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COMPARISON THEOREMS 
FOR LINEAR ELLIPTIC EQUATIONS 

V.B.HEADLEY 

ABSTRACT. TWO comparison theorems, one of pointwise type and one of integral 
type, will be obtained for linear elliptic equations of order 2m on an exterior domain in 

1. Introduction. Using Gârding's inequality, we will obtain comparison theorems 
for the linear elliptic differential equations 

m 

(1) Lu := J2 (-l)la]Da[Aa^x)D(3u] = 0 ( ^ e î l Ç f ) 
M.|0l=o 

and 

m 

(2) lw.= £ (-l)^Da[aap(x)D^u]^0. 
a|,|/?|=0 

Here, 12 is an unbounded open set, the coefficient functions are sufficiently smooth, and 
we make use of the multi-index notation employed in [1]. Our results generalize two 
known comparison theorems: 

(i) work of the author [5] in which lu = (-l)mAmu + h(x)u\ 
(ii) work of Butler and Erbe [2] on the ordinary differential equations 

(3) LNv+pv = 0 

and 

(4) LNv + qv = 0, 

where L# is a linear, disconjugate, ordinary differential operator of order N. 

We remind the reader that an N-th order, ordinary, linear differential operator L^ is 
said to be disconjugate on an interval / iff the equation L^y = 0 has no nontrivial solution 
with Af zeros, counting multiplicities, on / . 

This research was supported by an operating grant from the Natural Sciences and Engineering Research 
Council of Canada. 

Received by the editors May 23,1991. 
AMS subject classification: 35B05, 34C10. 
© Canadian Mathematical Society 1993. 

164 

https://doi.org/10.4153/CMB-1993-024-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1993-024-9


COMPARISON THEOREMS 165 

REMARK 1.1. According to the Pôlya-Levin disconjugacy criterion [9,7], an N-th or­
der, ordinary, linear differential operator LN with real-valued, locally integrable coeffi­
cients is disconjugate on a nondegenerate interval J if, and only if, there exist sufficiently 
smooth, nonvanishing functions po> Pi > • • • > Pw such that, in the interior of J, we have 

(5) LNv = pu­
ât 

PN-lit 
• P I | [ P 0 V ] -

2. Definitions and preliminary results. Let G be a nonempty, open (possibly un­
bounded) subset of Q. If k is a nonnegative integer, we define the seminorm | • \kG, the 
weighted seminorm | • \kjGw and the norm || • \\ktG as follows: 

(6) 

(7) 

(8) 

" k c = [ E JG\Dau\2dx l » / 2 

Vl=* 

Wk.G.w £ f(k\/a\)\Dau\2dx 
\a\=k 

1/2 

l l M IU,G = {h»\ic 
Lj=0 

1» /2 

The definition of |«|t,c,w is motivated by the following formula, which is valid for any 
real-valued <f> in C^(G): 

(9) (-1? [ d>Ak<l>dx = £ [(k\/al)\Dy\2dx. 
J(j i i , JLr 

To compare the seminorms \ - \m,G and | • |m>G,w, we let 

(10) co = max{m!/a! : \a\ = m}. 

Then it is easily seen that 

(11) I I / I I <r ! /2 l I 
m,G,w — ^o \U\m,G 

In (6) and (8), when there is no danger of confusion, we will omit the subscript G. 
Let the Sobolev spaces Hk(G) and H%(G) be defined as in [4]. If G is bounded, and 

if there exists a nontrivial function u in H^(G) Pi C2m(G) such that (1) holds, then G is 
called a nodal domain for L or a nodal domain for (1). If for every positive number r the 
region {x G Q : |JC| > r} contains a nodal domain for L, then (1) is said to be nodally 
oscillatory in Q. 

Using integration by parts, we can easily show that if G is any nonempty, open (pos­
sibly unbounded) subset of Q, then for every real-valued <j> in C™(G) we have: 

[ <j>I4dx= J2 [ A«/3to Da<t>rf<l> dx+ [ </>2A0,oto <fc 

(12) 
2 m - 1 

+ £ j^D^D^dx 
H+|/*|=i 

: = / G [ L ; 0] + j£ <£2A0,oto ^ 
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and 

/ <\>l<\> dx = J2 [ aap(x) Da<j) Dp(f) dx+ [ 4>2aQ 0(x) dx 
JG \a\=\p\=m

jG JG 

2m-1 
(13) + £ J^D^D^dx 

M+I0l=i* 

:=fa[t;<l>] + J <fao,o(x)dx. 
JG 

Define the set K(L\ Q) as follows: 

(14) * ( L ; Q ) = ( £ Aap(x)Sa+P:xeQ,teir,\Z\ = l}; 
V\a\ = \0\=m J 

and define K(l; Q) by replacing Aa>j3 in (14) with aa/5. 
We will suppose that the differential operators L and t are uniformly strongly elliptic 

in the following sense: there exist constants £b, eo> and ei such that 

(15) 0 < £ 0 :=inf£(L;Q) 

and 

(16) 0 < e0 := inf K(l;Q) < supK{l\Q) := e{. 

