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Abstract

We deal with the problem of seating an airplane’s passengers optimally, namely in the
fastest way. Under several simplifying assumptions, whereby the passengers are infinitely
thin and react within a constant time to boarding announcements, we are able to rewrite
the asymptotic problem as a calculus of variations problem with constraints. This problem
is solved in turn using elementary methods. While the optimal policy is not unique, we
identify a rigid discrete structure which is common to all solutions. We also compare the
(nontrivial) optimal solutions we find with some simple boarding policies, one of which
is shown to be near-optimal.
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1. Introduction

The process of airplane boarding is experienced daily by millions of passengers worldwide.
Airlines have adopted a variety of boarding strategies in the hope of reducing the gate turnaround
time for airplanes. Significant reductions in gate delays would improve the quality of life for
long-suffering air travelers, and yield significant economic benefits from more efficient use of
aircraft and airport infrastructure; see [12], [14], and [16].

Despite the fact that the boarding process is an important part of the customers’ flying
experience, there has been little effort in the way of airplane boarding analysis; see [16]. The
efforts [10], [12], [14]–[16] thus far have been simulation and heuristics based. To the best of
our knowledge, no previous attempt at a rigorous mathematical analysis has been made.

The most pervasive strategy currently employed links boarding time to seat assignment. The
airline specifies which rows may start boarding at any given time. The policy is implemented by
announcements of the form ‘passengers from rows 30 and above are now welcome to board the
plane’. Such strategies are back-to-front boarding strategies, since they board passengers from
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the back of the airplane first. Moreover, current policies may be considered to be jump policies
in the sense that the announcements allow passengers in a certain group of contiguous rows
to join the queue simultaneously. It is possible to consider other back-to-front policies which
gradually allow passengers to join the boarding queue, one row at a time. Such policies may
be implemented using a display at the terminal which shows which row (and those beyond it)
may now join the queue. In jump policies the row numbers on the display will decrease by
jumps, while in gradual policies they will steadily decrease by at most one at any given time.
Among the gradual policies, we can single out the constant pace policies in which the displayed
row number decreases by one after a constant time interval. When assessing boarding policies
we also need to model the way in which passengers react to the policies. In this paper we
assume that passengers join the boarding queue uniformly within a constant time interval of
being allowed to do so by the policy. The size of the interval, which we denote by α, is a
reciprocal measure of the attentiveness of passengers. The rate at which passengers from new
rows are allowed to join the boarding queue in the constant rate policy, and the size of jumps in
jump policies, may be adjustable parameters, depending on how attentive the passengers are to
the boarding policy. The optimal boarding policies and boarding times will also depend on α.

In this paper we find a family, parameterized by α, of asymptotically optimal back-to-front
boarding policies under the assumption that passengers are infinitely thin or, equivalently, that
airplanes are very spacious, i.e. the distance between successive rows in the airplane is very
large. While this assumption may seem unrealistic, it is still instructive to consider this case
since the obtained results are rather precise and the methods introduced to tackle it can be
applied more generally. The problem is solved by reducing the problem of airplane boarding
to the problem of finding the longest increasing subsequence among uniformly sampled points
in a planar domain. The problem is then reduced to an isoperimetric type problem of finding
an optimal domain.

The optimal policies we present are rather complex; see Section 4 for complete details.
However, we can show that constant rate policies are near-optimal and are better than group
policies, after the policy parameters are adjusted to the attentiveness of the passengers. The
optimal policies are also not unique, but we identify an α-dependent discrete substructure,
common to all optimal solutions.

The general problem of airplane boarding for nonthin passengers is considered in a series
of papers, including [6] and [7], which show that airplane boarding time can be reduced to
the problem of computing the longest curve in a two-dimensional domain, equipped with a
Lorentzian metric, which is used for modeling the boarding process. The boarding process
itself is a discrete version of a wave front in the Lorentzian geometry. Some connect-the-dots
type problems [2], surface growth processes [13], and disk scheduling problems can be modeled
similarly [3], [4]. The Lorentzian metric which corresponds to the cases considered in this paper
is flat (no curvature). The problem is thus easier to deal with and can be solved completely.
The results for nonthin passengers [5], [6] turn out to be very different from the results for thin
passengers. In fact, policies which are good for thin passengers are bad for nonthin passengers
and vice versa. The assumption about passengers being thin or that airplanes are spacious is
crucial.

The paper is organized as follows. In Section 2 we carefully present our model of the
boarding process. We also show that increasing subsequences in a permutation, attached to the
boarding process, correspond to sequences of passengers, each blocking his successor’s way to
his assigned seat. Thus, boarding time will coincide with the length of the maximal increasing
subsequence. In Section 3 we digress to a discussion of the asymptotics of maximal increasing
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subsequences of permutations. The main results are stated in Section 4. Section 5 is devoted
to the proofs of our results. In Section 6 we consider the examples of jump and constant rate
policies and compare them with the optimal policies.

