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A CLASSIFICATION OF IRREDUCIBLE PREHOMOGENEOUS
VECTOR SPACES AND THEIR RELATIVE INVARIANTS

M. SATO AND T. KIMURA*

Introduction

Let G be a connected linear algebraic group, and p a rational re-
presentation of G on a finite-dimensional vector space V, all defined over
the complex number field C.

We call such a triplet (G, p, V) a prehomogeneous vector space if V
has a Zariski-dense G-orbit. The main purpose of this paper is to classify
all prehomogeneous vector spaces when p is irreducible, and to investigate
their relative invariants and the regularity.

This paper consists of the following eight sections.

§1. Preliminaries

§2. Castling transforms

§3. Classification of reduced triplets (G, p, V) satisfying dimG = dimV

§4. Relative invariants and the regularity

§5. The prehomogeneity and relative invariants of reduced triplets

obtained in §3

§6. The semi-simple case

§7. Table of reduced irreducible prehomogeneous vector spaces

§8. Prehomogeneous vector spaces with finitely many orbits

We now make a brief survey of this paper. For the convenience
of the reader, we shall review, at the beginning of §1, basic facts about
complex simple Lie algebras, especially their irreducible representations
and their classification. Then we shall construct a simple Lie algebra
of each type and calculate its representation degrees which will be used
in §3. We shall introduce in §2 an important notion of castling trans-
form, which is an irreducible prehomogeneous vector space obtained from
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2 MIKIO SATO AND TATSUO KIMURA

a given one by a certain process. It will be shown that each prehomo-
geneous vector space is obtained by successive castling transforms start-
ing from a reduced one, which is characterized by the property that it
has the smallest dimension in a “fixed tree” of those transforms.

Our solution of the clasgification problem consists of the explicit
description of the process of castling transform and the table of reduced
irreducible prehomogeneous vector spaces which will be given in §7.

Obviously a triplet (G,p, V) is a prehomogeneous vector space only
when dim G > dim V, and hence as the first step, we classify in §3 the
reduced triplets satisfying such a condition. To investigate these triplets,
we develop in §4 a general theory about relative invariants and the re-
gularity of prehomogeneous vector spaces. By using the results of §4,
we investigate in §5 the reduced triplets obtained in §3, especially we
determine their prehomogeneity. By a well-known theorem of E. Cartan,
if p is irreducible, the Lie algebra g of p(G) is reductive with center at
most one-dimensional. We have assumed in §3 and §5 that the center
of g is one-dimensional. The remaining case will be discussed in §6.
In the last section, we consider an irreducible triplet with finitely many
orbits. It will be shown that such a triplet is a reduced irreducible
prehomogeneous vector space with few exceptions.

The authors wish to express hearty thanks to Professor T. Shintani
for reading the manuscript and making many invaluable suggestions.

§1. Preliminaries

First of all, we shall review the basic facts about complex simple
Lie algebras, especially their irreducible representations and their clas-
gification. We denote by gl(V) the Lie algebra of all linear transforma-
tions of a vector space V. Similarly we denote by gl(n) the Lie algebra
of all » X n matrices.

The following two theorems give us a principle to solve the classifica-
tion problem in the irreducible case.

THEOREM 1 (E. Cartan). Let dp:g— gl(V) be an irreducible repre-
sentation of a Lie algebra ¢ on V over C. Then the image dop(g) s
reductive with center at most one-dimensional, i.e., a semi-simple Lie
subalgebra of gl(V) or o direct sum of scalar multiplications (=gl(1)) of
V and o semi-simple Lie subalgebra of gl(V) (see [9]).
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THEOREM 2 (I. Schur). Let g=g,® --- ®g, be a Lie algebra of a
direct sum of Lie algebras g,(1 < i< ¥), and dp: g — gl(V) an irreducible
representation of g on the complex vector space V. Then there exist
trreducible representations dp;: g, — gl(V,) of g, on V,A <1< 4) such
that D) V=V ---QV, (@) do=dp® ---&dp, te.,

dp(X)'I) = gelvl® te ®dpz(X1)vz® s ®’U[

for X = (X,,--,X)eg, v=0,Q - ®v)eV (see [1]).

DEFINITION 3. Let g be a semi-simple Lie algebra over C. Then
there exists a subalgebra § of g satisfying the two conditions: (1) § is
a maximal abelian subalgebra, i.e., [X,Y] = 0 for any X, Y €}, and any
element X of g satisfying [X,Y] = 0 for all Y e} belongs to §. (2) For
any Hel, the linear endomorphism ad (H) of g is diagonalizable (i.e.,
semi-simple). In this case, § is called a Cartan subalgebra. Let §, and
b, be two Cartan subalgebras of g. Then there exists an automorphism
L of g satisfying §, = L §,. Hence the dimension of a Cartan subalgebra
depends only on g which is called the rank of g.

DEFINITION 4. Let g be a semi-simple Lie algebra, § its fixed Cartan
subalgebra, dp: g — gl(V) a representation of g on V. An element 2 of
the dual space h* of § is called a weight of dp if g, {0}, where g, =
{wxe V|do(H)x = 2(H)x for any H € }. A non-zero element of g, is called
a weight vector. Let dp’: g— gl(V’) be another representation of g on V’.
Then dp and dp’ are equivalent if and only if they have same weights.
A non-zero weight of the adjoint representation is called a 7root of
g(with respect to §). The totality 4 of roots is called the root system of
gw.r.t.h). If eed, then —aed, dimg, =1, g =D > .cs8. and hence
dim g = rank g + #(4).

DEFINITION 5. Let g be any Lie algebra. The symmetric bilinear
form B of g defined by B(X,Y) = Trad XoadY is called the Killing
form of g. This is non-degenerate if and only if g is semi-simple.

DEFINITIOM 6. Let g be a semi-simple Lie algebra of rank 4. Then
the restriction B|, of the Killing form B to the fixed Cartan subalgebra
) is also non-degenerate. Hence, for each root «, there exists uniquely
an element H, of § satisfying «(H) = B(H,H,) for any Hel. Let }, be
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the vector space over the rational number field @ spanned by H, for all
aed. Then dim Y, = ¢, and the restriction B, of B to §, is a Q-valued
positive definite symmetric bilinear form. Let %H¥ be the dual vector
space of §, over Q. For each Aech¥, there exists uniquely an element
H, of Y, satisfying 2(H) = B(H, H,) for any H e}, Note that 4 C §jF and
for each a«e 4, H, is the same as the previous definition. We can define
a positive definite inner product (1, ) on O by (A, ) = B(H,, H,) = A(H,)

= p(H).
DEFINITION 7. Fix a basis H,, ---,H, of 5, over Q. An element 2
of 4 is called positive if A(H,) = .-+ = A(H,_) =0, A(H,) > 0 for some

k=1,...,4. We can define a lexicographical order in YH¥. Namely,
2> p implies that 2 — g is positive for 2, pe bhi.

DEFINITION 8. The totality of positive roots will be denoted by 4,.
A positive root is called simple if it is not a sum of two positive roots.
A subset I = {a,, - - -, a;} of 4 is called a fundamental root system if any
root « is written uniquely as o = ma, + --- + m,a, where all m, are
non-negative integers or all m, are non-positive integers. There exist
just ¢ simple roots a,, - - -, @, and they form a fundamental root system.
Conversely, a fundamental root system is the totality of simple roots
under some lexicographical order in 5.

DEFINITION 9. Let n, be a vector subspace of g generated by g,
for all we 4,. Let dp: g — gl(V) be an irreducible representation of g on
V. Then there exists uniquely, up to constant, a non-zero element x of
V such that do(v)x = 0 for any ven,. For such xeV, there exists
Aep* such that dp(H)x = A(H)-x for any HeY. Moreover, this / is an
2(4, o)

a, @)
negative integer for any acd,. We say that x is a highest weight
vector and A is the highest weight of dp.

element of 4% and a dominant integral form, i.e., is a non-

THEOREM 10. Let A be any dominant integral form of Y. Then
there exists an trreducible representation dp:g— gl(V) of g, with the
highest weight A. This gives a one-to-one correspondence between the
equivalence classes of irreducible representations of g and dominant in-
tegral forms. Sometimes we shall denote dp by A.

DEFINITION 11. Let ay, --.,, be the simple roots w.r.t. (g,9,4.).
Then there exist dominant integral forms 4, ---, 4, uniquely such that
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2(dys ;) =0y (@,7=1,---,¢4). These 4, ---,4, are called fundamental
(e & j)
dominant weights, and the corresponding irreducible representations
dp;:g—gl(Vy) (1 <i< ¥4) are called the fundamental irreducible repre-
sentations of g. Any dominant integral form 4 is of the form 4 =
>i_ymgd; where each m; is a non-negative integer. Let v; be the highest
weight vector of dp;(1 <7< ¥), and let V be the least g-invariant sub-
/——72“ r—"’n\{——'\ . . /_,,L\
space of V,® .- ®V,® .- QV,® ... ®V, containing » =, ® .-+ ®
—_t o o
9,0 - Q@v,&® .- ®v,. Then the restrictiondp of dp,® -+ @ dp, Q@ -+ - ®
dp,® -+ - ®dp, to V is an irreducible representation of g with the highest
weight 4 = > m;4,. In view of Theorem 10, the dimension of V depends
only on the corresponding dominant integral form 4, and hence we denote

it by d(4) which is called a representation degree of A (or dp).

THEOREM 12 (Weyl’s dimension formula).

=1 Yted yhee o=L 5 4.

acdy (p, o) a€d+
COROLLARY 13. Let A= >\ md; and A = >\t ,mid, be dominant
integral forms such that m, = m} for each t =1, .-, 4 and A+ A'. Then

a4y > d(4).

Proof. For any positive root a= >/ me; @0, =0), Ua)=
Dig My, o) = £ 2 mgng(eg, o) > & > mingey, ;) = (4,a) and this
implies d(A) > d(4’). Q.E.D.

Now, we shall review the classification of simple Lie algebras over C.

DEFINITION 14. Let R’ be an /-dimensional vector space over the real
number field R with a positive definite inner product (,). Define the
length ||«|| of ae R’ as ||| = +/(a, @) and denote the angle of two vectors
a;, ;€ R by oz/i\o(,-.

A subset II ={a;, ---,,} of R* is called an irreducible admissible
system if the following three conditions are satisfied: 1) ay, ---,, are
linearly independent.

2 — 2(a, “j)

(e FIXd j)

(3) There is no decomposition of I7 such that I7 =11, U I, and 11, | II,,

is a non-negative integer if 7 = j.
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where I7, | II, implies that («, §) = 0 for any aell, and pell,.

LEMMA 15. Let II = {o, - - -, «,} be an trreducible admissible system
of R:. If a,a5ell, a; # oy and ||| = ||e;|, then they satisfy one of the
following conditions.

Q) da; = % i.e. (aya) =0

@) d, = gx and |a]| = ||a |

® diy = 2z and ) = V2 ||

@) dia; = 2z and |l = V3 ||

DEFINITION 16. Let 17 = {«;,, --:,a} be an irreducible admissible
system in R To each vector «;c 4, associate a vertex and connect the
two vertices associated to «; and «; if and only if (a; ) #0, ie.,
oc/i&j +* -g— We connect vertices corresponding to «; and «; with a single,
double, or triple line according to whether o?i\ozj = %r, 37, §r respectively
(see Lemma 15). The arrows point from a longer to a shorter vector,
when the lengths are different. Thus we obtain a connected diagram
which is called the Dynkin diagram of II.

LEMMA 17. Let IT be an trreducible admissible system of R¢. Then
its Dynkin diagram is one of the following diagrams.