Modifying the well-known proof of the global version of Garding's inequality [1, Theo­
rem 7.6], we can establish the following two results. 

LEMMA 2.1. Suppose that the principal coefficient-functions Aa^ (\a\ = \/3\ = m) 
are uniformly continuous on £2, and that the intermediate coefficient-functions Aap (I < 
|<*| + \P\ < 2m— I) are bounded and measurable on £1. Let G be any nonempty, open 
subset ofQ. and let fo\L\ <\>\ be as in (12). Then there exist constants c\ G (0, oo) and 
C2 G [0, oo) such that, for every real-valued <j> in CQ°(G), we have: 

(IV) fG[L;4>]>cM\4>\\1
m,G-c2\4>\l,G-

The constant c\ may be expressed explicitly in terms of the integers m and n; the constant 
C2 may be expressed explicitly in terms of the following quantities: sup{\Aap(x)\ : x E £1; 
1 < \a\ + \/3\ < 2m — I}, m, n, EQ, and the modulus of continuity for the principal 
coefficients. 

LEMMA 2.2. Suppose that the regularity hypotheses in Lemma 2.1 hold, with Aap 
replaced by aap. Let G be any nonempty, open subset ofQ,, and letfc\l\ (/>] be as in (13). 
Then there exist positive constants C5 andce such that, for every real-valued <j> in CQ°(G), 

we have: 

(18) fcU;<l>}<c5\4\2
m,G + cMlG. 

The constants c$ and ce may be expressed explicitly in terms of the following quantities: 
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m, n, e\,sup{\aafi(x)\ : x G £1; 1 < |a| + \/3\ < 2m— 1} and the modulus of continuity 
for the principal coefficients. 

3. The main results. Our first comparison theorem is a generalization of the scalar 
case of [5, Theorem 3.1]. Note that in [5] we considered the case where L is vector-valued, 
and we compared the differential operator L with the differential operator (—l)mAm + 
h, where h: £1 —-*• RNxN is a continuous matrix-valued function, A denotes the Laplace 
operator, and Am := A(Am_1) whenever m>2. 

THEOREM 3.1. Suppose that 

(19) 0 < c 5 <c4:=côlcxEo 

and that for all x G £1 we have 

(20) Ao,oM ~ ao,o(*) > C2 + c6. 

7/Y7 j w nodally oscillatory in £1, f/ien (2) is also nodally oscillatory in £1. 

PROOF. If ( 1 ) is nodally oscillatory in £1, then for every positive number r the region 
{x e £1: \x\> r} contains a nodal domain G for the differential operator L. Thus, there 
exists a nontrivial real-valued function u in C2m(G) C\ H^(G) such that (1) holds. 

Furthermore, (13), (18) (i.e., Lemma 2.2) and (11) together imply that for every real-
valued </> in C™(G) we have: 

j <t>l<t>dx =fGU\ </>] + j (t>Wo(x)dx 

(21) < c5\^G + JG |0|2[flo,o(*) +c6]dx 

< cs\<t>\itGtw
+JG l ^ l W w + c 6 ] <**. 

From (21), (19) and (20) we deduce that for every </> G C^(G; Rl) we have 

(22) jG <\>t<\>dx < cA\<j>\2
m^w + jG \4>\2[A0,o(x) - c2] dx. 

We also note that (12), (17) (i.e., Lemma 2.1), (8) and (11) imply that for every <\> e 
Cg°(G;/?1)wehave 

JG <j>L<j> dx = fG[L; G] + JG (/>2Ao,o (x) dx 

> CIEOUW^G + JG |0|2[Ao,oW - c2] dx 

(23) > C I 3 > M * G + [\<t>\2[A0,o(x)-c2]dx 

> cô1ci£0|<Mm,G,M. + / , \4>\2[A0,o(x) - c2]dx 

= C4\<t>\l,G,w + JG \<f>\2[M,o(x) - c2] dx. 
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It follows, from (22) and (23), that for every real-valued (/> in C™(G) we have 

(24) f <j>l<j>dx< [ <j)L<j)dx. 
J G JG 

Since u is in H°m(G) H C2m(G) and satisfies (1), and since C™(G) is dense in H°m(G), it 
follows from (24) that 

(25) / uiudx< / uLudx — 0. 

A standard variational argument [6, 3] may now be employed to find a nonempty open 
set G' Ç G such that zero is the smallest eigenvalue of the boundary-value problem 

(26) £y = \y, y G i^(G') n C2w(G'). 