2. The model of airplane boarding

2.1. The boarding process

Let us describe our model of the airplane boarding process. We assume that passengers are
assigned seats in the airplane in advance of the boarding process. For simplicity, we also assume
that each row in the airplane is designed for a single passenger. The airplane has S seats. We
denote the total amount of time allotted for joining the queue by Q. We represent passengers
by points (x, y) in the plane, where x is the row assigned to the passenger and y is the time at
which he joins the boarding queue. For convenience, we shall normalize both variables; x is
replaced by x/S and y by y/Q. Via these normalizations, the point (x, y) will lie in the unit
square. Passengers are assumed to be infinitely thin. We assume that boarding starts only after
all passengers have joined the queue at time Q, and thus the queueing time Q is not included
in the boarding time. The reason for this choice is that we wish to compare different boarding
policies, while queue delays such as a late arriving passenger are policy independent. As a
result, only the order of passengers in the queue and their row numbers will affect the boarding
process. Initially, all passengers line up in a queue in front of the airplane gate. Each passenger
in the queue walks towards his or her designated row. Once passengers arrive at their designated
seat, it takes them a fixed amount of time to get organized and clear the aisle by sitting down.
This assumption leads to a synchronous boarding process, which we describe in terms of rounds.
In the first round all passengers who can walk unobstructed all the way to their assigned row
do so. Those who cannot reach their seat, owing to another passenger with a smaller row
number obstructing their way, proceed as far as possible and queue behind an obstructing
passenger. At the end of the round, all passengers who have reached their assigned row sit
down simultaneously. Once the first round of passengers is seated, the remaining passengers
advance forward again, beginning a second round of movement. The process repeats until
everyone is seated. The number of rounds needed will be taken as our measure of the total
boarding time.

We define a natural partial order on passengers. A passenger A blocks another passenger B,
and we denote A ≺ B, if the latter may sit only after the former has done so. Formally, let
A = (xA, yA) and B = (xB, yB). Then A ≺ B if xA < xB and yA < yB . Intuitively, this
condition means that B arrives after A and sits behind him. A chain in this partial order is an
increasing sequence or an upright sequence.

In terms of the partial order, the boarding process is a well-known ‘peeling’ process, which
can be traced to the work of Cantor on ordinal arithmetic. The process peels the partially
ordered set by successively eliminating (in rounds) the minimal elements in the partial order.
In our case the minimal elements are precisely the passengers which are unobstructed, and
can thus proceed directly to their assigned seat. This shows that the two processes indeed
coincide. We recall that a set C in a partial order is a chain if every two elements x, y ∈ C

are comparable, i.e. either x ≺ y or y ≺ x. A set I is independent if no two elements of I
are comparable. The peeling process simultaneously provides a minimal decomposition of the
poset into independent sets and a maximal chain in the poset. To see this, considerRi , the set of
passengers arriving at their seat during round i. By the definition of the peeling process, each
Ri is independent. To show that the Ris form a minimal decomposition into independent sets,
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we construct a chain, whose length equals the number of rounds, as follows. Each passenger
(not seated in the first round) is assigned a pointer, which points to the last passenger who was
responsible for blocking his or her way to the assigned row. This passenger obviously sat down
in the previous round. Following the trail of pointers starting from a passenger who arrived at his
seat in the last round, we identify a longest chain in the partial order. In particular, the number
of rounds needed is the size of the longest chain in the partial order, or the longest increasing
subsequence. The boarding process in fact coincides with patience sorting, a procedure which
computes the longest increasing subsequence in a permutation. The corresponding permutation
is obtained by indexing the passengers according to their x-coordinate, while the value of the
permutation is the y-coordinate index. We refer the reader to [1] for a description of patience
sorting and its importance in studying increasing subsequences.

2.2. Airline policies

An airline policy is represented by a function L(x), which provides the earliest time at
which a passenger from row x may join the queue. Stated otherwise, the policy represented
by L allows passengers in row xS to join the queue at time yQ. Back-to-front policies will
obviously correspond to nonincreasing functions.

In addition to a boarding policy, we need a probabilistic model for the passenger’s reaction
to the boarding policy.

We consider the following reaction model, which we call the attentive reaction model. We
assume that passengers follow the airline policy in the sense that a passenger in row x does not
join the queue before timeL(x). We also assume that there exists an attentiveness parameter α,
such that a passenger at row x joins the queue uniformly within α time units of the earliest
allowed boarding time L(x). The parameter α is a reciprocal measure of the attentiveness
of the passengers, with a small value of α corresponding to very attentive passengers. When
considering policies L in conjunction with this reaction model, we shall always assume that
passengers are allowed at least α time units to board, or, equivalently, that L(x) ≤ 1 − α. The
policy L coupled with the attentive reaction model with parameter α determine a density pL,α ,
which describes the probability of a passenger from row x joining the queue at time y. More
precisely, our assumption that passengers from row x do not join the queue before time L(x),
but do join within α time units, means that pL,α(x, y) = 0 for y ≤ L(x) and y ≥ L(x) + α.
The assumption of uniform boarding within the time interval L(x) ≤ y ≤ L(x)+α means that
pL,α(x, y) = 1/α forL(x) ≤ y ≤ L(x)+α. Given some value of α, it will sometimes be more
convenient for us to represent a policy by the function U = L+ α rather than by L itself. The
representation of a policy by U is the upper representation. We will use both representations
interchangeably, and thus pL,α is the same as pU,α .