C,i0—0 -+ 0—0&=0 “ =3
aq [29] Qyg—2 Qp-1
D,: o—o0 - =49

oy
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E,: 0—o0 O O +or O o1 ¢4 =26,7,8

ay

ay Ay a3 ay

F,:o0—o0 o0——o0 4 =4

Qg

GQ:OSEO 4 =2

DEFINITION 18. Let g be a semi-simple Lie algebra of rank ¢ over
C, and let ) be a fixed Cartan subalgebra. We can extend the inner
product of §f (see Definition 6) to a positive definite inner product of
¢-dimensional vector space R’ = §f Qo R over R. Let ] = {w, ---,,} be
a fundamental root system of g. Then, g is simple if and only if 77
satisfies the third condition in Definition 14, i.e., there is no decomposition
such that I7 =11, U I, and II, | II,. Moreover, if g is a simple Lie algebra,
IT is an irreducible admissible system of R‘, and we can get its Dynkin
diagram by Definition 16. This diagram depends only on g, and we can
call it the Dynkin diagram of a simple Lie algebra g.

THEOREM 19 (Classification of simple Lie algebras). Two simple Lie
algebras g, and g, are isomorphic over C if and only if they have the
saome Dynkin diagrams. Thus Lemma 17 says that a simple Lie algebra
over C is isomorphic to one of A(4=1), B(£=2) C4=3), D(£=4),
E, =6,7,8, F,G,

DEFINITION 20. The simple Lie algebras of type A, B, C,, D, are
called classical Lie algebras, and those of type E, F,, G, are called ex-
ceptional Lie algebras.

We shall construct the all types of simple Lie algebras in Theorem
19 and calculate their representation degrees which will be used in §3.

ExAMPLE 21. Let g = 3l(n, C) be a subalgebra {X e gl(n, C) | Tr X = 0}
of gl(n,C). Then the Killing form B of g is given by B(X,Y) =
Trad Xocad Y = 2n Tr XY for any X,Y eg. Since this is non-degenerate,
g is a semi-simple Lie algebra. We may take as a Cartan subalgebra
b the totality of diagonal matrices of trace zero. Let E;; be a matrix
unit with (2, 7)-element 1, all remaining entries zero. Denote an element
A of o* by > 7 a;2(e; € C) if A(H) = 3 7,04, for H =37, 2 ;;€l). Then
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the root system 4 of g w.r.t.} is given by 4 ={2, — 3|t # 7,97 =1,
-+-,n} and g;,_,, = C-Ey;. We have dimg = »* — 1, rankg =n — 1. Put
@y =2 — A for t=1,...,n—1. Since ;, — 4, =o; + oyy + -+« + @,
G<j)and 2, — 3, = —(a; + O+ o Fa)@> D, I = {ay, -+, a1} i8
a fundamental root system. For each root 2, — 2;, we shall calculate H,, _,,.
Put H,,_;,= > %1 B . Then, by the definition, B(H, H,,_;)) = 20, Jypy =

A, — 2; for any H = 3%, ,E € 9. Thus we get that p;, = 21 ) Uy = — Zln’
i)

and g, =0 for k4,7, ie, H, ;= %@—(Eii — E,;). The fundamental

root system /I = {a;, ---,a,_,} is the totality of simple roots under the
lexicographical order in b defined by a basis H, _,, -+, H, _,_;, of B
Moreover, by the definition,

0 li—jl=z2
R P T
(Oli,aj) :B(Hlxi’Haj) = 2n
1 . .
J— 2:‘7
n

and this shows that /7 is an irreducible admissible system and its Dynkin
diagram is of type A4,_,. Thus, g = 8l(n, C) is a simple Lie algebra of
type A,_,: A, = 8l(n,C).

We shall determine the fundamental dominant weights 4, = > %_, m;.4,

for i=1,...,n — 1. We may assume that m,, = 0 because > *_, 1, = 0.
Since 2 My, ; — My, 54, = 05 for 4,7 =1,...,m — 1, and m;, = 0,
X ys C(j)

we get that m,;; =1 for j <<¢ and m;; =0 for 7> <, ie.,, 4, =2, + 4, +
oo+ A fori=1,..-,n —1.

As 4, = {4 — Xt <j} 1y = Dleess 8« = Dlic; CEyy is the totality of
upper triangular matrices with diagonal elements 0 (see Definition 9).
Let V, be a n-dimensional vector space over C spanned by u,, - - -, u,.
Define a representation dp, of g by (u, ---,u,) — (4, ---,u,)A for any
Aeg=3l(n,C). Then dp, is the fundamental irreducible representation
of g with the highest weight 4, and u, is the highest weight vector since
dp,(»)u, = 0 for any ven, and dp,(H)u, = 2,H for any H = >, 3,E;; €b.

In general, let V,A<k<n~—1) be a (Z)-dimensional vector space over

C spanned by exterior tensor products u;, N\ «++ A u, (1 <4, < ... <4, < n).
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Define a representation dp, of g by dp,(A)(u;, A\ -+ ANuy) = 235 u, A
<o ANdp(A)ug, A\ -+ A ug. Then dp, is the fundamental irreducible re-
presentation of g with the highest weight A, =21, + --. 4 2, since
do; Wy A -+ ANu,) =0 for any ven, and do(H)u, A -+ N up = (4 +
e Uy N\ oo ANy, for any H =72 4,FE,;€). In particular, we

obtain that d(,) = (Z) for 1< k<u. In view of Definition 11, any

irreducible representation space of 3l(n,C) is obtained from a tensor
product of V..

Although one can use the Weyl’s dimension formula to calculate
d(A) = dim V, there is a simple method for g = 3l(n, C) which is also
obtained from the Weyl’s dimension formula. We shall introduce this
method.

DEFINITION 22. To a dominant integral weight 4 = m4,A <k <
n — 1), we shall attach the diagram

mg

——A——

In general, to 4 = m4, + .-+ 4+ m,_,4,_, we shall attach the diagram

which is called the Young diagram (in detail, see [1]).

n n+1n+2n+3n+4n+ﬂ

n—1 n |n+1ln+2

n—2n—1{ n

n—3|n—2

(A4=24; 4 A3 + A3+ 24y)
Figure I.
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Write down the number » in each diagonal and to the right direction
the increasing numbers, and to the down direction the decreasing numbers
one by one like in Figure 1. Then, multiply all of them, which we shall
denote by d,(4).

98642‘1]
6|5 |31
4031
2|1

Figure II.

Write down the number of the hook’s length, i.e., the number of squares
of right and down side including itself, like in Figure II. Then multiply
all of them which we shall denote by d.(A).

THEOREM 23. Let A be a dominant integral form of g = 8l(n, C).
Then the dimension d(A) is given by

dy(4)

UD ="

EXAMPLE 24. (1) Let dp be an irreducible representation of g =
gl(n, C) with the highest weight 4 = >77{m;4;. Then the highest
weight 4’ of the contragredient representation dp* of dp is given by
A= 3im, 4, Thus we obtain that d(3 iz m4;) = d(C =i m,_.4,).

. 4Dy _
@) d(A1+A")_(n~u)!(p+1)! I<v<<n—-1

n n+1\ y+1 1.

n—1 yv—1

n—yv+1 1

Figure III.

From the Young diagram in Figure III and Definition 22, we obtain

that dy(d) = (n + Dn (n—l)-.-(n—y+1)=§z_+1))'_! and  d.(4) =
— V).

—D!'@+1D= -(Bji—m Hence by Theorem 23, we obtain our result.
v
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In particular,
(i) d@24)) = inn + 1),
(ii) d(4, + 4) = $n(r* — 1),
(i) d(4, + 4,_) = zn(n + D(n — 2),
(iv) dd, + 4py) =0 — 1
(v) dd; + 4) = gn(n — 2)(* — 1)

_ @+ Din -1 _
®3) d(AZ+A”)_(n_u)!(y+1)zz C<v<n—1

n n+1 v+1| 2
n—1 n v 1
n—2 v—2

n—y+1 1
Figure IV.

From the Young diagram in Figure IV and Definition 22, we obtain that
Ad) = (0 + Dt — 1) -+« — p + 1) = %ﬂri))"i and d.(4) = 20 +
— V).

Iy —2)! = g%{i—%i Hence by Theorem 23 we obtain our result. In
Y —

particular,

(1) d@dy) = fgni@n? — 1)

(i) d(4, + 4,_) = 0’ + D(n — 3)

(iii) d(4; + 4,) = Fgn*(n* — D(n — 2)
4 did, + A4y = @ DI D6 -2 g,
@) d4d; + 4, WG D6 B<v<n )

n n+1 v+1| 3

n—1 n Y 2

n—2 [(n—1 v—1|1

n—3 y—3

n—y+1 1

Figure V.
From the Young diagram in Figure V and Definition 22, we obtain that

dfd) = + Dn*n — 1 —2) - —y+ 1) = (n +(1L)!n(;z'— D and
— V).
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%w=32@+m©—Mw%ﬂ=£%%¥nHmeTMmm%
.

we obtain our result. In particular,
(i) d@24y) = t3z(n + Dr*(n — 1)*(n — 2)
(ii) d4, + 4,_) = tnn* — D — 3)

i) AU, + A,,.0/ds + 4) = L =D@ =Y (5
o —4)

() d@4, + 4, = jnn — D + 2)

n (n+1lin+2 n+1] 2 |1
n—1 n—2
2 1
Figure VI.

From the Young diagram in Figure VI and Definition 22, we obtain
that dy(4) = (n + 2)! and d.(4) = 2(n + 1)-(n — 2)!. Thus we obtain our
result by Theorem 23.

6) d(m/ll)=.n(n+1)"'(n+m_1) _ m+m—-1D!

m! ml(n— 1!
\ n ‘n—f—l‘ n-l—m——l‘
m m—1 l 1 \
Figure VII.

From the Young diagram in Figure VII and Theorem 23, we obtain
our result. We shall construct the representation dp with the highest
weight m4,. Let V, be a n-dimensional vector space over C spanned by
Uy, -+, U,. Define a representation dp, of g by (u,, - -+, u,) = Uy, -+ -, u)A
for any Aeg = 38l(n,C). Then as we saw in Example 21, this is a repre-

sentation with the highest weight 4,. Let V be a (—ni—"f———y_!—-dimen-

m!(n— 1)!
sional vector space of complex homogeneous polynomials of degree m in
variables u,, - - -, u,. Define a representation dp on V by dp(A)(w,, - - - u;,)

= 2 T Uy, - (do(A)uy) - - uy,. Then dp is an irreducible representation
with the highest weight m4, and the highest weight vector u.
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() If m =2, i.e.,, 4=24(=] [ ), we can construct a representa-
tion dp in another way. Namely, let V be the totality of » X n sym-
metric matrices and define dp by dp(4A)X = AX + XA for any Aeg=
8l(n,C), XeV. Then dp(w)E,;, =0 for any ven, and do(H)E, = 24E,
for any H = 37, 4,E;;e ). Thus dp is an irreducible representation of
gl(n, C) with the highest weight 24,. If we take V as the totality of
n X n skew-symmetric matrices and define dp by dp(4)X = AX 4+ X*A
for any Aeg=38l(n,C), XeV, then dp is an irreducible representation

with the highest weight 4, = 2, + 2, ( :H).

EXAMPLE 25. Let 8p(n,C) = {4 egl@n,C)|‘AJ + JA =0} be a Lie
0|1,
7 —0—> Then by the definition, an

element A of gl(2n,C) is in g = 3p(n, C) if and only if A is of the form:

subalgebra of gl(2n, C) where J = (

Y
Six

1.1) A—£
av  a-(]

>, Y =Y,"Z=2,X,Y,Ze¢Mmn,C) .

