A CHARACTERIZATION OF SPECTRAL OPERATORS ON
HILBERT SPACES

by ERNST ALBRECHT
(Received 12 September, 1980)

Let H be a complex Hilbert space and denote by B(H) the Banach aigebra of all
bounded linear operators on H. In [5;6] J. Ph. Labrousse proved that every operator
S € B(H) which is spectral in the sense of N. Dunford (see [3]) is similar to a Te B(H)
with the following property '
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Conversely, he showed that given an operator S € B(H) such that its essential spectrum (in
the sense of [§; 6]) consists of at most one point and such that S is similar to a Te B(H)
with the property (1), then S is a spectral operator. This led him to the conjecture that an
operator S e B(H) is spectral if and only if it is similar to a T e B(H) with property (1).
The purpose of this note is to prove this conjecture in the case of operators which are
decomposable in the sense of C. Foias (see [2]).

For the convenience of the reader we first recall some notations and definitions. For
T e B(H) let o(T) be the spectrum of T and denote by Lat(T) the family of all closed
subspaces of H which are invariant for T. Recall ([1;7; 8]) that T is decomposable if and
only if for every open covering {U, V} of the complex plane C there are X, YeLat(T)
such that X+Y=H and o(T|X)c U, o(T|Y)c V. Then T has the single valued
extension property ([2;3]), i.e. for every H-valued function f:D;— H which is locally
analytic in an open set D; cC and satisfies (z — T)f(z)=0 on D; we have f=0 on D;. If
T € B(H) has the single valued extension property then, for x € H. pr(x) is the set of all
z € C such that there exists an open neighborhood U of z and a locally analytic function
xr:U—>H with (w—T)x(w)=x on U. The local spectrum of T at x is then
or(x):=C\pr(x) see [2; 3]). As usual, we put for McC:H(M):={x e H:op(x) = M}. If
T is decomposable and M is closed, then Hy(M)e Lat(T) and o(T | Hp(M))<= M No(T)
(cf. [2; 1]). We can now state our main result.

THeoreM. S e B(H) is spectral if and only if S is a decomposable operator which is
similar to a Te B(H) with property (1).

Proof. If S is spectral, then S is obviously decomposable and is (by [5, Theorem 2])
similar to a T e B(H) with property (1).

Conversely, let now S be a decomposable operator which is similar to a T < B(H)
with property (1). We shall show that T= N+ Q, where N € B(H) is normal and Q € B(H)
is a quasinilpotent operator commuting with T. Then T and hence also S is spectral.

First, let us remark that T is decomposable as it is similar to the decomposable
operator S. If FcC is closed, we denote by P(F) the orthogonal projection with
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P(F)H=H.(F). As T satisfies (1) we obtain from [2, Theorem 2.3.3] that H.(F)e
Lat(T*) and therefore (because of Hy(F)eLat(T)),

P(F)T =TP(F) for all closed F<C. (2)

Again we may apply [2, Theorem 2.3.3] and conclude that for all closed F;, F,cC
we have P(F))H,(F,)< H(F,) and therefore P(F,)P(F,)=P(F,)P(F,) (as P(F,) and
P(F;) are orthogonal projections). Hence, P(F,)P(F;) is the orthogonal projection with
range H(F;) N H(F,)= H(F;NF,) and we have proved

P(F)P(F,)=P(F,NF,) forallclosed F,, F,<C. 3)
In our next step we show the following.
For all closed F,, F,<C with F, < F,, P(F,)—P(F,) is the @
orthogonal projection with range Hy(F,\F,).

Proof. First, if x€ Ho(F,\F,), then a7(x)NF, =@ and x € Hy(op(x)) N He(Fy). Be-
cause of H; (&) ={0} we obtain

(P(F2)— P(F)x = x —P(F)P(or(x))x = x— P(F; Nor(x))x = x.
This shows that Hi(F\F,) c (P(F,)— P(F,))H. Let now x be an arbitrary element of
(P(F,)— P(F)))HO© H(F,\F,) and consider open sets U,, V,<C with U, UV, =C and
V,:ﬂFl = for all neN such that (| U,=F,. By the decomposability of T we have for

n=1

fixed neN elements x, € H(U,), x,€ Hr(V,) with x = x,+x,. As xe(P(F,)—P(F))H<
P(F,)H (because of (3) and F, c F;), we obtain

x = P(Fy)x = P(F,)P(Ux, + P(F,)P(V,)x,
=P(F,NU)x, +P(F,NV,)x,.