Following the discussion in Subsection 2.1, we may define the random variable TL,α,n,
which represents the boarding time of n passengers, given the policy L and attentiveness
parameter α, as follows. We choose n independent and identically distributed (i.i.d.) points
from the unit square using the density pL,α . Here TL,α,n denotes the length of the longest
increasing subsequence among the n points.

3. The asymptotics of increasing subsequences

The following result of [9] describes the asymptotic behavior of the maximal increasing
subsequence of n i.i.d. points in the unit square, chosen with respect to a density p. Following
the previous section, we will apply this result to densities of the form pL,α . In the following
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theorem, the notation w.h.p. (with high probability) refers to a property which holds with
probability approaching 1 as n approaches ∞.

Theorem 1. Let p(x, y) be a differentiable density distribution on a domain U in the unit
square, and let S be a set of n i.i.d. points in the unit square, chosen with respect to the
density p. Let A and B be points in U with A ≺ B. Denote by K = K(A,B) the size of the
largest increasing subset of S, whose points lie betweenA andB. Then the following assertions
hold.

1. For all ε > 0, w.h.p., |K − C(A,B)
√
n| < ε

√
n. Here C = C(A,B) is given by

Cp,A,B = max
φ

2
∫ xB

xA

√
φ′(x)p(x, φ(x)) dx,

where φ runs through all differentiable, nondecreasing functions on the unit interval,
satisfying the boundary conditions φ(xA) = yA and φ(xB) = yB .

2. For any ε, δ > 0, w.h.p., an increasing subset of sizeK−ε√nwhose elements lie between
A and B can be found in a δ-neighborhood of φ if φ maximizes the above functional.
Here a δ-neighborhood is the set of all points with a vertical distance of less than δ from
some point of the form (x, φ(x)).

4. The main result

Let 0 < α ≤ 1, and let Dα be the family of all nonincreasing functions from [0, 1]
to [α, 1]. We view the family Dα as representing all back-to-front policies via the upper
representation U = L + α. Let I be the family of all differentiable, nondecreasing functions
from [0, 1] to itself. (In the sequel if the upper function is denoted by U∗ or Ũ , say, instead
of U , then the corresponding lower function is L∗ or L̃, respectively, etc.) Since the boarding
time TU,α,n is given by the size of the longest increasing subsequence, Theorem 1 shows that
the boarding time T of n passengers, given a back-to-front airplane policy U and attentiveness
parameter α, satisfies w.h.p.

−ε√n ≤ T − OU,α
√
n ≤ ε

√
n

for all ε > 0, where

OU,α = sup
ψ∈I

2
∫ 1

0

√
pU,α(z, ψ(z))ψ ′(z) dz. (1)

The problem of finding an optimal policy is thus reduced to the following problem.

Problem 1. Find a function U∗
α such that

OU∗
α ,α

= min
U∈Dα

OU,α.

Given a real number x, denote by 	x
 the least integer which is not smaller than x. Our
main result is the following.

Theorem 2. For given 0 < α ≤ 1, denote

N(α) =
⌈

2/α − 3 + √
(2/α − 2)2 + 1

2

⌉
and M(α) = (N(α)+ 1)α − 1

N(α)2
,
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and consider the partition [0, 1] = ⋃N(α)
i=0 Ii, where

I0 =
[

0,
M(α)

α

]
,

Ii =
(
(2i − 1)

M(α)

α
, (2i + 1)

M(α)

α

]
, 1 ≤ i ≤ N(α)− 1,

IN(α) =
(
(2N(α)− 1)

M(α)

α
, 1

]
.

Then the function U∗
α , defined by

U∗
α (x) = i2M(α)

x
+ 1 − iα, x ∈ Ii, 0 ≤ i ≤ N(α), (2)

forms a solution of Problem 1. The optimal value of the objective function in (1) is

Oα = 2

N(α)

√
N(α)+ 1 − 1

α
.

Strictly speaking, the right-hand side of the last formula is undefined for α = 1. However, it
is readily verified that its limit as α → 1− is equal to 2, and we shall take O1 = 2. This special
case, which is of significance as it corresponds to the (non)policy of random order boarding,
follows from early results; see [8], [9], [11], and [17].

We remark that the functionU∗
α is composed of a concatenation of hyperbola segments. This

fact hints at the Lorentzian interpretation of the problem. Since hyperbolas are the ‘circles’ of
Minkowski space, they can serve as parts of a wave front in the presence of point sources.