In particular, we have dim 3p(n, C) = n(2n + 1). The Killing form B of
g = 8p(n, C) is given by B(U,V) =Trad UadV = 2n + 2) Tr UV for any
U, V e g and as this is non-degenerate, g = 8p(n, C) is semi-simple. Define

elements H(Q, - -+, 2,), E.;,.;, of g as follows.
rzl R - N
’ ) 0 0 0
An
H(zv ‘7 ln) - ’ Exinj
—2
—2,
1.2) F : E \
0 Eij + Eji Eij 0
E_ = s By = .
0 0 0 —KE,
\ J L J

Then the totality § of H(a, ---,2,) is a Cartan subalgebra of g = 3p(n, C)
and as ad (H)E:tz,;;tzj = (izii_zj)Eili:tlﬁ 4= {i&i%l%? = 1’ v '9”’} is the
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root system of g w.r.t.h). Put o, =4 — A, =2 — gy -+, Ay = Ay
— 2y @y = 22,. Then IT = {a,, - - -, a,} is a fundamental root system because
==t ag, e Foayfori<g, A — 2= —(a;+ap+ o+
for ¢ > 7, and £ + 2) = =((4; — 1) + (4; — 4) + a,). As

-

2 T+

1 v
a5=—‘—“"—H(O"",19“—' ""70)
4(n + 1)
for 1<i<n—1 and H, = _HQ,---,0,2), we obtain that
4(n + 1)

. . 1 . . .
(e, a) =0 for |t — 7| = 2, (@, @y) = —m for |t —jl=1and 1 <1,
. 1 1 .
< '_1) n-1y&p) = ————7 iy &g =__ - __for 21,""”—1,
71<n (ay_1y ay) 5+ D) (a;, ) 5 ¥ D) 7

and (apa,) = —

This shows that g = sp(n,C) is a simple Lie

algebra of type C,. The fundamental dominant weights are 4, = 1, 4, =
MAd Ay Ay =2+ A+ oo + A,
Let V, be a 2n-dimensional vector space over C spanned by u,,
k

<oy Uy, For 1<k<mn, put T*(V) =V, ® -.- ®V, and define a map
w: T*V) - T**V) by ou, ® -+ @ uy) = e(uy, uu; ® - - - ® u;, where ¢ is
a skew-symmetric bilinear form on V, such that e(u;, u;,,) =1 A <i < n)
and e(u;, ;) =0 (@ <jand j+#17+ n). Let V, = A%V, be a vector space
over C spanned by exterior products u;,, A +++ Au;,, 1 <4 < -+ <4 < 2n).
Then V, is a subspace of T%(V,) and ¢(V,) = V,;_,. Hence dim ¥V, N

Kerp = (%?’) — (kz_nz)_ As we saw in Example 21, V, is a representa-

tion space of 3((2n,C). Since 3p(n,C) is a Lie subalgebra of 3((2n, C),
V. can be considered as a representation space of 3p(n,C). This is not
irreducible, but the subspace V, N Ker ¢ is an irreducible representation
space of 3p(n,C) with the highest weight 4, =4+ --- + 2, l.e., a
fundamental representation of 3p(n,C). Thus we obtain that d(4) =

(27%)—( 2n ) for 1<v<n.
y — 2

Y —

EXAMPLE 26. We shall calculate the representation degrees of 3p(n, C)
for some cases which will be used in §3. Define the lexicographical
order in H¥ such that I7 = {«, --+,a,} in Example 25 are simple roots.
Then 4, = {22, -++,22, 4, £ 2, 1<t <j<n)} and
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1 Sa=30+1— .

2 a€d4

o

The inner product in bf is given by

1 n
Z} MWy

nmizz" nnl = Ty
(Zl ];”> Aln + 1) =

Define another product {,} by {3 m, 2, n;4;} = 2, myn,. Then the
Weyl’s dimension formula (Theorem 12) says that

= qq Ytes _ g Utea
) = ag-q. (0, @) aCds {0, a} )

Assume that A = m2, + m,A, with m, =m,=>0. Then (4,22,) =0 B8 <L
1<n), A,2+2)=0B<it<j<n) and hence we obtain that

d() = {4+ 0,204 + 0,24 + p, &4 + AHA + p, 4 — A}
{0s 22 H{p, 22:Hp, X1 + 2Hp, 24 — 22}
A4 0,2+ HA+ p, 2 — A}
X I 2,

iUl J'U3 {os 2 + 2 Hp, 20 — 25}
Here {0, + 3} =2n 4+ 2 —i—7 A<i<i<n), {p s — A} =7—1 (AL
1 <j<n), {4,223} =2m;1@ =1,2), {4,4 + 2} =m, £m, and {4,2; + 2;}
=m(=1,2,7=38,.--,n). Thus we obtain that

d(m2, + m,2,)
~ @n—24+m)!@n —3+m)!Cn—1+m + m)d + m —my
@n — D! @2n —3)! (m, + 1! m,!

In particular, we get

— .
) dimd,) = (%gn _11; ’Z)!' G.e., m; = m,m, = 0)

(1) d) =2n
(il) d@24) = n@n + 1) = dim 8p(n, C)
(i) dB4) = 3nn + D@n + 1)
@) d4, + 4) =En@? — 1) (i.e., m =2,m, = 1)
®3) d24,) = tnn — 1)@2rn — 1)2n + 3) (.e., m; = m, = 2)
@ 1) = —Den + 1 = (3) = (4) de, m=m =1
This is a special case of d(4,) = (2’)) — <”2_n2> in Example 25.
Now assume that n = 3 and 4 = m,A, + M4, + myA, with m, = m, =
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my = 0. Then 4, = {22, 24, 24, 4 & A Ay + Ay 4 &+ A} and p = 32, + 22, + 4.
Since {p,4; + ;} =8 — 1 — 7, {0, 4 — 4} =7 — ©, {4, 2, + 2;} = m; = m;, we
obtain that d) = [ AtTed — 1 61 omyd + 2m)@ + 2my)
acdr  {p,a} 5760

G+ m + m)@ + m + m)B + my, + my)(X + m, — m)(A + m, — my)
@ + m, — m,). In particular,

BG)dd, +4) =70 (n=38,m, =2,m, = m; = 1)

©6) dd, + 4,) =126 (n =8, m, = M, = 2,m; = 1)

(M d@24;) =84 (n =3, m;, =m, =m, = 2).

EXAMPLE 27. Let o(n,C) = {X egl(n,C)|'X + X = 0} be a Lie sub-
algebra of gl(n,C). The Killing form B of o(n,C) is given by B(X,Y)
=Trad XadY = (n — 2)TrXY. If an element X of o(n, C) satisfies the
condition B(X, A) = 0 for any A € o(n, C), then X = !X since Tr (X — X)Z
=Tr X(Z — *Z) = 0 for any Z e gl(n, C). On the other hand, as X ¢ o(n, C)
implies X = —*X, and we get that X = 0. This shows that B is non-de-
generate and hence o(n, C) is semi-simple. First, we shall consider the
case of n =2m + 1. Put

(1 0 (1 0
1 V=1
01|17, I, X —=I,
1.3) K= 0 , T = 0 V2 V2
1 V=1
Im 0 —'_I'm ""‘_’“Im
V2 V2

Let g={Aegl@m + 1,C)|'AK + KA = 0} be a Lie subalgebra of
gl@m 4+ 1,C). Since T-gT = o(2m + 1, C), g is isomorphic to o2m + 1,C)
over C and sometimes we denote g also by o(2m + 1,C). g is the totality
of elements of gl(2m + 1,C) of the form:

0 [ay -+ aplb - -bn)
—b,
X Y
(1.4) —b,, with 'Y = -Y,"Z = —Z7 .
—a,
: VA —tX
—a,

Denote by H = H(4, --+,4,) the element of g such that X is a
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diagonal matrix with diagonal elements 2, --,2, and Y =2 =0, a, =
b; =0 (1<i<m)in (1.4). The totality § of such elements is a Cartan
subalgebra of g, and 4 = {+2, £4;+2, (G <k} is the root system
of ggw.r.t.h) Puta =24 — Ao, =2, — Ay -~y @y = A1 — Ay Oy, = Ay
Then 7 = {ay, - - -, &} is a fundamental root system because 2, — 2; = «;
tag+ - Fa;fori<lig, A, — A= —(a; + aj+ -+ ) for i >34, -2,
= (4 — ) + A,), and £, + 2) = £((4; — 2,) + A5 — 2,) + 22,,). As
k3 i+1

1 NSNS
Ha,; = —“—“"H(O, ""1, '_1’0) ""0)
2@m — 1)

for 1<i<m—1 and H, =— L _H@,.--,0,1), we obtain that
2@m — 1)
(ayap) =0 for |t — j| =2, (&, a)) = —m for |t —jl =1, (ag, @) =

I torl<i<m—1 and (a,,a,) = 1 This shows that

2m — 1 22m — 1)
g=02m + 1,C) is a simple Lie algebra of type B,. The fundamental
dominant weights are A, = A dy =2 + Ay oy Ay =2+ o+ Ap_ey
Adp =32 + -+ + 2,). If m =1, then 4, = 4. Let V, be a n(=2m +
1)-dimensional vector space over C spanned by u, ---,u4,. For 1<k <

m—1, let V, be a (Z)-dimensional vector space over C spanned by ex-

terior products u;, A\ --- ANu, A<, < ... <<i,<n). Then as we saw
in Example 21, V, is an irreducible representation space of 3((n,C) and
its restriction to o(n,C) is still irreducible. Thus V, is an irreducible
representation space of o(n, C) with the highest weight 4, A <k <m — 1).

Hence d(4,) = (}2) = (ka+ 1) for1<k<m— 1.

Now we shall calculate d(4,). The inner product in bf is
o miag, Z ,njzj) =

Define the inner product {, } by {3 m;, >, n;4,} = 2] myn,. Under the
lexicographical order in §¥ such that 7 = {«,, - - -, a,} are simple roots,
A4, ={dy A 2, A< i<j<m)landp = > (m — k + $)4,. Since
Ap =3 + oo + ) Ay 2 — 2} =0, {4y, 2, + 2} =1, and {4, 4} = 4,
the Weyl’s dimension formula says that
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_ Ay + 0,0 _ 7 {dn + p, 4} {4n + 0,4 + 25}

d,) = Mp + 00 _ 7 idn + 0,23 ]

() aQ+ (0, @) 1 {o, 2} si<ism {p, 2 + 25}
m o m—i+ 1) @m +2—i—7

i=1 (m — 1+ %) wicism Cm 4+ 1 — 1 — 7) .
Here

@m + 2 —1—7)
iicjsm (2m + 1 — 1 — 7)
_s@m+2—t— @+ 1) [[ogy-c @m + 2 — 47— )
M2 @m + L — i —m) [[rzeesan @m + 1 — i — J)
_"T@m+2—1—(@+1) :2m_1”‘1:[1 m—1+ %) ’
=t 2m + 1 —1—m) =1 (m — 1+ 1)

and hence we get d(4,,) = 2™ = 2=-972, Thig 2™-dimensional representation
of g =0@m + 1,C) is called the spin representation. We shall construct
the spin representation in §5. Finally, we shall calculate d(s4,).

By the Weyl’s dimension formula,

d(S/Il) — (SAl + o, 11) T (3/11 + o, A+ Zj)(SAl + 0, A — 2j)
(o, 2) =2 (o) 2 + 20, 2 — 2))
m—3%+8) 7 Cm—74+ 970 —1+5)
(m—3) 4= @m -G -1
@m+s—2)!2m +2s — 1)
@m — 1)!s! )

Thus we obtain the following results.
1) d(1) = (’Z) for l<yv<m—1(@=2m+1)

(2) d(4,) = 2™ = 2=V (p = 2m + 1)
@) d(sd,) = @2m + s —2)! @2m + 25 — 1)
! @2m — 1)!s!

(8) d@24) = m@m + 3) = n — D(n + 2) (n = 2m + 1).

, in particular

ExAMPLE 28. We shall consider the Lie algebra o(n, C) with n = 2m.

