρp(t)h1(t) =

(

e1(t)e2(t)

e1(1)e2(0)

)µ

f(t, 1), t ∈ (0, 1),

(3.33) −h′′

2(t) + ρp(t)h2(t) ≥ Q−µ(t)f(t,Q(t)), t ∈ (0, 1).

Here,

L1 = ω0

∫ 1

0

(

e1(s)e2(s)

e1(1)e2(0)

)1+µ

f(s, 1)ds,

L2 =
1

ω0

∫ 1

0
e1(s)e2(s)Q

−µ(s)f(s,Q(s))ds + Q0, Q0 = max
t∈[0,1]

Q(t).

Let α(t) = k1h1(t), β(t) = k2h2(t), t ∈ [0, 1]; here k1, k2 are constants

satisfying 0 < k1 ≤ 1 ≤ k2 and will be determined later. Suppose c2, c3 are

constants such that c2L1 ≤ N, 1/c2 ≥ M , c3 ≥ M, 1/c3 ≤ N . From (1.11),

(1.12), we have

(3.34)

f(t, α(t)) ≥ (1/c2)
λ f(t, c2α(t)) ≥ (c2)

µ−λαµ(t)f(t, 1)

≥ (c2)
µ−λ(k1L1)

µ

(

e1(t)e2(t)

e1(1)e2(0)

)µ

f(t, 1), t ∈ (0, 1),

(3.35)
f(t, β(t)) ≤ (c3)

µ−λ

(

β(t)

Q(t)

)µ

f(t,Q(t))

≤ (c3)
µ−λ (k2L2)

µQ−µ(t)f(t,Q(t)), t ∈ (0, 1).

By virtue of (1.11), (1.12), we can find a k0 such that f(t,Q(t)) ≥

k0Q
µ(t)f(t, 1), and hence, from the definitions of h1(t), h2(t), we have

h1(t) ≤ k−1
0 h2(t) for t ∈ [0, 1]. Now we choose

k1 = min

{

1,
(

Lµ
1cµ−λ

2

)1/(1−µ)
}
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and

k2 = max

{

1, k−1
0 ,

(

Lµ
2cµ−λ

3

)1/(1−µ)
}

.

Then α(t), β(t) ∈ C[0, 1] ∩ C2(0, 1), 0 < α(t) ≤ β(t) for t ∈ (0, 1), α(i) =

β(i) = 0, i = 0, 1. From (3.32)–(3.35), we obtain that for such choice of k1

and k2, α(t) and β(t) are lower and upper solutions of (1.1), respectively.

In the following, we shall prove problem (1.1) has at least one C[0, 1]

positive solution x(t) such that

(3.36) α(t) ≤ x(t) ≤ β(t), t ∈ [0, 1].

First of all, we define an auxiliary function g(t, x) given by (3.11). Let

{an}, {bn} be sequences satisfying 0 < · · · < an+1 < an < · · · < a1 <

1/2 < b1 < · · · < bn < bn+1 < · · · < 1, an → 0 and bn → 1 as n → ∞, and

let {r
(n)
1 }, {r

(n)
2 } be sequences satisfying

α(an) ≤ r
(n)
1 ≤ β(an), α(bn) ≤ r

(n)
2 ≤ β(bn), n = 1, 2, . . . .

For each n, consider the nonsingular problem

(3.37)

{

−x′′ + ρp(t)x = g(t, x), t ∈ [an, bn],

x(an) = r
(n)
1 , x(bn) = r

(n)
2 ,

and the corresponding integral equation

(3.38)

x(t) = Anx(t) =
x2n(t)

x2n(an)
r
(n)
1 +

x1n(t)

x1n(bn)
r
(n)
2 +

∫ bn

an

Gn(t, s)g(s, x(s))ds,

where

(3.39) Gn(t, s) =











x2n(t)x1n(s)

ωn
, s < t,

x2n(s)x1n(t)

ωn
, t ≤ s,

ωn =

∣

∣

∣

∣

x2n(t) x′

2n(t)

x1n(t) x′

1n(t)

∣

∣

∣

∣

= x2n(an) = x1n(bn) = constant > 0,

and x1n(t) ∈ C2[an, bn] is a unique increasing positive solution of the prob-

lem

(3.40)

{

−x′′(t) + ρp(t)x(t) = 0, t ∈ [an, bn],

x(an) = 0, x′(an) = 1,

https://doi.org/10.1017/S0027763000007832 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000007832


144 Z. WEI AND C. PANG

and x2n(t) ∈ C2[an, bn] is a unique decreasing positive solution of the prob-

lem

(3.41)

{

−x′′(t) + ρp(t)x(t) = 0, t ∈ [an, bn],

x(bn) = 0, x′(bn) = −1.

It is easy to verify that An : Xn → Xn = C[an, bn] is completely continuous

and An(Xn) is a bounded set. Moreover, if x ∈ C2[an, bn] is a solution of

(3.38), then x is a solution of (3.37). Using the Schauder fixed point theorem,

we assert that An has at least one fixed point xn ∈ C2[an, bn].