Thus, we have shown that for every positive number r the equation iy — 0 has a non-
trivial solution y, with a nodal domain G' Ç G Ç {je G Q : |JC| > r}. The proof of 
Theorem 3.1 is now complete. 

Before formulating and proving our next comparison theorem, we recall some ideas 
and results from [2]. 

Suppose that the functions P\,...,PN introduced in Remark 1.1 have the property 
that for each j G { 1 , . . . , A} we have pj G CN~i(j\ (0, oo)). Define the quasiderivatives 
Lov,..., LNV in the usual way: 

(27) Lov = pov, Ljv = Pj-(Lj-Xv) (I <j < N). 

Furthermore, let T := {iy,... Jk} and A := {/i,... JN-IC} be subsets of {0 ,1 , . . . ,N— 1} 
such that 0 < i\ < i2 < • • • < ik < N - 1 and 0 <jx <j2 < • • • <jn-k <N-l. 

For any point a in the interval / , the first right extremal point 9\(T, A; a) for (3) is 
defined to be the first point s G J D (a, oo) for which there exists a nontrivial solution of 
(3) satisfying the boundary conditions 

n „ , fl,-v(fl) = 0, (i G O 
1 j U-v(5) = 0, (/-GA) 

Similarly, we can define #i(r, A; a), the first right extremal point for (4). 

The differential equation (3) is said to be (r, A)-disconjugate on J iff for every a G J 

the first right extremal point 6\ (T, A; a) is nonexistent. 

The pair (r, A) is said to be admissible iff for every integer b G {1,.. . ,A— 1}, at 
least b members of the sequence ( /1 , . . . , /*,... J\,..., k}) are less than b. 

The following known criterion for (r, A) to be admissible will be needed in the proof 
of our next comparison theorem. 
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PROPOSITION 3.2 (SEE [2, P. 216]). The pair (T, A) is admissible if, and only if, for 
every pair of points a and s in J satisfying a < s, there exists no nontrivial solution of 
the differential equation L^y = 0 satisfying (28). 

REMARK 3.3. We now prove a comparison theorem which extends [2, Theorem 2.5]. 
To facilitate the statement of the theorem, we introduce some additional notation. We 
define the differential operators Mo and M\ as follows: 

(29) M0u := (-\)mc4A
mu + [A0foW - c2]u, 

(30) Miw := (-l)mc5A
mu + [a0,oW + c6]u. 

Suppose that there exists ro > 0 such that the interior of 7 is the open interval (ro, oo), 
and suppose that there exists x° G Rn such that Q D {x G Rn : |x — JC°| > ro}. For any 
positive r, let Sr = {x G Rn : |*| = r}. Define the real-valued functions hj (2 <j < 7) 
as follows: 

(31) h2(r) = min{Ao,oW — c2 : x G Sr} whenever r G 7, 

(32) A3(JC) = /12(H) whenever x G Q , 

(33) h4(r) = max{ao,oW + C6 : x G Sr} whenever r G 7, 

(34) A5(JC) = /M(|*|) whenever x G Q, 

(35) /io(^) = min{0, /î2(r)} whenever r G 7, 

(36) hi(x) — he(\x\) whenever x G £1 

Following [2, p. 216], we will suppose that h^(f) is not identically zero and that h4(f) < 0. 
Define the differential operators M3 and M4 as follows: 

(37) M3u := (-l)mc5A
mu + h5(x)u 

and 

(38) M4w := {-\)mc4A
mu + /Z7(JC)W. 

Let A î denote the radially symmetric form of the Laplace operator. In other words, if 
|JC| = r, then 

«39, A-'-'K''-"!)' 
Furthermore, let M5 and M^ denote the radially symmetric forms of the differential op­
erators M3 and M4, respectively. In other words, let 

(40) M5v = ( - l ) m c 5 A> + h4(r)v 

(41) M6v = (- l )mc 4A> + /i6(r)v, 

where h4 and h§ are defined in (33) and (35), respectively. 
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THEOREM 3.4. Suppose that for allr e J we have 

tl~n\h4(t)\dt> J tl-n\h6(t)\dt. 

If (I) is nodally oscillatory in £2, then so is (2). 