Put
( (1 V=1
0 Im 'Im mlm
1.5) K= |——\1, T = V2 V2
.o R
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g ={Xegl@m,C)|'AK + KA = 0}. Then g is isomorphic to o(@m, C)
over C since o(2m,C) = T-'gT. One can easily check that

(1.6) g~{<XIY>|‘Y Y.z z}
- =7 =x)¥=-v2=-

and the totality § of elements H = H(Z,---,4,) of g such that X is a
diagonal matrix with diagonal elements 2,,---,4, and ¥ = Z = 0 in (1.6)
is a Cartan subalgebra of g. The root system 4 of g w.r.t.§ is given
by d={+2 C£kYand Il ={ay, =2 — 2+, Qpoy = Aoy — Ay Xy =
An_i + 4,} is a fundamental root system because 2, — 2, = a; + a;,, +
v tasfore <, —4=—(@;fojy+ o Fa)ifi >4, and (4, +
)= (A = And) + Ay — ) + Qo + ) for i<j. As H, =
;H(O,---,\zf,—l{fl,.--,m l<i<m—1) and H, = L
2@2m — 2) - " 2@2m — 2)
H@,.--,0,1,1), we obtain that

( 0 (it —7=22,i<m—17<m—1)
-1
2@m — 2)

—1
1.7 (@, @) = 30m — 2)

G=m—2,7 =m)

t—=dl=Li<m—17<m-—1)
0 G£Em—2,7 =m)

1 .
L em = €=

If m =2, then Il = {a, &y}, {o,} | {a;} and this implies that o(4, C) is not
simple. In fact, 0(4,C) = 8l(2,C) D sl(2,C). If m =3, this shows that
g(=o(2m, C)) is a simple Lie algebra of type D,. The fundamental domi-
nant weights are 4, =24, + -+ + 4, A<v<m —-2), 4 =32 + -+ +
Apr — A), and 4, = 34, + -+ + 2,). Similarly as in Example 27, we
can calculate the following results.

) d(4,) = (’j) - (21") for 1<v<m—2 (n=2m)

@) d4,,_) = d(d,) = 2™ = 2¥*! (n = 2m)

3 d24) =@2m — Dim + 1) = in — Dxn + 2) (n = 2m).
Here 4, is the adjoint representation (see Example 24 (7)).

The irreducible representation dp, with the highest weight 4,0 =
m — 1, or m) is called the even (resp. odd) half-spin representation of
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g = 0(@2m,C) if v is even (resp. odd). Although dp,_, and dp, are not
equivalent, there exists an outer automorphism ¢ of g such that dp,_ o0
and dp, are equivalent. The restrictions of dp,,_, and dp,, to 0(2m — 1,C)
are equivalent and it is the spin representation of o(2m — 1,C). In the
case of m =4, we have d(4,) = d(4;) = d(4,) = 8, and moreover there
exist outer automorphisms o;, ¢, such that dp,, dp; ¢ g, dp, ° 5, are equivalent,
where dp, denotes the standard representation of o(8,C) with the highest
weight 4, (see (6.80) in §5). The weights of dp,, dp;, dp, are {*2,
1=1,2,38,4}, {£4,,i=1,2,3,4}, {£4F,¢=1,2,3,4} respectively, where
A: = ‘1‘(21 + 4+ 13 + 24) — A4 Aik - %(11 + 22 + 23 + /14)7 /1;‘ = %(21 + 22 - 23 - 24)’
AF =3A — 4+ A — ), AF = 204 — 4, — 4 + 4). We shall construct the
even half—spin representation in §5.

DEFINITION 29. Let dp:g— gl(V) be a representation of a Lie algebra
gon V. Let x be an element of V and let g, = {4 e g|dp(A)x = 0} be
a subset of g. Then g, is a subalgebra of g and is called the isotropy
subalgebra of g at z.

EXAMPLE 30. Let g be the totality of elements of gl(7,C) of the

form:

0/2d 2e¢ 2f|2a 2b 2c¢ )

a 0 ;  —e

b X —f 0 d
1.8) A= K e —d 0 with X € 3((3,C) .

d 0 —c¢ b

e| ¢ 0 —a —tX

lS1—=b a 0 )

Then g is a Lie subalgebra of gl(7,C). In fact, this is the isotropy
subalgebra of ql(7,C) at & = u, A us A\ uy + uy A Ug A Uy + Uy A (U A\ ug +
U N\ Ug + U, A\ U4;) under the irreducible representation with the highest

weight AS(:‘:) (see Example 21 and (8) in §5).

The Killing form B of g is B(4,A4’) = Trad A ad 4’ = 24(ad’ + o’d
+ be’ + be+cf + cf)+ 8Tr XX, and as this is non-degenerate, g is
a semi-simple Lie algebra. The totality § of elements H = H(1, 2, of g
such that X is a diagonal matrix with diagonal element 2, 2,, 4, = —4, — 2,,
all remaining entries zero in (1.8), is a Cartan subalgebra of g.

The root system 4 of g w.r.t.5 is given by
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A == {izu izz, illilb i(zl + 222), i(211 + 22)} .

A subset I = {&, = 4, — A, 0, = 2,} of 4 is a fundamental root system
since +4, = (o, + ay), 2 = +ay, (4 + 2) = £(; + 20), £ — 2) =
tay, £ + 24) = (o + 3ay), £(24, 4+ 2) = +QCa; + 3ay). Since B(H, H')
= 824, + )X + 8(2 + 22,)2;, we obtain that

Hm121+m212 — H( 2m1 - mz s 2m2 - ml )
24 24

and (M2, + Myds, M4 + NA) = ﬁ(mﬂ’h + myn,) — gr(mm, + mym,), in par-

. . N\
tlcu}ar’ (0(1’ 0‘1) = %, (C(;, 0(2) = —%, (sz’ az) = ﬁ7 l.e., ”6(1” = 3 ”CL'Z”, oy, = %ﬂ.’.

This shows that the Dynkin diagram of g is 03 E(g (see Lemma 17),
and hence g is a simple Lie algebra of type G,.

We sometimes denote g by g, or (g,). Now we shall calculate the
fundamental dominant weights 4, = mA + m,4, and 4, = n4, + 1,4,

Since 22Uy ) =m,—m, =1and (4, a,) = —1—(2m2 — m,) = 0, we obtain
Ay Oy 24
that m, = 2,m, = 1, i.e., 4, = 24, + 2,(=2a, + 3a,). Similarly as (4, «,)
= —1~(nl —n,) =0 and M =2n, —n, = 1, we obtain that »n, = n,
8 (052> 0(2)

=1, ie., 4,=2 + 2, (=a; + 2a,). Define the lexicographical order in
b such that I7 = {a,, a;} are simple roots. Then 4, = {a}, o, &y + a5, ; +
20y, 0ty + By, 200, + 3y} and p = § D .es, @ = 3oy + 5, For a dominant

m1+1,(/1+p’a2):

integral form A = m4; + m,4,, since (4 + p, ) = g

m, + 1
24
__ U+ o000 _ 1
that d(4) = g (p,f{) =1
+ 3)Bm, + m, + 4)(Bm; + 2m, + 5). In particular, d(4,) =7,d(4,) = 14,
d@24,) = 27, d(4, + 4,) = 64, d@24,) = d(B84,) = 77, d24, + 4,) = 189. In
view of Corollary 13, 14 (= dim (g,))-dimensional representation is only
4;, and hence 4, must be the adjoint representation of (g,). The identity
map of g into gl(7,C) is 4,. (We denote the representation correspond-
ing to 4, by 4. See Theorem 10.) The derivation algebra of the Cayley
numbers is also (g, (see Example 41).
Now we shall construct the exceptional Lie algebras of type F', and E,.

, the Weyl’s dimension formula says

1 1
’ (10’ C(1) = 78“, and ((0, C(2) - 24

5 (m, + D(m, + D(m, + m, + 2)2m, + m,
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DEFINITION 31. Let Q@ =C-1+ C-¢, + C-e, + C-e6(el = e = —1,
e, = —e,e) be the quaternion algebra over C. For a @-module € =
Q + Qe, define the multiplication by (¢ + re)-(s + te) = (¢gs — tr) + (tq
+7r8)e where q,7,s,te@ and § 7 are conjugates of s,t respectively.
Thus we obtain a non-associative algebra € of dimension 8, called the
Cayley algebra over C. The conjugate Z of x = q + re(q, r € Q) is defined
by 2 = §—re. Then Ty = ¥-%. The exceptional simple Jordan algebra
J over C is the non-agsociative algebra of dimension 27 whose elements
are 3 X 3 Hermitian matrices with elements in the Cayley algebra G,
multiplication being defined by XoY = (XY + YX) where XY is the
ordinary matrix product.

s ® T,
b ) C
(1.9 s={x=(n & o 0e
B Xy, Xy X, € E
T, T &

We write the trace & + &, + & = Tr X. The derivation algebra 2 of
F is the Lie algebra of endomorphisms D of # satisfying D(XoY) =
DXoY + XoDY.

We shall see that 2 is a simple Lie algebra of type F,. By a right
multiplication Ry is meant the endomorphism X+ XoY for every X in
#. Then [Ry,Ry] = RyoRy — RyoRy is a derivation of ¢ and [D, Ry]
=Rpy for De92,Xe #. Let 08,C) = {Xegl8,C)|'X + X = 0} be the
simple Lie algebra D,. We regard the elements of 0o(8,C) as endomor-
phisms of the Cayley algebra €. This algebra is equipped with a trace
function tr x = 2 4 7z satisfying tr ay = tr yz, tr x(y2) = tr (2y)z(= tr xyz).
Also, tray is a non-degenerate bilinear form. An endomorphism U of
€ is in o(8, C) if and only if U leaves the norm form % invariant:

(1.10) Ux2)z + z(Ux) =0 .

ProrosiTIiON 32 (Principle of Triality). For U in o8, C), there exist
unique U’, U” in o8, C) such that

(1.11) tr (Ux)yz + tr x(U'y)z + tr ay(U"2) =0

for all x,y,z in €. These U’ and U"” are the inequivalent half-spin
representations of U in D, (see Example 28).

Associated with the exceptional simple Jordan algebra ¢ are the
bilinear form Tr XoY and the trilinear form
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X, Y, Z)=TrXoY)eZ =TrXo(Y2Z).

PRrROPOSITION 33. An endomorphism D of # is a derivation if and
only if D leawves both Tr XoY and ¢(X,Y,Z) invariant, t.e.,

(i) TrDXoY + TrXoDY =0
i) ¢(DX,Y,2) + §(X,DY,2) + ¢(X, Y, DZ) = 0.

DEFINITION 34.

1 0 0
o) nef e )onl)
0 0 1
0 0 a 0 a
(a)1=( 0 a), (a)z=( 0 ) (a)3=(d 0 )
a o0 a 0 0

for ae@.

4, ={(a)e flacC} 1<i<y)
2,={Aec9|AE, =0 for 1<¢<3}

PROPOSITION 35. 2, = 0(8,C), dim 9, = 28.

Proof. Since E;o(a); =0 and (a); = 2E,-(a),(j # ), we obtain that
D(a); = 2E,oD(a); for De D, j+4. This implies that 2,4, C 4, for
1<i<38, and let U,U’, U” be the restriction of D to 4,, 4,, A, respec-

z, O
is an element of 0o(8,C) and so do U’ and U” similarly. Since D leaves
the trilinear form ¢(X,Y,Z) invariant, U, U’, U” satisfy the principle of
triality, i.e., U’, U” are two inequivalent half-spin representations of U.
Thus we get

0 2
tively for each De 2, As D leaves Tr( 0 xl) = 2x,%, invariant, U

0 U'x, U,
(1.12) X—>DX=|U"2, 0 Ux for De 9,.
Uz, Uz, 0

Conversely, as a linear transformation of this type leaves both Tr XoY
and ¢(X,Y,Z) invariant, it is a derivation of # by Proposition 33, and
hence we obtain our assertion. Q.E.D.
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DEFINITION 36. (@); = [Rg,, R, (@)} = [Rg,, Ry,), (@); = [Rg, Rl
for ae€C. J={@;e2|acC A1<L7<3)

PROPOSITION 37. 2 = 2,83, DD s dim 2 = 52.

