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1. INTRODUCTION 

In this paper the initial results of an investigation of the 
motion of a rigid body located at the libration point in the planar, 
restricted three-body problem are given. This problem was analyzed in 
part by Kane and Marsh (1971), Markeev (1967a,b). However the present 
investigation is formulated in terms of hamiltonian mechanics. The 
final results will by used to study nonlinear effects connected with 
the gravitational influence of the "second" central body. 

2. EQUATIONS OF MOTION 

Let m^ , m2, m-j designate rigid bodies of mass m^ , m2 and m^ respe­
ctively. We assume that 1113 is so small in comparison with m-i and m? 
that it has no effects on the motions of m. and m . Furthermore let m, 
and nip have spherically symmetric mass distributions so that the gravi­
tational effects of m. and m„ on other bodies are equivalent to those 
of point masses. The motion of the mass centers of these two massive 
bodies are the same as in the elliptic 2-body problem. Then we introduce 
the following righthanded, orthonormal coordinate systems: inertial, 
orbital and principal axes (see fig. 1). 

For describing an orientation of a third coordinate system relative 
to the second one we use Euler's angles: <p, 6, <|> in 1-2-1 sequence 
(Markley 1978). Next we assume that the third rigid body-satellite- is 
axially symmetric and is located at the triangular L4 libration point. 

The Lagrange function has the form 
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Fig. 1. Geometry of the 3-body problem. 

(a , a„, a ) -inertial coordinate system 

(b. , b„ , b ) -orbital coordinate system 

are the components of the absolute angular velocity in the third coordi­
nate system. 

I = 

I, 0 0 
1 

0 

0 0 

h ° 
2-1 

is an inertia tensor (I , I - are the moments of inertia), 

o) = N q + b, 

c8 0 1 

S( l is8 c(|> 0 

cij' s 8 -s(Jj 0 

- s 8 ccp 

ccj) scp + sij> c8 ctp 

-s(|j scp + ccj) c6 ccp 

sO = sin8. 

C 
V 

c8 = cos 

' C 

8, etc. 

G(m + m2)p, r = 
1 + e cosv 

G - gravitational constant, p - orbit parameter, 
e - eccentricity, r - radius vector, v - true anomaly 
T - transposition of the matrix, 
q = (cp, 8 , i) , 
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- a) (1-e ) (1 + e cosv) (1^ - I ) 

(l-p)c2e + |p(c8-/3 s9 sip)' 

(2) 

2TI 
, P - orbital period of the massive bodies, 

m + m2 
0 i V $ \ 

Introducing now: 

P. = 
l 

3L 

34, 
, i = 1 ,2 ,3 , q± = cp , 8, *, 

where L is given by expression (1), we get the hamiltonian 

2 I2 s 9 

pe i , ctg
2e i . 2 ctge + 2 ( — a + — ) P(Jj a— 

2i2 i 2 i j i 2se v» 
-v ctg8 ctp p - v scppn + v —-x- p + V 

cp 8 s8 (jj 

I t i s seen that (J* i s a cyclic coordinate, therefore: 

(3) 

P, = I, a). = constant. 
<l> 1 1 

After substitution into equations (3) of the true anomaly -v as inde­
pendent variable instead of time -t,and introduction of dimensionless 
momenta defined by: 

-3/2 

•<P 

P * n-

~ ' pe 

pe 2 
, where: a= I_(l-e ) u , 

we derive the following form for Hamilton's function: 

, '2 Y ctg8 p ' 
H = 

9 2 9 2 
2(1 + e cosv)zs 8 2(1+ e cosv)^ (1 + e cosv) s8 

ctg8 ccp p ' 
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C(p Y ctg 8 
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( 4 ) 

+ — (o-l) (1 + ecosv) (l-y)c28 + j p (c8 - /3s8s(p)2 
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x 1 

I „ 
2 
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w„ 0 
Y = 

o,< 2 , 3 / 2 
= a 3 (1-e ) 

w h e r e : 

For y = 0 we hava obtained the same expression as that derived by 
Markeev (1967b) for the one central body case. 

3. PARTICULAR SOLUTION AND THE STABILITY ANALYSIS 

Hamilton's equations of motion are as follows: 

• 3H dn . 9H . 9H 

e = lp- ; ' *=W Pe = "^e' VliT' (5) 

8 q> 
w h e r e : 

- denotes differentation with respect to v, 
H is given by equation (4). 

The above equations have only one particular, stationary solution such 
that: 

e = \ , <P = u, P 6 = o, P(p = o. (6) 

This is the only known particular solution of equations (5) even though 
we get e =0. To discuss the properties of the solutions near this 
particular solution, it is necessary to investigate its stability, This 
can be done in the e = 0 case by analytic methods. 

For small e, but larger than zero, we can do it and calculate 
instability regions studying the parametric resonance in this system 
(Arnold 1978, Markeev 1978). We introduce new variables q , q , p,, p 
defined as follows: 

*i = e ' \ • q2 = * ~ n ' p i = p e ' p 2 = pcp • ( 7 ) 

Then the hamiltonian takes the form 

H(q, p) = H2(q, p) + H3(q, p) + H^q, p) + ... (8) 

For e = 0 (circular problem) we may write 

2 2 

H - ^ a V - ag + |-(a -1)(4 - 3y)j + — | (a-l)u tag 
2 I - - ' 2 

2 _2 (9 ) 
- 3 /3 . r,~ 

7 — ( o r - l ) y 
p l P 2 

+ ~ ~ + r̂+ q i q2 + P1 q2 + q 1 P 2 («3 - i ) . 
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For this hamiltonian the equations of motion are linear and may be 
written : 

d X 
d t 

= I H X ( 1 0 ) 

w h e r e : 