It will turn out in the course of the proof that the function U∗
α in Theorem 2 is not the only

solution of Problem 1. For example, if α ≥ 2
3 then the constant rate policy is also optimal;

see Subsection 6.2, below. The proof of Theorem 2 implies that the solution U∗
α (x) is special

though, in the sense that it bounds from above all the solutions. In other words, denoting by
Optα the set of all solutions of Problem 1, we have

U∗
α (x) = sup

U∈Optα

U(x), x ∈ [0, 1].

However, there are several points at which all solutions of the problem coincide, as Proposition 1,
below, shows.

Proposition 1. Let 0 < α ≤ 1, and set N(α) = 	(2/α − 3 + √
(2/α − 2)2 + 1)/2
. For

every solution U ∈ Optα , we have

U

(
i

N(α)

)
= 1 − i

N(α)
(1 − α), 0 ≤ i ≤ N(α).

5. Proofs

In this section we fix some 0 < α < 1. To prove the main result, we need a few lemmas
first.

Lemma 1. Let U ∈ Dα be an arbitrary fixed function, and let p = pU,α . Then

sup
ψ∈I

∫ 1

0

√
p(z, ψ(z))ψ ′(z) dz =

√
1

α

√
sup

0≤a<b≤1
(b − a)(U(b−)− L(a+)).
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Proof. Set

S = sup
ψ∈I

∫ 1

0

√
p(z, ψ(z))ψ ′(z) dz

and
C = sup

0≤a<b≤1
(b − a)(U(b−)− L(a+)).

First we will show that

S ≤
√

1

α

√
C. (3)

Let ψ0 ∈ I be arbitrary and fixed. Set

a0 = sup{x ∈ [0, 1] : ψ0(x) < L(x)} and b0 = inf{x : ψ0(x) > U(x)}
(where we agree that a0 = 0 if ψ0(0) ≥ L(0) and b0 = 1 if ψ0(1) ≤ U(1)).

If a0 = b0 then
∫ 1

0

√
p(z, ψ0(z))ψ

′
0(z) dz = 0 ≤ (

√
1/α)

√
C. Otherwise we have a0 < b0.

Since ψ0 is nondecreasing and U is nonincreasing, L(x) ≤ ψ0(x) ≤ U(x) throughout the
interval (a0, b0), and therefore

∫ 1

0

√
p(z, ψ0(z))ψ

′
0(z) dz =

∫ b0

a0

√
ψ ′

0(z)

α
dz. (4)

By Cauchy–Schwarz’s inequality we have

∫ b0

a0

√
ψ ′

0(z)

α
dz ≤

√∫ b0

a0

ψ ′
0(z) dz

∫ b0

a0

1

α
dz

=
√
b0 − a0

α

√
ψ0(b0)− ψ0(a0). (5)

Since √
ψ0(b0)− ψ0(a0) ≤ √

U(b0−)− L(a0+),
by (4) and (5), we obtain

∫ 1

0

√
p(z, ψ0(z))ψ

′
0(z) dz ≤

√
1

α

√
(b0 − a0)(U(b0−)− L(a0+)) ≤ C,

which implies (3).
Now we will show that

S ≥
√

1

α

√
C. (6)

Set
B̃ = {(a, b) : 0 ≤ a < b ≤ 1, U(b−) > L(a+)}.

If a is a continuity point ofU , then (a, b) ∈ B̃ for all b in a sufficiently small right neighborhood
of a. Since U has at most countably many discontinuities, this implies that B̃ �= ∅. Hence,

C = sup
(a,b)∈B̃

(b − a)(U(b−)− L(a+)) > 0. (7)
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Take an arbitrarily small ε > 0. By (7), there exists a pair (a∗, b∗) ∈ B̃ such that

C − ε ≤ (b∗ − a∗)(U(b∗−)− L(a∗+)),
or, equivalently, √

C − ε

α
≤

√
b∗ − a∗
α

(U(b∗−)− L(a∗+)). (8)

Let ψ̃ be a linear function on [a∗, b∗],with ψ̃(a∗) = L(a∗+) and ψ̃(b∗) = U(b∗−). Obviously

∫ b∗

a∗

√
p(z, ψ̃(z))ψ̃ ′(z) dz =

∫ b∗

a∗

√
1

α

ψ̃(b∗)− ψ̃(a∗)
b∗ − a∗ dz

=
√
b∗ − a∗
α

(U(b∗−)− L(a∗+)). (9)

If L(a∗+) �= 0 and U(b∗−) �= 1, define ψ̃ outside [a∗, b∗], in such a way that ψ̃ ∈ I. By (8)
and (9), we obtain

S ≥
∫ 1

0

√
p(z, ˜ψ(z))ψ̃ ′(z) dz =

∫ b∗

a∗

√
p(z, ˜ψ(z))ψ̃ ′(z) dz ≥

√
C − ε

α
.

If L(a∗+) = 0 then, by changing ψ̃ slightly on the interval [a∗, a∗ + δ) for an arbitrarily
small δ > 0, we similarly obtain

S ≥
√
C − ε − 2δ

α
. (10)

The case in which U(b∗−) = 1 leads to (10) in a similar way. Letting ε and δ approach 0, we
obtain (6).