Proof. Let D be any derivation of #. As E,oE;,=FE, we get
2E,-(DE,) = DE, for 1 <i<3 and hence there exist a,b,¢,d,e,f,9€C€
satisfying DE, = (a); — (b);, DE, = (¢), — (d); and DE, = (f), — (9);. On
the other hand, we get E,o(DE,) + (DE))oE, =0 from E,oE, = 0. This
implies (a); = (d);. Thus we get DFE, = (w); — (b),, DE, = —(a), + (¢)
and DE, = (b), — (¢),. Put T = 4(a); — 4(b); + 4(¢);. Then T is a deriva-
tion satisfying TE, = (a); — (b),, TE, = —(a); + (¢),, TE, = (b), — (¢), and
hence (D —TE, =0 (1<¢<3), i.e., D—Te2, This implies that
2=2,DF3PFPY, and dimP =52 since dim P, =28, dimJ; = 8
A<i<?’). Q.E.D.

EXAMPLE 38. We shall study the derivation Lie algebra g = 9 of
the exceptional simple Jordan algebra #. Let D be an element of 9,
of the form in (1.12). Then ad(D)-(a); = [D, [Ryz,, R.),]] = [Rg, [D, R, 1]
-+ [[D, RE2], R(a,)l] = [REgy RD(a,n] + [RDEZ, R(a.)l] = [RE29R(U0,)1] == (Ua/){ Slml'
larly we have ad(D)-(a);, = (U');, ad(D)-(a); = (U”a);. Since U’, U” are
two inequivalent half-spin representations of U in 0o(8,C), the adjoint
representation of g induces a representation of 9, = 0(8, C) on g which
is the sum of the adjoint representation 4, on 2, the standard repre-
sentation 4, on ;, and two inequivalent half-spin representations 4,, 4,
on J,, I, (see Example 28). Hence a Cartan subalgebra § of 2, = o8, C)
is a Cartan subalgebra of g and the root system 4 is the sum of the
weights of 4,, 4, 4y, 4, 16, 4 = {+£2,42;,1 <7 =1,2,8,4; +4, =4}, +4F,
1 =1,2,3,4} where 4;, A¥ are defined as in Example 28. Put o, = 4, — 4,
Q=2 — Ay s =2A, a,= %% — 24 — 24, — 2). Then, I = {a), @y, a3, ,} is a
fundamental root system, and under the lexicographical order of H¥ such
that «;(1 < ¢ < 4) are simple roots, 4, = {ay, ay, o, @y, @) + ty, 0ty + 0ty 05 +
Qg O + Ay + gy 0 + g gy + 205, @ + oy oy o, + 205, @ +
205 + ay oy + ay + 205 + @y, @ + 20, + 204, @y + 200 4+ 20, 0 + ay + 205 +
20ty aty + 20 + 2005 + oy, @y + 20, + 205 + 204, oy + 20, + 30y + @y, o + 20,
+ 3 + 200,y + 20, + 4oy + 20, o) + 3, + 4oy + 2a,, 20, + 3, + 4o, + 2a,}
and p = > ,c4, @ = 8a;, + 15a, + 2la, + 1la,. Let B be the Killing form
of g. Then for D = D, + (a); + (b); + (¢); e g, D, € @,, B(D, D) = $B'(D,, D,)
— $(a@ + bb + cc) where B’ is the Killing form of 2, = 0(8, C) (see p. 111

https://doi.org/10.1017/5S0027763000017633 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000017633

PREHOMOGENEOUS VECTOR SPACES 25

[6]). As B is non-degenerate, g is semi-simple. Since B(H,H) = 18 i, 2
for H = H(A, Ay 4, A) €5, we get

HZmiu — H<m1, mz, m3’ m4) ,
18 18 18 18

Cmidg, 2 imid) = g5 2ieamgn, and in particular (o, @) = (@ @) = 4§,
(0(3, 0(3) = (6(4, CY4) = ’11—8’ (al, “z) = (aZ, 0‘3) = _T%y (6(3, a4) = _§1€y (0(1, as) =
(ay, ) = (a5, ¢) = 0. This shows that the Dynkin diagram of g is

ay 22} ag Q4

o0——o0 O0—o0 and g= 2 is the simple Lie algebra of type F,.
Put 4, = 18Q2«a, + 3w, + 4, + 2a,), A, = 18(3a;, + 6a, + 8a; + 4y, 4, =
182, + 4w, + 6w, + 3a,), and A4, = 18(e; + 2a;, + 3a; + 2a,). Then since

2((/1"4’“;) =0y for 1 <4, j <4, 4,,4,, 4;, 4, are the fundamental dominant

gy Xj

weights. Let 4 = >t m;4;, (m; =0, integer) be any dominant integral

form. Then the Weyl’s dimension formula says that d(4) = ] —(%Q
agdy o

= g gy ™ + DO+ Dms + Dl + DO, + m, + 2)@m, + m,
+ 3)(my + my + 2)(m, + my + 2)@2m, + 2m, + m; + 5)2m, + m; + m, + 4)
@m, + 2m, + my + m, + 6)(m, + m, + m, + 3)2m, + 2m; + m, + 5)(m, +
my; + m, + 3)(my + 2m, + my; + 4)@m,; + 2m, + 2m; + m, + N(m, + m, +
my + m, + H@m, + 4m, + 2m, + m, + N(m, + 2m, + m; + m, + 5)(2m, +
dm, + 3m, + m, + 10)@2m, + 4dm, + 3m, + 2m, + 11)(m, + 2m, + 2m, + m,
+ 6)(m, + 3m, + 2m, + m, + 71)(@2m, + 3m, + 2m, + m, + 8). For example,
d(4,) = 26, d(4,) = 52, d(4;) = 273, d(24,) = 324, d(24,) = d(4, + 4,) = 1053,
d(4,) = 1274, d(34,) = 2652, d(24;) = 19448, d(24,) = 226746, etc. Let 7, =
{Xe #|Tr X = 0} be a 26-dimensional subspace of # over C. Then, 7,
is an invariant subspace of the derivation algebra F,= 92 of ¢, i.e., 7,
is an irreducible representation space of 4,. Obviously, 4, is the adjoint
representation of F,.

EXAMPLE 39. Let g be the Lie algebra spanned by the derivations
(=F) of # and the right multiplications of elements Y of trace 0. If
X and Y are in Z, then [Ry, Ry] is in 2(=F,); moreover, if D c 2, then
[D,Ry] = Rpy and Tr DY = 0. It follows that g = 2 + {Ry}, Tr Y = 0.
Since D(1) = 0 for every derivation D of #, D + Ry = 0 implies Y = 0,
D =0; thus g is of dimension 78, and the adjoint representation of g
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induces a representation of 2 (=F, which is the sum of the adjoint
representation 4, and of the representation 4, whose space is the set #
of right multiplications of elements in ¢, Since 2 and # yield irreduc-
ible representation spaces of 2 of distinct dimensions, the only possible
ideals are {0}, 2,Z and 2 + Z = g; but 2 and Z are obviously not
ideals, which proves that g is simple (these are quoted from [4]). Let
B be the Killing form of g. Then

BR, +D,R, + D) =12Tra-a + %B’(D,D)

where B’ is the Killing form of F\, = 2. Let [y be a Cartan subalgebra of
F,= 2andlet H, H,, H,, H, be its basis satisfying H(4;, 2, 2;, 2,) = > i1 AH;
for any H(A, --+,2) €Y. Set Hy = Rz, H; = Ry, H, = Ry, where E; are as
in Definition 34. Then §= {31, ,H;| 4 + 4 + 4, = 0} is a Cartan subalgebra
of g. The root system 4 of g w.r.t.§) is given by 4 = {+2,+2,,1<j =
1: 2: 37 4; izzi‘%(zs - 27); _":Aii%('zs - ls); i/liki%('zs - '27), 1= 1’ 2’ 3’ 4}
where 4, A¥ are defined as in Example 28. Put o, = — 4] + 1(4; — 1), a,
=24 — 3R =)oy =2 = Ap o, =+ 32 — A, a5 = — A} — (A5 — 2), g
=2 — 4. Then II = {ay, ---,a;} is a fundamental root system. Since

4 7
B (Z Z'IZHD Z ;l;Hi) =24 Z 2@‘% + 12 Z 2122:: )
1=1 i=5

we obtain that (3] m4;, 2 1,4;) = J Doici My + 15 Doies MMy, in particular

(e, 0)) = 5 for 1 <9 <6, (@, 000,0) = —o¢ for 1 <i <4, and (a;,a;) = 0 for
|t — 7] = 2 except for («;, &) = —3¢. This shows that the Dynkin diagram
[44] [22)) 23 Ay 443
oS O O o0
of g is £ i.e., g is the simple Lie algebra of type
Xg

E;. Under the lexicographical order in bF such that I/ = {w,, - - -, a} are
simple roots, all positive roots 4, is given by 4, = {a, @y, a5, @y, o5y 43
o + Wy, + @+ A0y gy b gy oy a0 o +oay +
Ay O3 + Qg + gy 00y + 0t + g5 ) + @y + 0 + Ay F o0+ oy oo, 0 + oy
oy + oy oy o+ 0y s+ A 0 oy oo A e a0 o ooy s, @ o
+oagFoa; gt 20+t ta o ta ottt
+ s + a0 + o, + 20 + @y + agy @ + 20 + @ + o + @+ 20, 4+ ay
+ oy + g o + 20, + 205 + oy + g, @y + 205 + 200, + 05 + g 0 + @y + 20
+ 20, + a5 + ag o + 20, + 205 + ay o + g5 0 + 20 + 205 + 20, + o +
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ag; oy + 20 + 3ay, + 20, + a5 + a5 ay + 20, + 3 + 200, + a5 + 20}, Hence
we obtain that p = { >, ¢4, @« = 8y + 15a;, + 21a; + 15, + 8a; + 1lag, and

(o)) =3¢ for 1 <i<6. Let 4,,..-,4;, be the fundamental weights,
ie., 2 ay) =g, fori,j,=1,--.,6. Let 4= 56‘_, m;4; (m; = 0, integer)
(aj! ij) i=1

be any dominant integral form of g = E,. Since (4 + p, a) = Imy(e;, @)
+ = Z(m; + 1) for 1 <4 <6, the Weyl’s dimension formula says that

— A+ o0 — Qi1 ny(my 4+ 1))
d(A) h ag+ (p, 0[) Iniai€dy (Z(ZL] n,) )

For example, d(4,) = d(4;) = 27, d(4y) = T8, d(24,) = d(4,) = d(4,) = 351,
d(4;) = 2925, d(24;) = 2430, etc. Here 4, and 4; are contragredient of
each other and so do 4, and 4,. Let dp; be the fundamental irreducible
representations of E; (1 <7< 6). Then there exists an outer automor-
phism ¢ of E; such that dp;, and dp,o¢ are equivalent. The representa-
tion space of 4, (and 4;) is the exceptional simple Jordan algebra 7.
4s is the adjoint representation.

Let N(X) = det X = £,6,6, + tr 22, — 6,2,%, — £,2,%, — &2,%, be the
determinant of X of the form (1.9) in #. Then E; leaves N(X) invariant.
Let N(X,Y,Z) be the trilinear form obtained by polarizing N(X). Then
the Lie algebra E, can be characterized as the set of linear transforma-
tions L of ¢ such that N(LX,Y,Z) + NX,LY,Z) + N(X,Y,LZ) = 0.