PROOF. Let G be any nonempty open subset of Q, and let <j> be any real-valued func­
tion in q?(G). Then (23), (9), (7) and (29) imply that 

/ <t>L<j)dx > c4\(f>\2
mGw + f |</>|2[A0,oW - c2]dx 

(43) JG JG 

— I <j)Mo(t)dx. 
JG 

If (1) is nodally oscillatory in Q, then (43) and the arguments following (25) in the proof 
of Theorem 3.1 together imply that the equation 

(44) M0u = 0 

is nodally oscillatory in Q. 
Furthermore, (29), (31), (32), (35), (36) and (38) imply that 

^(/>MO(/>^=(-l)%/G0Am(/> + ^[Ao,oW-C2]|(/>|2^ 

(45) > fG[(-l)mc44>Amt + h7(xM2]dx 

= / (j)M4<t)dx. 
JG 

Since (44) is nodally oscillatory in Q, therefore (45) and the arguments following (25) 
in the proof of Theorem 3.1 together imply that the equation 

(46) M4u = 0 

is nodally oscillatory in Q. In other words, for every positive number r\, the region {x G 
Q : |JC| > r\} contains a nodal domain for (46). Let J\ := J D (n,oo). Then we can 
employ the method of spherical means (as in the proof of [3, Theorem 4.1 ]) to show that 
the ordinary differential equation 

(47) M6v = 0 

is (r, A)-nondisconjugate on J\ in the case where T = A = { 0 , 1 , . . . , m — 1}. (See (41) 
for the definition of M$.) Because of the representation (39), we can choose 

f tf = 2m, pN(r) = r»-\ pN^{r) = r 1 ^ , . . . , Pl(r) = rx~\ p0(r) = 1, 

in (5). Since (47) is (r, A)-disconjugate on J\ in the case where T = A = {0 ,1 , . . . , m — 
1}, it follows from (42) and [2, Theorem 2.5] that either the pair (r, A) is inadmissible 
or the ordinary differential equation 

(49) M5v = 0 
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is (r, A)-nondisconjugate on J\ (See (40) for the definition of Ms). But if the pair (r, A) 
is inadmissible, then it follows from Proposition 3.2 that there will exist two points a 
and s in J\, with a < s, such that the boundary-value problem consisting of the ordinary 
differential equation 

(50) L n v 0 = 0 o n / i 

and the boundary conditions (28) (with v replaced by vo) has at least one nontrivial so­
lution. It follows from (48) and (39) that the boundary-value problem consisting of the 
partial differential equation 

(51) Amu0 = 0 in Q.as := {x G £1 : a < \x\ < s} 

and the boundary conditions 

(52) Akuo = 0 on dSlaj (0<k<m-l) 

has at least one radially-symmetric nontrivial solution. (Here, A°wo •= wo-) But since 
Amwo •= A(Am_1wo) whenever m > 1, it follows from the maximum principle that any 
solution of (51) and (52) has the property that 

(53) Am_1 w0 = 0 throughout Qas. 

Furthermore, (52) implies that 

(54) A*KO = 0 on dQa,s (0<k<m-2). 

Continuing recursively, we deduce eventually that m = 0 throughout QavS. This con­
tradicts the nontrivialness of uo, and shows that the pair (r, A) cannot be inadmissi­
ble. Thus, we have proved that (49) is (r, A)-nondisconjugate on J\ in the case where 
r = A = {0 ,1 , . . . ,m — 1}. In other words, there exist points a and s (in 7i) and a 
real-valued function v E C2m(Ji) such that (49) and (28) hold. 

Introducing spherical polar coordinates in the usual way [8, p. 58], we note that, for 
every multi-index /3, if |JC| = r, then the expression xP/^ is independent of r. It follows 
from the Chain Rule and the final statement in the last paragraph above that there exist 
points a and s (in J\) and a radially-symmetric, real-valued, C2m function u: x —> v(\x\) 
such that 

(55) M3u = M5v = 0 

throughout the spherical shell Q.a,s, and 

xa ( d \M 
(56) Dau\dÇîas = - j^ | {—J v\dçias = 0 whenever 0 < |a| < m - 1. 

But (56) implies, because of [1, Lemma 9.10], that u G H^(Q,a^s). Since r\ was chosen 
arbitrarily, we have therefore shown that (55) is nodally oscillatory in Q. 
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Furthermore, (37), (34), (33) and (30) imply that if G is any nonempty open subset of 
Q, and if <j> is any real-valued function in CQ°(G), then 

J (j)M3(t)dx = j [(-l)mc5(/>A"> + h5(x)\(j)\2] dx 

(57) > JG[(-irc54>Am(j>+ K o W +c6]\j>\2}dx 

— I (j>M\(f)dx. 

Since (55) is nodally oscillatory in Q, therefore (57) and a familiar argument imply that 
the partial differential equation 

(58) M{u = 0 

is nodally oscillatory in Q. 
Finally, (30), (7), (9) and (21) imply that if G is any nonempty open subset of Q, and 

if <f> is any real-valued function in CQ°(G), then 

f^M^dx = JG[(-irc5^àm4> + [ao^)^c6M
2}dx 

(59) = c5\4\law + jG[a0v(x) + c6]\(l)\2dx 

> [ <j>£<j>dx. 
JG 

Since (58) is nodally oscillatory in Q, (59) implies that (2) is nodally oscillatory in £1. 
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