The combination of (3) and (6) completes the proof.

In view of Lemma 1, Problem 1 is equivalent to the following problem.

Problem 2. For a given 0 < α ≤ 1, find

M = min
U∈Dα

sup
0≤a<b≤1

(b − a)(U(b−)− L(a+)).

Lemma 2. If Problem 1 has a solution U then it has a continuous solution U∗. Moreover, U∗
may be chosen so that U∗(x) ≥ U(x) for every x ∈ [0, 1].

Proof. Set

C(U) = sup
0≤a<b≤1

(b − a)(U(b−)− L(a+)), U ∈ Dα.

Consider an arbitrary function U0 ∈ Dα . If U0 is discontinuous, we will construct a
continuous function U∗

0 ∈ Dα , such that C(U∗
0 ) ≤ C(U0) and U∗

0 (x) ≥ U0(x) for x ∈ [0, 1].
Define a function Ũ0 by

Ũ0(x) =
{
U0(0), x = 0,

U0(x−), x > 0.
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Clearly, Ũ0 belongs to Dα, is continuous from the left, bounds U0 from above, and C(Ũ0) =
C(U0). Hence, to begin with we may assume that U0 is continuous from the left.

Let J0 denote the (countable) set of all discontinuity points of U0. For any w ∈ J0, denote
by j (w) = U0(w) − U0(w+) the jump of U0 at w. Suppose that the maximal jump of U0 is
at w1.

Now we construct a new function U1 ∈ Dα, which will be identical with U0, except
(perhaps) on a small interval I1 = [w1, w1 + δ

′
1], such that U1 will be continuous on I1 and

C(U1) ≤ C(U0). Take some

0 < δ1 ≤ min

{
C(U0)j (w1)

1 + j (w1)
, 1 − w1

}
,

and set

K1 = U0(w1)− U0(w1 + δ1)

δ1
,

x0 = inf{x ∈ [w1, w1 + δ1] : U0(w1)−K1(x − w1) ≤ U0(x)}.
Set

δ′1 = x0 − w1.

Clearly, 0 < δ′1 ≤ δ1. Define

U1(x) =
{
U0(w1)−K1(x − w1), w1 ≤ x ≤ w1 + δ′1,
U0(x), otherwise.

The function U1 belongs to Dα, is continuous from the left, and U1(x) ≥ U0(x) throughout
[0, 1]. We want to prove that

C(U1) ≤ C(U0).

To this end, we have to show that, for any points x1 and x with 0 ≤ x1 < x ≤ 1, we have

(x − x1)(U1(x)− L1(x1+)) ≤ C(U0). (11)

Set

�x = x − x1, �y = U1(x)− L1(x1+).

If both x1 and x lie outside the interval [w1, w1 + δ
′
1], then the left-hand side of (11) remains

unchanged if U1 and L1 are replaced by U0 and L0, respectively, so that (11) holds. If both of
them are within the interval then

�x�y ≤ �x ≤ δ′1 ≤ δ1 ≤ C(U0)j (w1)

1 + j (w1)
≤ C(U0).

If w1 ≤ x1 ≤ w1 + δ′1 < x then

�x�y ≤ �x(U0(x)− L0(x1+)) ≤ C(U0).

It remains to deal with the case in which x1 < w1 ≤ x ≤ w1 + δ′1. Rewrite �x in the form

�x = x − w1 + w1 − x1 = x − w1 +�w1, (12)

https://doi.org/10.1239/aap/1198177241 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1198177241


Optimal boarding policies for thin passengers 1107

where �w1 = w1 − x1, and rewrite �y in the form

�y = −K1(x − w1)+�y1, (13)

where �y1 = U1(w1)− L1(x1+).
Now, if �w1 ≤ C(U0)− δ′1 then

�x�y ≤ �x ≤ �w1 + δ′1 ≤ C(U0).

If �w1 > C(U0)− δ′1 then, by (12) and (13),

�x�y = �w1�y1 + (x − w1)(�y1 −K1(x − w1)−K1�w1). (14)

Since 0 < δ′1 ≤ δ1 ≤ C(U0)j (w1)/(1 + j (w1)), we obtain

δ′1
j (w1)

≤ C(U∗)− δ′1. (15)

Note that K1 ≥ j (w1)/δ
′
1, and (15) implies that

K1 ≥ 1

C(U0)− δ′0
. (16)

Since �y1 ≤ 1, by (16) this yields

�y1 −K1((x − w1)+�w1) ≤ 1 − (x − w1)+�w1

C(U0)− δ′1

= C(U0)− δ′1 −�w1 − (x − w1)

C(U0)− δ′1

= C(U0)− δ′1 −�w1

C(U0)− δ′1
< 0.

The last inequality, combined with (14), gives

�x�y ≤ �w1�y1 ≤ C(U0).

Thus, we have shown that in all cases

C(U1) ≤ C(U0).