EXAMPLE 40. We shall construct the Lie algebra of type F,. Let
&4 7) be the Lie algebra spanned by the derivations 2(=F,) of # and
and the right multiplications of elements Y, but not necessarily of trace
0, i.e., &(F) = E;® CR; where I is the unit matrix in #. Let 7 be
a vector space isomorphic to # under the mapping X — X. We shall
define the structure of a Lie algebra in a vector space g = # @ # @ &,(#)
of dimension 133 over C such that &, #) is a subalgebra and

X, Y]1=0=[X,7Y] for X,Ye ¢
[X,Y] = 2Ry.y + 2[Ry, Ryl
1.13) [L,X]=LX for Le&( %), Xe ¥
[L,X]1=LX  where L= —Ry + D if
L=Ry+ D,Dec2(=F).

The Killing form B of g is given by B(4,A’) = 2B'(D,D’) + 18T(Z,Z")
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—36(TX,Y)+T(Y,X)) for A=X,Y,R,+D),A=X,Y,R; +
D’) e g where B’ is the Killing form of F, and T(X,Y) =TrXo.Y for
X,Ye #. Since B is non-degenerate, the Lie algebra g is semi-simple.
Let = {37, 24,H;|2, ++,2 €C} be the subalgebra of & #¢) where {H,,
---,H} is a basis of a Cartan subalgebra of F, and H; = Ry, H; = Ry,,
H, = Ry, (see Example 39), but here we don’t assume that 1, + 2, + 2, = 0.
Then % is a Cartan subalgebra of g, and the root system 4 of g w.r.t.}
is given by 4 = {+2,+2;, 1 <7 =1,2,3,4, £4,+3Q; — ), 4,32 — 2),
T AF 3 — X)), IR+ A, A EFA 4 A), £AF A+ 2), 1=
1,2,3,4, +2, =1, £2,} where Aj, AFf are defined as in Example 28. Put
O =2 — Ry =2 — Ay g =4 — 3 + )y, = Ay a5 = ¥y — 2, — A — 4,
— 2 — )@ = A0, = 4. Then II = {a,, ---,;} is a fundamental root
system of g. Since B AH;, >, 4H,) =362 i, 2,4, + 18 > 7 _ 4,4, we
obtain the inner product (O m;, > 1,4, = g5 D ic1 MMy + 15 D v MM,

Hence (a;, ;) = 5 for 1 <i <7, (a5, a) = (a5, 5,1) = —g5(1 <7< 5), and
(@) =0 if [¢ — 7| =2 except (a;,a;) = (@, ). This shows that the
ay as as ay as Qg
O; ) ) O O 40
Dynkin diagram of g is l , i.e., g is the
ay

simple Lie algebra of type E,. Since we have 4 and I/, we can easily

determine 63-positive roots 4, and we get 20 = > .4, @ = 34a;, + 66a, +

96, + o, + 5205 + 27e; + 49, and (p, o) = 31 <1< 7). Let 4, ---, 4,
(A'h ij) — 5
aj, o)

and let 4 = >7_m4; (m; =0, integer) be any dominant integral form.

Then (4 + pra) = "M@y @) + (p,) = (m; + 1), and hence (4 + p,

be the fundamental weights of g = E;, i.e., g hi=1,.,7,

> mag) + % i n;(m; + 1). The Weyl’s dimension formula says that
i=1

_ 4+ p,0) _ T ng(my + 1)
A = .zeIL (p,@)  Dnwicds D) '
For example, d(4,) = 133, d(4,) = 8645, d(4,) = 365750, d(4,) = 27664,
d(4y) = 1539, d(4,) = 56, d(4;) = 912, d(24,) = 7371, d(24;) = 1463, d(4, +
4. = 3920, etec. Obviously 4, is the adjoint representation of g = F,.
We shall construct the representation /4, of degree 56. For this purpose,
we shall define the Freudenthal product x in Z by a X b =a0b —
1 Tr(@)b — + Tr (b)a + $[Tr (@)-Tr (b) — Traob]-1 for a,be 7. Let A*
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denote the adjoint of a linear transformation A in _# relative to the
trace form T(a,b) = Traob, i.e., T(Aa,bdb) = T(a, A*b). Then we know
that R, is self-adjoint.

We now define M=CBECPH £ D ¢ a vector space direct sum of
two copies of C and two copies of #, so dim It = 56. We write the
elements of M as X = (&,9,2,y) where &,7¢C,z,ye ¢, and we define
an action of g= #® 7P &(¥#) by the following formulas:

[a, X1 = (T(a, ), 0,pa,2a X x) for ac ¢

[@, X] = (0, — T(a, x), — 2a X ¥, — &a) for ae 7

[2R;, X] = (88, — 3y, — x,¥)

L, X] = (0,0, Lz, — L*y) for Le &( 7).
Here, &,(¢) is a subalgebra of £&,(#) of elements of the form R, + D,
Tr o = 0,D a derivation. Then the action of g on I thus defined gives
an irreducible representation of g on IR of the highest weight 4;,. Define
a non-degenerate skew bilinear form {, } and a quartic form ¢ on IR by
(1.15) {Xn X,} = Emy — & + Ty, ¥ — T(2 )
(1.16) g(X) = T y*) — §N(@) — pN () — :(T(x, y) — &p)?
where ¢ = a* — Tr(@)-a +  {(Tra)* — Tr(e?}-1, and N(x) = detx (see
Example 39), T(x,y) = Trzoy, X = (&,n,2,¥), X;= (1 ®Y,) for
1=1,2.

It can be shown that if ¢(X,, X,, X,, X)) is the symmetric 4-linear form
obtained by polarizing ¢, then the Lie of algebra linear transformations
in M corresponding to g can be characterized as the set of linear trans-
formations A of I such that qA4X,X,, X,,X) + (X, AX,, X,, X)) +
X, X,, AX,, X) + X, X,, X,,AX,) = 0. Also direct verification using
(1.14) shows that {AX,, X,} + {X;,AX,} =0 for Aeg.

EXAMPLE 41. We shall construct the Lie algebra of type E,. Only
the fact that the least dimensional representation of FE; is the adjoint
representation will be used later. For this purpose, we consider first
the derivation algebra Der (€) of the Cayley algebra € (see Definition

(1.14)

31). Put f,=1tv-le */2"161, fi=1=+v=1le */2“161:1_f1, Then f? =/,

(7: = 1;2), flfz =fzf1 = 0’ fl +f2 = 1’ and fl :fzy fz :f_l' Since fi@fi
= Cf;, (¢t = 1,2), we obtain the Peirce decomposition & = (f, 4 f)C(f, +
f)=CHh®Cr,®fCf,®fSSfi of €, where f,Cf, and f,&f, are three-
dimensional.
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Let ©, be the subalgebra of Der(€) of derivations mapping f, (and
hence f,) into 0. Such a D maps the Peirce components f;&f; into
themselves. The representations of ®, in the space f,€f; (¢ # j) can be
considered as the standard representation of 2, = 3((3,C) and its con-
tragredient. Let D be any derivation in €. We have Df; = fi(Df;) +
(Df)f: since fi=f, (1=1,2) and hence, together with Df, = —Df,,
Df, e fiCf, + f.&f, so that we have Df, = a,, — by, Df, = —a,, + b, where
ay, e fi€f, by ef&f. Put D, , = (ab)r — (ab), — 3larbz] for a, b e € where
we write ap for X — Xao and a; for X — aX. Then D,, is a derivation
of € and Dy, 4, f1 = @y Dyyp, 2 = by for ap, e 181, by e f,€f;,. Thus we
obtain that £ =D — Dy, 4, — D43, € Doy 1.€., D =FE + Dy, 4, + Dy, 0,
Since this expression is unique, we have Der(€@) = 2,DFZ D%, I =
Do b2 € &S}, Fp = {Dyy 0|02 € f1€S3} and dim Der(@) =8 + 3 + 3 =
14. Let 2 be a Cartan subalgebra of 2,=3((8,C). Then s acts
diagonally in Der(€) and has weights of the adjoint representation, the
standard representation and the contragredient of this. 1t follows that
# is a Cartan subalgebra of Der(®) and the root system 4 of Der()
w.r.t. 27 is given by

4= {i‘zxy i"/zzs i(21 + Zz), i(21 - 22), i(zx + 212), "__.*'(221 + 22)} .

Squaring these and adding we obtain <k, h>p., = 16(2 + 4,2, + 22) for
h = W4y, 2) € o# where {, Dpere 18 the Killing form of Der(€). Thus we
obtain that Der(€) is a simple Lie algebra of type G,, i.e., Der(®) =g,
(see Example 30), and €, = {aeC|tra = a + @ = 0} is a T-dimensional ir-
reducible representation space of g, = Der(€). Let # be the exceptional
simple Jordan algebra and #, = {X e #|Tr X = 0}. Aswe saw in Example
38, 7, is a 26-dimensional irreducible representation space of F', = Der(#).
We are now ready to define Lie algebra g = Der(€) ® €, £, D Der(#)
of dimension 14 + 7 X 26 + 52 = 248. We require Der(®) ® Der(#) the
Lie algebra direct sum of Der(€) and Der(#) to be a subalgebra of g.
We define that [e®z,D + E]l = Da) ®zx + a® (Ex) for D e Der(®),
E e Der(#),acC,, ze #, Finally we require [a ® z,b ® y] = 5T (z,y¥)D, ,
+ (@*D) ® (xxy) + $t(a, b)[Rx, Ryl, 0,0, 2,y ?, where axd = ab —
3t(a, b)-1, 2y = xoy — +T(x,y) 1, t(a, b) = tr ab, T(x,y) = Trxoy. Then
one can check that this defines the Lie algebra structure in g (see [5]).
The Killing form B of g is given by B(D +a® 2« + E,D' + bQ@y + E’)
= 15D, D" >perwy + 15 t(a, D)T(X,Y) + K%E,E">periysyy D, D’ € Der(S), E,E’
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€ Der(#), a,beC,, x,ye ¢, where {, Dp. and <, >y, is the Killing
form of g, = Der(€) and F, = Der(#) respectively. Let I, = G ., CE))
N fyn,=C(fy —f) and put §=1h, D n&® M, D Y, where Y, 5, are
Cartan subalgebras of g, = Der(€) and F, = Der(#). Then § is a Cartan
subalgebra of g. Let {H,H,H,; H} be a basis for Y such that
H(Ayy 20, 25, 4) = 2311 AH, in Example 38, {H,,H,} a basis for §, as in
Example 30, and put H; = (i =) ®FE, - Ey), Hy = (fi — 1) ® E, — Ey).
Then {H,,.--,Hg} is a basis of ), and if we denote an element > 1,H,
— >.a;2; of H* by > a;2;, the root system 4 of ¢ w.r.t.§ is given by

4= {iziﬂj 1<J=1,2,8,4; £ — ), = + 22), +@4 + A); +A+

—m—zﬂ— e *—g—l— S AF + 1—;@— i =1,2,3,4; + G — &), =
- 28)’ i_ (25 + 27 + 28), i('zﬁ - /27), i‘(26 - 28), i(zﬁ + /27 + 23)’ i—(zﬁ + 26 + 27)7

Qg+ Ao Ay (R Ay — A — 2); ilii(zz, + _’;ﬁ_) izii<zﬁ ¥ 228 ) 2,

et a-2) adi (- BEAY, w g (n - 2R, L2 (n 4

zs+37—';—28—), i/IE"i(ls-l- 22) i—A;“i(XH— 227) i/l;"i<25 A — ;)

1=1,2,3, 4} where A}, A¥ are as in Example 28. (See [5], but there are

mistakes about the roots of E; in p. 102 ~ 103 of [5].)
Put @y = A — A — 2 — A — A — A} — A — Ay 0ty = Ag + A + Ag» s

Ry — Aoy Cty = Ao — gy Oy = A4 — Ay — Zg + 128,aﬁzzpz“%:zz—z”as:zs
— 4. Then I = {ay, - -, a5} is a fundamental root system. For example,

A+ A, = 20 + 4o, + 60y + Be, + 4day + B + 2, + 8. Since B(C A,H;,

2o AH) =60 + & + 4 + 2D + 1200 + 2,4, + ) + 60(2 + 22 + ), we

obtain that (3] mi;, 2 ma) = de(mi + mi + mi + ml) + J(mi — mgmg +

md) + gFg(m; — mms + mg). In particular, (o, ) =45 for 1<i<8,

(o, 05,) = —g for 1<i<6, (a,a)=0 for |i—j =2 except for

(ay, ) = —g%5. This shows that the Dynkin diagram of g is
[4¢

ay 431 3 ay as Qg ar
O - o0 O0—0——0
l Qg

, i.e., g is a simple Lie algebra of

type E,. Since we have 4 and II, we have 120 positive roots 4, and
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=4 > ees, @ = 46, + 9la, + 135a, + 110e, + 84w, + 57a; + 29, + 68ay,.