Similarly to the proof of Theorem 3.1, we can prove that α(t) ≤ xn(t) ≤

β(t), t ∈ [an, bn] and hence xn(t) ∈ C2[an, bn] satisfies

(3.42) −x′′

n(t) + ρp(t)xn(t) = f(t, xn(t)), t ∈ [an, bn].

Since [a1, b1] ⊂ [an, bn], n = 1, 2, . . . , there is, for each n, tn ∈ [a1, b1]

such that |x′

n(tn)| = |(xn(b1) − xn(a1))/(b1 − a1)| ≤ (2/(b1 − a1))(β(b1) +

β(a1)). This allows us to assume (substituting by subsequences if necessary)

tn → t0 ∈ [an, bn], xn(tn) → x0 ∈ [α(t0), β(t0)], x′

n(tn) → x′

0 ∈ R, as n →

∞.

From [8, Theorem 3.2, p.14], there is a solution x(t) of the equation

−x′′ + ρp(t)x = f(t, x),

with the maximum existence interval (ω−, ω+) such that x(t0) = x0,

x′(t0) = x′

0 and there is a subsequence of {xn(t)}− we denote it again

by {xn(t)}− such that {xn(t)} converges uniformly to x(t) on any compact

subintervals of (ω−, ω+). Because [an, bn] ⊂ [an+1, bn+1],
⋃

∞

n=1[an, bn] =

(0, 1), and α(t) ≤ xn(t) ≤ β(t), t ∈ [an, bn], one can easily see that

α(t) ≤ x(t) ≤ β(t) for t ∈ (ω−, ω+). This leads additionally to the fact

that (ω−, ω+) = (0, 1), from the Extension Theorem. Also, x(t) satisfies

x(0) = 0, x(1) = 0, because α(t) and β(t) do. Thus x(t) is a C[0, 1]

positive solution of problem (1.1).

This completes the proof of Theorem 3.2 for the case I): b = d = 0.

The proof for the case II): b = 0, d > 0

1. Necessity. Let x(t) ∈ C[0, 1] ∩ C1(0, 1] be a positive solution of

(1.1). Then x(0) = 0. By the proof of Lemma 3, we see that x(t) satisfies

(2.15). And (2.15) implies x(1) > 0, x′(1) ≤ 0. Then there is a t0 ∈ (0, 1]
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such that x′(t0) = 0. Hence, there are two cases, 1): 0 < t0 < 1 and 2):

t0 = 1.

For the case 1): 0 < t0 < 1, let c0 > 0 be a constant such that c0x(t) ≤

N for t ∈ [0, 1] and 1/c0 ≥ M . Then (3.16)–(3.22) hold. By integration of

(3.16), we obtain

(3.43) cµ−λ
0

∫ 1

t0

f(s, 1)ds ≤ −x−µ(1)x′(1) + ρK

∫ 1

t0

p(s)ds < ∞,

where K = max
t∈[0,1]

x1−µ(t). Then, (3.18) and (3.43) imply that (3.5) holds,

and (3.22) and (3.43) imply that (3.6) holds.

For the case 2): t0 = 1 is similar to that of the case 1): 0 < t0 < 1.

2. Sufficiency. Suppose that (3.5) and (3.6) hold. By Theorem 2.2

in [5], we know

(3.44) ω =

∣

∣

∣

∣

v(t) v′(t)

e1(t) e′1(t)

∣

∣

∣

∣

= constant > 0.

Here, e1(t), v(t) are given by Lemmas 1, 2 respectively. Choose a constant

m ≥ 2 such that m(µ − λ) > 1, and let

(3.45) q(t) =
1

ω

(

v(t)

∫ t

0
e1(s)f(s, 1)ds + e1(t)

∫ 1

t
v(s)f(s, 1)ds

)

,

(3.46) Q(t) = (q(t))1/(m(µ−λ)).

We can check that q, Q ∈ C[0, 1] ∩ C1(0, 1] ∩ C2(0, 1), q(0) = Q(0) = 0,

cq(1) + dq′(1) = 0, cQ(1) + dQ′(1) ≥ 0. Let

h1(t) =
v(t)

ω

∫ t

0
e1(s)

(

e1(s)v(s)

e1(1)v(0)

)µ

f(s, 1)ds

+
e1(t)

ω

∫ 1

t
v(s)

(

e1(s)v(s)

e1(1)v(0)

)µ

f(s, 1)ds

h2(t) =
v(t)

ω

∫ t

0
e1(s)Q

−µ(s)f(s,Q(s))ds

+
e1(t)

ω

∫ 1

t
v(s)Q−µ(s)f(s,Q(s))ds + Q(t).
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Then hi ∈ C[0, 1]∩C1(0, 1]∩C2(0, 1), hi(0) = 0, i = 1, 2, ch1(1)+dh′

1(1) =

0, ch2(1) + dh′

2(1) = cQ(1) + dQ′(1) ≥ 0. Let

L1 =
e1(1)v(0)

ω

∫ 1

0

(

e1(s)v(s)

e1(1)v(0)

)1+µ

f(s, 1)ds,

L2 =
1

ω

∫ 1

0
e1(s)v(s)Q−µ(s)f(s,Q(s))ds + Q0, Q0 = max

t∈[0,1]
Q(t).