Employing the same process, we construct a sequence of functions (Ui)∞i=0 in Dα such that

U0(x) ≤ U1(x) ≤ · · · ≤ Ui(x) ≤ Ui+1(x) ≤ · · · , 0 ≤ x ≤ 1,

and
C(U0) ≥ C(U1) ≥ · · · ≥ C(Ui) ≥ C(Ui+1) ≥ · · · .

(Actually, if at some finite stage we obtain a continuous Ui , we stop the process. In what
follows, we shall refer only to the case where each Ui is still discontinuous.)
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Each function Ui is continuous from the left and agrees (for i ≥ 1) with Ui−1 except
(perhaps) on the interval Ii = [wi,wi + δ′i], where wi is the point of maximal jump of Ui−1.
Moreover, Ui is linear and, in particular, continuous on Ii . We may assume that

Ii ∩ Ij = ∅, i �= j. (17)

By (17), for each x ∈ [0, 1], the sequence (Ui)∞i=0 is eventually constant; hence, the sequence
(Ui)

∞
i=0 converges pointwise to some function U∗

0 . Clearly, U∗
0 ∈ Dα and U∗

0 (x) ≥ U0(x) for
each x ∈ [0, 1]. Let Ji, i ≥ 0, and J ∗

0 be the sets of discontinuity points of Ui and U∗
0 (x),

respectively. Clearly, J ∗
0 ⊂ Ji ⊆ {w ∈ J0 : j (w) ≤ j (wi+1)} for each i. Since j (wi) → 0 as

i → ∞, the functionU∗
0 (x) is continuous. Take any two points x1 and x with 0 ≤ x1 < x ≤ 1.

For sufficiently large i, we have U∗
0 (x1) = Ui(x1) and U∗

0 (x) = Ui(x), and therefore

(x − x1)(U
∗
0 (x)− L∗

0(x1)) ≤ C(Ui) ≤ C(U0),

which implies that C(U∗
0 ) ≤ C(U0), and provides the lemma.

For 0 < α ≤ 1 and M > 0, set

Dα,M =
{
U ∈ Dα : sup

0≤a<b≤1
(U(b−)− L(a+))(b − a) ≤ M

}
.

Similarly to Lemma 2, we can prove the following lemma.

Lemma 3. If Dα,M �= ∅ for given 0 < α ≤ 1 and M > 0 then, for any function U ∈ Dα,M ,
there exists a continuous function U∗ ∈ Dα,M such that U∗(x) ≥ U(x) for x ∈ [0, 1].

Let CM be the family of all nonincreasing, continuous functions U : [0, 1] −→ (−∞, 1],
satisfying

sup
0≤a<b≤1

(U(b)− L(a))(b − a) = M, M > 0.

Lemma 4. Suppose that CM �= ∅ for a given M > 0. Let

U0(x) = sup
U∈CM

U(x), x ∈ [0, 1].

Then U0 is nonincreasing and satisfies

(U0(b−)− L0(a+))(b − a) ≤ M, 0 ≤ a < b ≤ 1. (18)

Proof. Clearly, U0 is nonincreasing. For arbitrary fixed δ > 0, we have

(U0(b−)− L0(a+))(b − a)

≤ b − a

b − a − 2δ
((b − δ)− (a + δ))(U0(b − δ)− L0(a + δ)). (19)

For arbitrary fixed ε > 0, select a function U∗ ∈ CM such that

U0(b − δ) ≤ U∗(b − δ)+ ε.

Since L∗(a + δ) ≤ L0(a + δ), we obtain

((b − δ)− (a + δ))(U0(b − δ)− L0(a + δ))

≤ ((b − δ)− (a + δ))(U∗(b − δ)+ ε − L∗(a + δ))

≤ M + ε.
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Substituting in (19), we find that

(U0(b−)− L0(a+))(b − a) ≤ b − a

b − a − 2δ
(M + ε).

Letting δ→ 0 and ε→ 0, we obtain (18), which completes the proof.

For given 0 < M ≤ α ≤ 1, set N = 	(α/M − 1)/2
, and consider the partition [0, 1] =⋃N
i=0 Ji , where

J0 =
[

0,
M

α

]
,

Ji =
(
(2i − 1)

M

α
, (2i + 1)

M

α

]
, 1 ≤ i ≤ N − 1,

JN =
(
(2N − 1)

M

α
, 1

]
.

Proposition 2. Set

U∗(x) = i2M

x
+ 1 − iα, x ∈ Ji, 0 ≤ i ≤ N. (20)

Then

(i) U∗ ∈ CM ;

(ii) U∗(x) = supU∈CM U(x), x ∈ [0, 1].
Proof. (i) It is easy to verify that U∗ is nonincreasing, continuous, and bounded above by 1.

It remains to show that

sup
0≤a<b≤1

(U∗(b)− L∗(a))(b − a) = M.

Let 0 ≤ i ≤ N , and let b ∈ Ji be an arbitrary fixed point of Ji . We shall split the proof into
four cases.