Let A, .-, 4, be the fundamental weights of Ej, ie., 2Ao®%) _

(e, ay)

,j=1,...,8. Let 4= >%,m; (m;=0, integer) be any dominant in-
tegral form. Then

m;

A y &) =
U+ p,a 5

1
iy Xg y 0) = ——(M; 1 ’
(eesy 01) + (o, ) 60( + 1

(o,a;) = g for 1 <7< 8 The Weyl’s dimension formula says that

dd) = ] A+ p,) — i S_am(m; + 1) .

a€dy (.0, o) Di_gmiai€dy S-1 M
For example d(4,) = 3875, d(4,) = 6696000, d(4,) = 6899079264, d(4,) =
146325270, d(4,) = 2450240, d(4;) = 30380, d(4,) = 248, d(4y) = 147250,
d(24;) = 27000, d(84,) = 1763125, etc. This shows that the least dimen-
sional irreducible representation of E, is the adjoint representation 4.

PROPOSITION 42. Let g be a simple Lie algebra over C and let
do:g— gl(V) be any representation of g on V with ¢ = dimg and d =
dim V> 1. Then we have g < Ld(d + 1) except when g = 3l(d, C).

Proof. If g is of type A,_, (n = 2), we have d(4) = d(4,) = d(4,_,)
ntn —1) =2 —1) (m=4) and d4) =d@24) = jnn + 1) =2n —1)
(n =2,3) for any A+ A4, 4,_;, and hence, id(d +1)=n —1)@2n — 1) =
W—1=g for d=dM, A+ 4,4,_,. If 4=4, or A =4,_,, we have
d=d4,) =d(4,_.) =n and hence g=3((d,C). If g is of type C,, we
have d(4) = d(4)) = 2n for any A, and hence 1d(d + 1) =n@n + 1) = g.
If g =0®,C) (n=5), we have d(A) = d(4,) =n for any A and hence
3dd+ 1) = inn +1) = inn —1) =g. If gis of type G, (rvesp. F,, E,,
E,, Ey), we have seen that the least representation degree is 7 (resp. 26, 27,
56,248) and g = dim g is 14 (resp. 52, 78,133, 248), hence id(d + 1) = g.

Q.E.D.

Remark 43. If d=2, then ¢ =302,C), dp=4,. If d=3, then
g =8l(2,C), dp = 24,, or g = 8l(3,C), dp = 4, or its contragredient 4,.

DEFINITION 44. Let V be a n-dimensional vector space over C. Then
all non-singular endomorphisms of V form a group GL(V). By fixing
a basis of V, we may identity GL(V) with the group GL(n, C) of all non-
singular n X n matrices, which is called the general linear group. A
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subgroup G of GL(n, C) is called a linear algebraic group if there exists
a finite number of polynomials P,, ---, P, on M(n, C) such that the group
G is the intersection of GL(n,C) and the common zeros of these poly-
nomials. In this case, the tangent space g of G at the unit matrix I,
ie.,

3= {seMm,©)

Zg“(apk (In)> =0 forl<kz< ,,L}
Y] 0%y
is a Lie subalgebra of gl(n,C), which is called the Lie algebra of G.
For example, the special linear group SL(n,C) = {A e GL(n,C)|det A —
1 = 0} is a linear algebraic group and its Lie algebra g is, by definition,

Z &j(M—_—l*(ln)) = i §u = 0} ’
O] 21, i=1
i.e., g = 8l(n,C) (see Example 21). The orthogonal group O(n,C) = {A e
M, C)|*AA = 1,} and the special orthogonal group SO(n,C) = {Ac
O(n,C)|det A = 1} are linear algebraic groups and their Lie algebras are
the same as o(n,C) (see Example 27). The Lie algebra of the symplectic
group Sp(n, C) = {A € GL(2n, C)|'AJA = J} is a simple Lie algebra 3p(n, C)
of type C,, where J is defined as in Example 25. Here SL(%n,C) and
Sp(n, C) are connected and simply connected, SO(n,C) is connected but
not simply connected, and O(n, C) is not connected. We shall construct
the spin group Spin(n,C) in §5, which is connected and simply connected
and whose Lie algebra is isomorphic to o(n, C).

In general, the Lie algebras of two linear algebraic groups G; and
@, are isomorphic if and only if G, and G, are locally isomorphic, and
in this case we write G, ~ G,. We say that a connected linear algebraic
group is almost simple when its Lie algebra g is simple. Note that an
almost simple algebraic group might have the center of finite numbers.

Let p: G— GL(V) be a representation of a linear algebraic group
G on V. Let g be the Lie algebra of G. Then exptX(teC,Xeg) is in
G and there exists a representation dp:g— gl(V) of g on V defined by

. 1 .
do(X) = ltl_I})l —t-—(p (exp tX) — 1), i.e., p(exptX) =exptdp(X) for Xeg.

g = {EeM(n,C)

This representation dp is called the infinitestmal (or differential) repre-
sentation of p. Assume that G is connected. Then p is irreducible if
and only if dp is irreducible. Moreover, two representations of G are
equivalent if and only if their infinitesimal representations of g are
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equivalent. Conversely, if G is connected and simply connected, for any
given representation dp of g, there exists a representation p of G uniquely
such that its infinitesimal representation is dp. For example, there is no
representation of SO(n,C) corresponding to the (half-) spin representa-
tion of o(n,C) (see Example 27, 28), and we have to consider the spin
group Spin(n, C).

EXAMPLE 45. Let g be a Lie algebra over C. Then there exists,
uniquely up to isomorphism, a connected and simply connected linear
algebraic group G with the Lie algebra g. For example, since the Dynkin
diagrams of type A, and D, are the same as o——o——-o0, the correspond-
ing connected and simply connected algebraic groups SL(4,C) and
Spin(6,C) are isomorphic. Two inequivalent half-spin representations
of Spin(6,C) correspond to the standard representation 4, and its con-

)

tragredient representation A, of SL(4,C). The representation /12<=

of SL(4,C) has a kernel {1} and its image is SO(6, C) since its image
leaves the Pfaffian of 4 x 4-skew symmetric matrices invariant (see De-
finition 22, (7)). This fact corresponds to the exact sequence 1 — {+1}
— Spin(6, C) — SO6, C) — 1 (see (5.27)). Similarly the Dynkin diagrams
of B, and C, are the same as o—=0, the corresponding connected and
simply connected algebraic group Spin(5, C) and Sp(2, C) are isomorphic.
The restriction of 4, (and also of A4,) of SL4,C) to Sp(2,C) is 4, of
Sp(2, C) which is corresponding to the spin representation of Spin(5, C).

The representation AZ<:}, d(d,) = 5) of Sp(2,C) has a kernel {£1}

and its image is SOB,C). This fact is corresponding to the exact
sequence 1 — {41} — Spin(5, C) — SO(5, C) — 1. Since the Dynkin diagram
of 0(4,C) and 38((2,C) @ 8l(2,C) are the same as 0 =— 0, we have the
isomorphism Spin(4, C) = SL(2,C) X SL(2,C). The two representations
4,011,104, (e, O®1,1® 1) of SLEZ,C) x SLZ, C) are correspond-
ing to the two inequivalent half-spin representations of Spin(4,C). Let
V be all 2 X 2 matrices M(2,C). Define p: SL(2) X SL(2) — GL(V) by
X— AX'Bfor XeV, (A,B)e SL(2) X' SL(2). Then p =4, ® 4, (=0 & )
and its kernel is {#1}. The image is SO4, C) since it leaves det X(X e V)
invariant. This fact is corresponding to the exact sequence 1 — {+1} —
Spin(4, C) — SO4, C) — 1. Since the Dynkin diagrams of A, B, C, are
the same as o, we have SL(2,C) = Spin(3,C) = Sp(1,C). Under the
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isomorphism Spin(4, C) = SL(2) x SL(2), the subgroup {(4,A)e SL(2) X
SL(2)| A € SL(2)} = SL(2) corresponds to Spin(3,C). Thus the restriction
of 4,®1 (and 1 ® 4,) to that subgroup =SL(2, C) is 4, which corresponds
to the spin representation of Spin(3,C). The representation 24, of
SL(2,C) has a kernel {+1} and the image SO(3,C). This fact is cor-
responding to the exact sequence 1 — {1} — Spin(3,C) — SO@3,C) — 1.

DEFINITION 46. Let p: SL(n, C)— GL(V) be an irreducible representa-
tion of G on V with the highest weight 4. Then there exists canonically a
representation p’: GL(n, C) — GL(V) of GL(n,C) such that the restriction
of o’ to SL(n,C) is p. In this case we say that the highest weight of
o is 4. We also apply the Young diagram to GL(n, C).

§2. Castling transforms

DEFINITION 1. Let G be a connected linear algebraic group, V a
finite dimensional vector space (dim V = 1), and p a rational represen-
tation of G on V, all defined over the complex number field C. We call
a triplet (G,p, V) a prehomogeneous vector space (abbrev. P.V.) when
there exists a proper algebraic subset S of ¥V such that V — S consists
of a single G-orbit. In this case, points of S (resp. V — S) are called
singular (resp. generic) points. Let g be the Lie algebra of G and let
dp:g— gl(V) be the infinitesimal representation of p. For an element
x of V, the Lie algebra of the isotropy subgroup G, = {9 € G|p(9)x = «}
of G at x is the isotropy subalgebra g, = {A e g|dp(A)x = 0} of g at =.

PROPOSITION 2. The following conditions are equivalent.

1) A triplet (G,p,V) is a P. V.

(2) There exists an element x of V satisfying dim G, = dim G —
dim V, i.e., dimg, = dimg — dim V.

Proof. (1)= (2): Let x be a generic point. Then we have V — S

= p(G)-x = G/G, and hence dim G — dim G, = dim (V — S) = dim V.
(2)=> (1): In general, we have p(G)-z = p(G)-x — (o(G)-x — p(G)-x)

where — denotes the Zariski closure. The second condition implies that
dim p(G) -z = dim p(G)-« = dim V. Since V is irreducible, we have V =
o(G)-x and p(G)-x =V — S where S = (o(G)-x — p(G)-x). Q.E.D.

Proposition 2 implies that the prehomogeneity of a triplet is an in-
finitesimal condition.
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PROPOSITION 3. Let (G,p, V) be a triplet. Assume that there exists
a non-constant rational function f(x) satisfying f(p(g)x) = f(x) for all
geG, xeV. Then this triplet (G,p, V) is not a P. V.

Proof. Assume that a triplet (G,p,V) is a P.V. and let , be a
generic point. Then f(x) is constant on the open orbit p(G)-z,. Since
J(x) is a rational function, it is constant on the Zariski closure of o(G)-x,,
i.e., on V. Q.E.D.