By virtue of (1.11), (1.12), we can find a k0 such that f(t,Q(t)) ≥

k0Q
µ(t)f(t, 1), and hence, from the definitions of h1(t), h2(t), we have

h1(t) ≤ k−1
0 h2(t) for t ∈ [0, 1]. Suppose c2, c3 are constants such that

c2L1 ≤ N, 1/c2 ≥ M , c3 ≥ M, 1/c3 ≤ N . Now we choose

k1 = min

{

1,
(

Lµ
1cµ−λ

2

)1/(1−µ)
}

and

k2 = max

{

1, k−1
0 ,

(

Lµ
2cµ−λ

3

)1/(1−µ)
}

.

Let α(t) = k1h1(t), β(t) = k2h2(t), t ∈ [0, 1]. A similar argument to that

we have checked in the sufficiency proof of case I): b = d = 0 in Theorem

3.2 yields α(t), β(t) ∈ C1(0, 1] ∩ C2(0, 1), 0 < α(t) ≤ β(t) for t ∈ (0, 1],

α(0) = β(0) = 0, cα(1) + dα′(1) = 0, cβ(1) + dβ′(1) ≥ 0, α(t) and β(t)

are lower and upper solutions of (1.1), respectively.

In the following, we shall prove problem (1.1) has at least one C[0, 1]∩

C1(0, 1] positive solution x(t) such that

(3.47) α(t) ≤ x(t) ≤ β(t), t ∈ [0, 1].

First of all, we define an auxiliary function g(t, x) given by (3.11). Let {an}

be a sequence satisfying 0 < · · · < an+1 < an < · · · < a1 < 1/2, an → 0 as

n → ∞, and let {r
(n)
1 } be a sequence satisfying

α(an) ≤ r
(n)
1 ≤ β(an), n = 1, 2, . . . .

For each n, consider the singular problem

(3.48)

{

−x′′ + ρp(t)x = g(t, x), t ∈ [an, 1),

x(an) = r
(n)
1 , cx(1) + dx′(1) = 0.
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Then there exist constants Kn, J such that 0 < Kn ≤ α(t) ≤ β(t) ≤ J for

t ∈ [an, 1]. Take constants cn such that cn ≥ M, Kn/cn ≤ N . Then when

t ∈ [an, 1], α(t) ≤ x ≤ β(t), we have

(3.49) 0 ≤ f(t, x) = f(t,
cnx

Kn

Kn

cn
) ≤

(

cnJ

Kn

)µ (

Kn

cn

)λ

f(t, 1) = F (t).

Therefore,

(3.50) 0 ≤

∫ 1

an

F (s)ds ≤
1

an

∫ 1

an

sF (s)ds < ∞.

By virtue of the proof of the sufficiency of Theorem 3.1, noting (3.49)

and (3.50), we can obtain the following conclusion: For each n, the sin-

gular problem (3.48) has at least a positive solution xn ∈ C1[an, 1] such

that α(t) ≤ xn(t) ≤ β(t), t ∈ [an, 1]. Hence, we have |xn(1)| ≤ β(1),

|x′

n(1)| ≤ |(c/d)xn(1)| ≤ (c/d)β(1), n = 1, 2, . . . ,. This allows us to as-

sume (substituting by subsequences if necessary)xn(1) → x0 ∈ [α(1), β(1)],

x′

n(1) → −(c/d)x0, as n → ∞.

From [8, Theorem 3.2, p.14], there is a solution x(t) of the equation

−x′′ + ρp(t)x = f(t, x),

with the maximum existence interval (ω−, 1] such that x(1) = x0, x′(1) =

−(c/d)x0 and there is a subsequence of {xn(t)}− we denote it again by

{xn(t)}− such that {xn(t)} and {x′

n(t))} converge uniformly to x(t) and

x′(t) on any compact subintervals of (ω−, 1]. Because
⋃

∞

n=1[an, 1] = (0, 1],

and α(t) ≤ xn(t) ≤ β(t), t ∈ [an, 1], one can easily see that α(t) ≤ x(t) ≤

β(t) for t ∈ (ω−, 1]. This leads additionally to the fact that (ω−, 1] = (0, 1],

from the Extension Theorem. Also, x(t) satisfies x(0) = 0, because α(t)

and β(t) do, and cx(1)+dx′(1) = 0. Thus x(t) is a C1(0, 1] positive solution

of problem (1.1).

This completes the proof of Theorem 3.2 for the case II): b = 0, d > 0.

The proof for the case III): b > 0, d = 0 is almost the same as for the

case II). The proof of Theorem 3.2 is complete.
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