If 0 ≤ i ≤ 2 and a ∈ I0 then

(U∗(b)− L∗(a))(b − a) =
(
i2M

b
− (i − 1)α

)
(b − a)

≤ i2M − (i − 1)αb

≤ M. (21)

For any 0 ≤ i ≤ N , if b −M/α < a < b then

(U∗(b)− L∗(a))(b − a) = (U∗(b)− U∗(a)+ α)(b − a) < α
M

α
= M. (22)

If i ≥ 3 and a ∈ Jk for some 0 ≤ k ≤ i − 3 then 0 ≤ a ≤ (2i − 5)(M/α), and therefore

U∗(b)−L∗(a) ≤ i2M

(2i − 1)(M/α)
− (i − 3)2M

(2i − 5)(M/α)
− 2α = − α

(2i − 1)(2i − 5)
< 0. (23)
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Finally, let i ≥ 1 and a ∈ Jk for some max(1, i − 2) ≤ k ≤ i. Set

A = Mi2 − αb(i − k − 1)

and

d = b − a

M/α
.

Define a quadratic function h by

h(z) = −MAz2 + αb(A−M(k2 − 1))z− α2b2.

A routine calculation gives

(U∗(b)− L∗(a))(b − a)−M = M

α2ab
h(d).

It is easy to verify that A > 0 and that the discriminant of h satisfies

� = α2b2(A−M(k + 1)2)(A−M(k − 1)2) ≤ 0.

It follows that h(d) ≤ 0, which implies that

(U∗(b)− L∗(a))(b − a) ≤ M. (24)

Altogether, by (21), (22), (23), and (24), we obtain

(U∗(b)− L∗(a))(b − a) ≤ M, 0 ≤ a ≤ b ≤ 1. (25)

Conversely, let b ∈ Ji for any 1 ≤ i ≤ N , and set a0 = ((i − 1)/i)b. It is easy to verify that

(U∗(b)− L∗(a0))(b − a0) = M, b ∈ Ji, 1 ≤ i ≤ N, (26)

which, combined with (25), completes the proof of part (i).

(ii) Set
U0(x) = sup

U∈CM

U(x), x ∈ [0, 1].

Suppose thatU0 is not identical withU∗. Let j be the smallest index i for which the restrictions
of U0 and U∗ to Ji are nonidentical. Clearly, 1 ≤ j ≤ N and U0(x) = U∗(x) for each point
x ∈ Jj−1. Let b0 ∈ Jj be a point with U0(b0) > U∗(b0). Set a0 = ((j − 1)/j)b0. Then
a0 ∈ Jj−1 and U0(a0) = U∗(a0). As in (26),

(U0(b0)− L0(a0))(b0 − a0) > (U∗(b0)− L∗(a0))(b0 − a0) = M,

which contradicts Lemma 4, and thus completes the proof of part (ii).

Proof of Theorem 2. If N = N(α) and M = M(α), then U∗(1) = α, where U∗ is defined
as in (20). By part (i) of Proposition 2 we have U∗ ∈ CM , and thus U∗ ∈ Dα . Hence,
U∗ ∈ Dα,M .

Let 0 < M < ((N + 1)α − 1)/N2 be arbitrary and fixed. Suppose that there exists some
Ũ ∈ Dα,M . By Lemma 3, there exists a continuous function Ũ0 ∈ Dα,M . Since, by part (ii)
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of Proposition 2, U∗ is the supremum of all continuous functions U ∈ CM , and it is easy to
verify that

U∗(1) = N2M + 1 −Nα < (N + 1)α −Nα = α,

it follows that, for any U ∈ CM , we have U(1) < α. Thus, for any U ∈ CM , we obtain
U �∈ Dα,M , which implies that Dα,M = ∅.

Hence, U∗, with M = ((N + 1)α − 1)/N2, forms a solution of Problem 1. In view of
Lemma 1, the optimal value is

Oα =
(

2

N

)√
N + 1 − 1/α.

Proof of Proposition 1. Let U ∈ Opt , and let N = N(α). First note that i/N ∈ Ii for
i = 0, 1, . . . , N . We start by examining the value of U at the last of the points i/N , namely
1 ∈ IN . On the one hand,U(1) = L(1)+α ≥ α, and on the other hand, by Proposition 2(ii) and
Lemma 2, we have U(1) ≤ U∗(1) = α. Thus, every U ∈ Opt satisfies U(1) = U∗(1) = α.
Next consider the point (N − 1)/N ∈ IN−1. Since U is a solution of Problem 2 with optimal
value M = ((N + 1)α − 1)/N2, we have(

U(1)− L

(
N − 1

N

))(
1 − N − 1

N

)
≤

(
U(1−)− L

(
N − 1

N
+

))
1

N
≤ M.

On the other hand, U∗ also provides the same optimal value M of Problem 2, and Proposi-
tion 2(ii) and Lemma 2 imply that

L

(
N − 1

N

)
≤ L∗

(
N − 1

N

)
.