X = ( q j , < 5 2 - P 1 ' P 2 > > 

I H 

0 1 1 0 
a 0 0 1 
b c 0 - a 
c d - 1 0 

a = o t 3 - l , b = a ( B ( l - a 3 ) - - ( a - 1 ) ( 4 - 3 y ) , 

c = ^-p- ( a - l ) u , d = - - j ( a - l ) u - a g , 

0 

- E 
n 

E 
n 

0 
, where: E - nxn unit matrix (n = 2) . 

n 

The characteristic equation of matrix I H has the form 

0 , (11) 
<+ 2 
A + a' A + b' 

where 
2 2 

a' = a 3 - 2a3 + 3a - 1, 

b' = (a3 - 1) (3a + a3 - 4) + ~ p (u-D(a-l)2 

Stability conditions are as follows: 

a' > 0, b' > 0, and a - 4b' > 0 (12) 

On the parametric plane (y,«), (Y = ag), the above conditions 
designate the stability regions of the solution (6) in linear approxi­
mation of the equations of motion. After comparison of these results 
with those obtained for the one central body case we see that the dis­
cussed regions are slightly different. To study the stability of the 
solution(6)of the complete equations of motion it is necessary to 
transform the hamiltonian H into normal form. We can do this in the 
following way. 

Let Ai be a root of the characteristic equation (11). Then we have : 
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where : 

i Ui ei' X2 = i w 2 £ 2 ' A3 = _ia)iei' A4= _ i 0 l ,2 e2' 

a) > (i) > 0 , e. = + 1, a sign'that will be fixed later. 

However, X. are the eigenvalues corresponding to the eigenvectors b., 
of the matrix I H, given by: 

X (1-a) + c 
i 

i2 2 v, X . - a - b 
I 

2 2 
-aX. + cX. + a + b 

I I 

X . - X, (a + b) - ac 
l l 

where a, b, c are the same as in equation (10), and a. is a normalized 
factor defined below. Now we may write b. as the sum of two vectors: 

b . = r. + i s . , j =1,2,3,4, i = -1 , 

Linear transformation of the form 

X = A Y 

where: 

(13) 

X = (ql , q2, Plf P2) , Y 

A = 2 £ - S l , - s 2 , rlf r 2 ^ , 

transforms the hamiltonian H into 

2 

H 2 = Z £ i U i ( y i + y i + 2 > 
i = l 

(yl' Y2' Y3' V 

(15) 

Since the matrix A is sympletic,so finally we may write the following 
relations: 

(v x \ ) - ak , k = 1,2, (16) 

where ( , ) denotes the scalar product. 

Then we have a relation for the normalized factor a. as follows: 
l 

1 2 
4 i 

EiWi fi ( o t' ^' p^' (17) 
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where : 

fi(a, 3, p) = UK [jaP-2>2 " 2 (a_1) (2_3y0 

9 9 9 
+ (a3 - D(a3 -2) + 3(a-l) [jx 3 - 3a3 + 3a^] 

+ - (a-l)y Qa3-1) + 9a - 8 ^ + ̂ f (a-l)y' 1Z 
2 

One can find that f.(a,3/H) >0 in the stability region I (see fig. 2) 
Therefore on this region e. = +1, H is a positive definite function 
and sufficient stability conditions are satisfied on this region. On 
region II (see fig. 2) we have f 2 (a ,3 ,.M) < 0 and f (a,3,p) >0, and 
we choose £ = +1, e2 = -1- Therefore on this region the hamiltonian 
H has not a fixed sign . 

Fig. 2. Stability regions for y = 0( ) and for y =— ( ). 

To make an exact study of the stability problem in this case we 
may take into account the H term (H =0) in equation (8). This term may 
be written as: 

H4(q,p) • E 
'V n 2 + n 3 + n 4 = 4 

ni n2 n3 n4 Mfi, 
h
nin2n3n4 *i *2 ?1 P2 ' (18) 
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w h e r e ; 

n . > 0 , n . € N , ( i = 1 , 2 , 3 , 4 ) , 

h 4 0 0 0 = Qa2®2 ~ 5 a 3 " 3 ( o t _ 1 ) 

h0400 

h2020 

h3001 

h0310 

h2200 

h1201 

— 

= 

= 

= 

= 

= 

- ag - 9 (a-l)y , 

1, 

5ag - 2, 

-1, 

a|3 - 9(a-l)y -

1, 

3 / 3 , ^ 
—7;— ( a - l ) y , 

and the other terms h = 0 . 
nin2n3n4 

Assuming i to + i w 7* 0 f o r 0 < | i | + | i | ^ 4 , 

which in our case corresponds to 

a) ^ u , to 4 2u2, co 4 3w2 , 

and making the transformation (14) as well as the appropriate Birkhoff 
transformation we get the following for the hamiltonian H: 

H = VqJ + Pi> - W 2 ( q 2 +4} + a i l ( P ? + q i ) 2 

(19) 

where : 

+ a12(p^ + q2 ) ( q2 + p2) + & 2 2 ( p 2 + q 2 } 2 + _ 

a. . = a. . (a,3 ,y) , 

+ ... - stands for the higher terms in expression (19). 

Using Arnold-Moser theorem (Markeev 1978) we notice that on region 
II (see fig. 2) the solution (6) will be stable everywhere except those 
points for which the following relations are satisfied: 

to = co , to = 2co» a n d to = 3co , a n d ( 2 0 a ) 
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f(a,P,p) = ajjdi + a12oi u2 + a 2 2
w
2
 = ° • ( 2 0 b ) 

The further investigation including nonlinear effects of higher 
orders will be presented in another paper(Dulinski and Maciejewski,1983). 
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