Now, F,NV,c F,\F, and therefore Hp(F,NV,)c H(F,\F,). As xe Ho(F,\F,)", we
conclude that "
0=P(F,NV,)x=P(F,N V)P(F,NTU)x; + P(F, N V,)x,
=P(F,NV,NU,)x;+P(F,NV)x,.
Hence, P(F,N V)x,€ Hi(F,N'V,NU,)< Hp(U,), so that x = P(F, N U,)x, + P(F,NV,)x,
€ H(U,) and therefore,

ve O Hi(@)=He{ O T,)= He(F).

n=1

From this and (3) we obtain

x = (P(Fy) = P(F))x = (P(F,) - P(F))P(F)x =0
and (4) is proved.
Put r:=||T||+1 and consider the square

R:=R{):={zeC:-r=Rez,Imz<r}.
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We shall now construct a homomorphism @ from the Banach algebra C(R) of all
continuous complex valued functions on R to B(H). For neN and 0=j=2" we introduce
the sets

Hp:={zeC:Rez=—r+j2'"r},
K':={zeC:Imz=-r+j2'"r},

and for 0=<j, k=2"—1, R{Y:=(H\H},) N(KQ\K} +1).
For neNU{0}, 0=j, k<2"—1 we put

Zi=—r+ 2 r+i(-r+ k27,
and
PR = (P(H})— P(H}, ) (P(KR) — P(K7 41)).

Because of (2), (3), and (4), the mappings P(") are orthogonal projections commuting with

T such that
PWP™W =0 if (j,k)#(p q), (5)
and
2m-n—1
PiR= L Pifoipuanerg for m=nand0=jk=2"-1 ©
p.q=0
Moreover,
P =1 (7

as H 2 PGyH > P(a(T))H = Hi(a(T)) = H because of (4) and o(T)<int R. For neN we
define now @, : C(R)— B(H) by

®,(f):= Z fEPR for fe C(R).
j,k=0
For arbitrary £ >0 there exists (by the continuity of f on R) .an neN such that for all
z, we R with |z —w|<2*™"r we have |f(z)—f(w)|<e. For arbitrary xe H and m=n we
therefore obtain, (usmg (5), (6), (7), diam R%) =2 - 2'™"r <22, and the fact that z{%,
Z;zn?-".,.p k2m"+q € R for 0<p q =2m " - 1)

2n—1 2m™"—1

@, (=P (MxIP= Y T fE) = f(285n s prcam-nsa)] IPERn spramn s XI

ik=0p,g=0
2n—1 2m-n—1

=62 ) Y (PG o ioxl?

j.k=0 p,q=0
=g |x|P.

Therefore, (®,(f)),.-, is a Cauchy sequence in B(H). We define now ®(f):=lim ®,(f).
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Then ®:C(R)— B(H) is a continuous homomorphism with ®(1)=1I as the mappings
®, : C(R)— B(H) are continuous homomorphisms with ®,(1)=1I (because of (5) and
(7)). Moreover, the operators ®(f), fe C(R), are normal and commute with T (as this is
true for all ®,(f)). We define now the normal operator Ne B(H) as N:=®(Z), where
Z: R — C denotes the function with Z(z) =z for all z e R. In order to complete the proof
of the theorem we have to show that

Q :=T— N is a quasinilpotent operator. 8)

Proof. Fix an arbitrary closed set F CC If x € Hy(F), then by (3) and (4), P{ixe
HAR"NF) and therefore P&x=0 if RWNF= (neN, 0=j, k=2"""). This implies
(n) (n) (n)
x= Z P{")x, where Z (resp U) means that the sum (resp. union) has to be taken with
respect to all j, k e{O, 1,...,2" =1} such that ," ﬁFavé . We obtain

(n)

Z T(R(N)
F

=

w (n)

Hy(F)e (| 3 P%WHC N

n=1 F n=1
(n)

el )1

Fix now an arbitrary x€ Hy(F). If neN, 0=<j, k=2"-1 with R®W NF =, then there
exists a function fe C(R) with supp(f)ﬂﬁf,f=@ and f=1 m UNR for an open
neighborhood U of F. Then, by [2, Proposition 3.1.17] and the construction of @,

RE,':2)=HT(F) ©

x =®(f)x = (I - P{)®(f)x. Thus, P{’x =0 and we obtain x = Z P{?)x. Moreover, we have

by the construction of ¢ and by the fact that ® is a C(R)- funct10nal calculus for N that
P{YH CHT(R(")) for all neN and 0=<j, k =2"—1. Therefore, by (9) and as in (9),

w (n) w (n)
Hy(F)c | Y PRH=H(F)< N 2 H,(R%Y)< Hy(F).
n=1 F n=1 F

Hence, Hy(F) = Hy(F) for all closed F<C, so that T and N are quasinilpotent equivalent
by [2, Theorem 2.2.2). As T and N commute, this implies that Q:=T—-N is a
quasinilpotent operator commuting with T and the normal operator N. This completes the
proof of (8) and of the whole theorem.

It is a well known fact that every operator S € B(H) with dim o(T) =0 is decomposa-
ble. This follows easily by means of the analytic functional calculus and [4, B on p. 54].
Hence, we obtain the following results.

CoroLLArY. If S € B(H) with dim o(S) =0, then S is a spectral operator if and only if
S is similar to an operator T € B(H) with property (1).

CoroLLARY (cf. [8, Theorems 3 and 5] and [6, Proposition 5.5.4]). Let S € B(H) be an
operator such that its essential spectrum (in the sense of [5;6]) is empty or consists of one
point. Then S is a spectral operator if and only if it is similar to an operator T € B(H) with
property (1).
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Proof. If the essential spectrum of S consists of at most one point, then dim ¢(§)=0
by [6, Proposition 5.1.1 and 5.5.1]. Therefore, we may apply the preceding corollary.
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