Thus, (
U(1)− L

(
N − 1

N

))
1

N
≥

(
U∗(1)− L∗

(
N − 1

N

))
1

N
= M,

which implies that,

U

(
N − 1

N

)
= U∗

(
N − 1

N

)
= 1 − N − 1

N
(1 − α).

Now suppose that, for some 1 ≤ i ≤ N , we have proved that U(i/N) = 1 − (i/N)(1 − α).
We can easily check that(

U∗
(
i

N

)
− L∗

(
i − 1

N

))
1

N
= M, 1 ≤ i ≤ N,

which, in the same way as above, implies that

U

(
i − 1

N

)
= 1 −

(
i − 1

N

)
(1 − α).

This completes the proof.
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6. Examples

6.1. Jump policies

A jump policy is a back-to-front policy, where the function L(x) is of the form L(x) = ti
for ri ≤ x ≤ ri+1, for some constants 0 = t0 < t1 < t2 < · · · < tk+1 = 1 and 0 = r0 <

r1 < · · · < rk+1 = 1, for i = 1, . . . , k. The parameter k denotes the number of jumps in the
policy, and the ith jump allows the group of passengers from rows ri to ri+1 to join the queue at
time tk−i . The idea is to allow the passengers from the kth (last) group to board first, followed
by the passengers from the next to last group, and so on. This will occur if α ≤ mini (ti−1 − ti ),
an inequality which we assume. Under such circumstances, the boarding time will in fact be
independent of the differences ti−1 − ti , since the restrictions on the order of passengers in the
queue are independent of the differences, and we may assume that ti = 1−i/k and thatα = 1/k.
Applying Theorem 1, we see that the boarding time (after division by

√
n) is asymptotically

maxi 2
√
ri+1 − ri . The boarding time is minimized by choosing all jumps (groups) to be of

equal size, in which case we obtain an asymptotic boarding time of 2
√

1/k = 2
√
α.

6.2. Constant rate policies

The constant rate policy with parameter α is given by the affine function Lα(x) =
(1 − α)(1 − x). As noted in the introduction, such policies allow passengers from new
rows to join the boarding queue at a constant rate, which is adjusted to the attentiveness of
the passengers. We know, by Lemma 1, that the normalized boarding time OLα is given by
max0≤a<b≤1 2

√
(b − a)(Uα(b)− Lα(a)). By elementary computations we have

OLα = 2
√

α

4(1 − α)
=

√
1

1 − α

√
α, α ≤ 2

3
,

while

OLα = 2

√
2 − 1

α
, α ≥ 2

3
.

A comparison with jump policies shows that constant rate policies are preferable to jump
policies. We now compare constant rate policies to the optimal policies. When α ≥ 2

3 , the
boarding time coincides with that of the optimal policy and, hence, the constant rate policy
is optimal for α ≥ 2

3 . For example, for α = 7
9 , the constant rate policy, Lα(x) = 2

9 − 2
9x,

0 ≤ x ≤ 1, and the optimal policy, defined in Theorem 2,

L∗
α(x) = U∗

α (x)− α =

⎧⎪⎪⎨
⎪⎪⎩

2

9
, 0 ≤ x ≤ 5

7
,

5

9x
− 5

9
,

5

7
< x ≤ 1,

provide the same normalized boarding time 2
√

5/7. As mentioned above, the optimal policies
are not unique, and Proposition 1 identifies an α-dependent discrete substructure, common to
all optimal solutions. However, the optimal policy (2), defined in Theorem 2 is special, in the
sense that it bounds from above all the optimal solutions. For α < 2

3 , the constant rate policy
is rarely optimal, but we show that it is worse by at most a factor of 3/2

√
2 ≈ 1.06 than the

optimal policy for all values of α. Let R(α) denote the ratio between the performance of the
optimal policy and that of the constant rate policy. We are interested in the maximal value
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of 1/R. We have R(α) = 1 for α ≥ 2
3 . For α ≤ 2

3 , we have

R(α) = 2

N(α)

√
((N(α)+ 1)α − 1)(1 − α)

α2 .

N(α) is an integer-valued function, which assumes the value N ≥ 1 in the range αN−1 ≥ α >

αN , where

αN = 2N + 1

N2 + 3N + 1
for N > 0

and α0 = 1. Fixing some N , it is easy to see that the function

RN(α) = 2

N

√
((N + 1)α − 1)(1 − α)

α2

has a single maximal value in the range α > 0, which is at the point βN = 2/(N + 2). A
simple computation shows that βN satisfies αN−1 > βN > αN and that R(βN) = 1. Hence,
the constant rate policy is optimal for each α = βN , and only at these values. We also conclude
that the minimal value of R in the range αN−1 ≥ α > αN must lie either at αN−1 or at αN .
Substituting the formula for αN into R, we obtain a sequence of values

γN = R(αN) =
√
(N + 1/2)2 − 1/4

2(N + 1/2)
.

It is clear that γN is an increasing sequence, and hence the minimal value is γ1 = 2
√

2/3, as
required.
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