These propositions will be used in § 5 to investigate the prehomogeneity
of a given triplet.

DEFINITION 4. Two triplets (G, p, V) and (G, o/, V') are called equiv-
alent (or strongly equivalent) if there exist a rational isomorphism o¢: p(G)
— 0(G") and an isomorphism z:V — V’, both defined over C such that
the following diagram is commutative for all g e G. This equivalence

V-5V

.o(g)l c lop(g)

V—V’
T

relation will be denoted by (G,p, V) = (G', o', V). Note that we consider
only the image p(G), not G itself. For example, we have (SL(4, C), 4,, V(6))
= (SO(6, C), 4, V(6)) although SL(4,C) and SO(6,C) are not isomorphic
(see Example 45, §1). A triplet (G, p, V) is called irreducible when p is
irreducible. In this case, by Theorem 1 in §1, the Lie algebra g of the
image o(G) is reductive, with center at most one-dimensional. In partic-
ular, a triplet (G,p, V) is equivalent to its dual (G, p*, V*) where p* is
the contragredient representation of p on the dual vector space V* of
V. In the following, except §4, we shall assume that a triplet is
irreducible.

LEMMA 5. Let G be a connected algebraic group and let W, W’ be
irreducible algebraic varieties on which G acts. Let J:W—->W bea
generically surjective (i.e., f(W) = W’), G-equivariant morphism (.e.,
compatible with the action of G). Then the following conditions are
equivalent :

(i) W is é-prehomogeneous, i.e., it has a Zariski-dense G-orbit.

i) W' is G-prehomogeneous, and for a point &' of a Zariski-dense
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orbit, f~Y(x) is Gx,-prehomogeneous, where éz, is the isotropy subgroup
of G at 2.

DEFINITION 6. Let (G,p,V) be a P.V. The isotropy subgroup G,
of G at a generic point x eV — S is called a generic isotropy subgroup.
Note that all generic isotropy subgroups of (G,p, V) are isomorphic to
each other. Similarly, the isotropy subalgebra of a generic point is
called a generic isotropy subalgebrea. Since we consider everything over
C, we shall denote GL(n, C) (resp. SL(n, C), O(n,C), SO(n, C), Spin(n, C),
Sp(n, C)) by GL(n) (resp. SL(n), O(n), SO), Spin(n), Sp(n)).

Let G be a linear algebraic group, and let p: G — GL(V(m)) be a
faithful irreducible representation of G on the m-dimensional vector space
V(m). Let p*: G — GL(V(m)*) be the contragredient representation of
o on the dual vector space V(m)* of V(m), and let n be a positive integer
with m >n > 1.

PROPOSITION 7. A triplet (G X GL(n), p® 4,, V(m)R®V(n)) isa P. V.
if and only if a triplet (G X GL(m — n), p* @ 4, V(m)* ® V(m — n)) is
a P.V., and in this case, their generic isotropy subgroups are isomorphic
to each other.

Proof. Identify V =V(m)® V() with Vim)® --- ® V(m), and let
W be an algebraic variety whose points are vectors v =(v,, - -+, v,) ¢ V(v; €
V(m)) such that v,, ---,v, are linearly independent in V(m). Then the
triplet (G X GL(n), p X 4, Vim) @ V(n)) is a P.V. if and only if W is G-
prehomogeneous for G = G X GL(n). Let W’ be the Grassmann variety
Grass, (V(m)) whose points are m-dimensional subspaces of V(m). For
an element v = (v, ---,?,) in W, let f(v) be the n-dimensional subspace
of V(m) spanned by v,, ---,v,. Then f:W — W’ is a surjective, G-equi-
variant morphism. By Lemma 5, W is @—prehomogeneous if and only
if W’ = Grass, (V(m)) is G~-prehomogeneous, i.e., G-prehomogeneous since
GL(n) acts on Grass, (V(m)) trivially, and it acts on each fibre homo-
geneously. As Grass, (V(m)) is G-prehomogeneous if and only if
Grass,,_, (V(m)*) is G-prehomogeneous, again by Lemma 5, that is so if
and only if (G X GL(m — n), p*® 4,, Vim)* @ V(m — n)) is a P.V., and
thus we obtain our first assertion. Since each fibre is a principal homo-
geneous space of GL(n), the generic isotropy subgroup of (G X GL(n),
o ® 4, V(m)® V(n)) is isomorphic to that of (G, Grass, (V(m))). As the

https://doi.org/10.1017/50027763000017633 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000017633

38 MIKIO SATO AND TATSUO KIMURA

generic isotropy subgroups of (G, Grass, (V(m))) and (G, Grass,,_, (V(m)*))
are isomorphic, we get our second assertion. Q.E.D.

LEMMA 8. Let G be a connected semi-simple algebraic group and
let p: G— GL(V) be an irreducible representation. Assume that the
triplet (G X GL(1), p® O, VR VQ)) is a P.V. with the generic isotropy
subgroup H. Then the triplet (G,p,V) is a P.V., if and only if the con-
nected component of H is not contained in G.

Proof. The triplet (G, p, V) is a P.V. if and only if dimG — dimGNH
=dimV (=dim G X GLA) — dim H), i.e., dimGNH =dimH — 1. Since
dimGNH =dimH —1 if and only if the connected component of H is
not contained in G, we obtain our assertion. Q.E.D.

PrOPOSITION 9. Let G be a linear algebraic group and let p: G —
GL(V(m)) be a faithful irreducible representation of G on the m-dimen-
stonal vector space V(m). Let n be a positive number with m > n = 1.
Then a triplet (G X SL(n), p® 4,, V(m)Q V() is a P.V. if and only if
(G X SLim — n), p*®4,, V¥im)Q@V(m — n)) is a P.V., and tn this case,
their generic isotropy subgroups are isomorphic to each other.

Proof. Note that G is reductive with at most one-dimensional center
by Theorem 1 in §1. When G has the one-dimensional center, our as-
sertion is the same as Proposition 7, and hence we may assume that G
is semi-simple. Assume that (G X SL(n), p® 4,, V(m)@V(n)) is a P.V.
with the generic isotropy subgroup H. Then (G X GL(n), p® 4;, V(m)
®V(n)) is a P.V. and its generic isotropy subgroup is isomorphic to H
X GL(1) by Lemma 8. Then Proposition 8 says that (G X GL(m — n),
p*® 4, Vim)* ® V(m — n) is a P.V. with the generic isotropy subgroup
H = H x GL(1). Since H' N (G X SL(m — n)) = H, (G X SL(m — n), p*
X4, Vim)*Q V(im — n)) is a P.V. by Lemma 8. Q.E.D.

This Proposition 9 is very important because it gives us a general
method to obtain infinitely many new prehomogeneous vector spaces from
a given prehomogeneous vector space. Let (G,p,V) be any P.V. with
dimV =m = 2. Then since SL(1) = {1} and V® V(1) =V, we have (G,
0, V)= (G X SL(), p® 4,, VR V(1)) and by Proposition 9, we obtain a
new P.V. (G X SL(m — 1)), p*® 4,, V*@ V(m — 1)). Since we may as-
sume that G is reductive, this P.V. is equivalent to (G X SL(m — 1), p
X4, VROV(@m — 1)). Applying this procedure again to this new P.V.,
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we obtain the second new P.V. (G X SL(m — 1) X SL(m* — m — 1), p® 4,
R4, VRIVm — 1) Q@ V(m? — m — 1)). Now there are two ways to apply
Proposition 9 to this second new P.V., namely we have two new P.V.
(G x SL(m* —m — 1) X SL(m* — m* —2m + 1), p@ AL R4, VQV(im*—
m—1DRQ®Vm® —m? —2m + 1)) and (G X SL(m — 1) X SL(m* — m — 1)
X SL(m* —2m* +m — 1), p@ 4,44, VRV(im —1D)RV(m* —m — 1)
X Vimt — 2m® 4+ m — 1)) where m* — 2m® + m — 1 = m(m — D)(m? — m —
1) — 1. If m =3, these new P.V. are not equivalent to the original P.V.
For example, a triplet (SL(8), 4,, V(3)) is obviously a P.V. and hence (SL(3)
X SL(2) x SL(5) x SL(29), 4, @ A4, @4, 4, VB X V(2) X V()X V(29)) is
a P.V., etc. Repeating this procedure, we can obtain infinitely many new
P.V.’s. Although these prehomogeneous vector spaces obtained from a
given P.V. are in general not equivalent, they have many common prop-
erties. For example, their generic isotropy subgroups are isomorphic to
the original one. Thus we attain the concept of castling transforms or
castling classes of prehomogeneous vector spaces. It is convenient to
define these concepts among irreducible triplets.

DEFINITION 10. We say that two triplets (G, p, V) and (G’, o/, V') are

castling transforms of each other when there exist a triplet (@G, 8, V(m))
and a positive number n with m > n =1 such that

(G, 0, V) = (G x SL(n), 6 & A, V(m)® V(n))
and
(G, 0, V) = (G x SLim — n), 3*® A, Vim)*® V(m — n))

where g* is the contragredient representation of 5 on the dual vector space
V(m)* of V(m). A triplet (G, p, V) is called reduced if there is no castling
transform (G, p’, V') of (G, p, V) with dim V' < dim V.

DEFINITION 11. We say that two triplets (G, p, V) and (G, ¢/, V') be-
long to the same castling class when one is obtained from the other by
a finite number of castling transforms, and in this case we write (G, p, V)
~ (G, o, V).

We can obtain the reduced triplet from any given one by a finite
number of successive castling transforms for the dimension reasons. For
any given triplet, such a reduced one is unique; namely,

PROPOSITION 12. Fach castling class contains one and, up to strong
equivalence relation, only one reduced triplet.
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Proof. Suppose that a triplet (G, p, V) has at least two castling trans-
forms (G, 0, V') and (G”,p”, V"), then we may assume without loss of
generality that there exists a triplet &, 8, V(m)) such that

(G, 0, V) = (G x SL(ny) x SL(ny), i ® 4® 4;,, V(m)R® V(n,) ® V(n,)
with m = 2, and

(G, 0, V) = (G x SL(n,) X SL(mn, — ny),
§* Q@ AF ® 4, V(m)*® V(n)*® V(imn, — n,))
(G", 0", V") = (G x SL(n,) X SL(mn, — n,),
§* R AF® 4,, V(m)* ® V(n)* ® V(imn, — n)) .

In this case dimV =mnmn, dimV’ = mn(mn, —n,) and dimV” =
mn,(mn, — n,). Assume that dim V' < dimV and dim V” < dim V. This
implies that mn, < 2n, and mn, < 2n,, and hence m?* < 2% ie.,, m<2, a
contradiction. This shows that if there exists a castling transform
(@, 0, V) of (G, p, V) satisfying dim V/ < dim V, then it is unique. Since
dim ¥V < 4+ o0, we obtain our assertion. Q.E.D.

Proposition 12 implies that a reduced triplet (G,p, V) satisfies the
condition that dimV < dim V' whenever (G,p, V) ~ (G',0, V). By a
clagsification of irreducible prehomogeneous vector spaces, we mean the
determination of all reduced irreducible prehomogeneous vector spaces
up to strong equivalence relation. Note that in this paper we shall use
essentially Lie algebras even if we use the terminology of groups for
the convenience. Finally we shall show two propositions which are
obtained from Lemma 5 as Proposition 7.

Let G be a linear algebraic group and let p: G — GL(V(d)) be a re-
presentation of G on the d-dimensional vector space V(d). By choosing
a basis of V(d), we may identify V(d) with C¢. Thus we may consider
o(@)(geG) as a d X d matrix. Define the vector space AYV(d)) (resp.
SAV(d))) as the all d x d skew-symmetric (resp. symmetric) matrices.
Define the representation pH (resp. p—) of G on AX(V(d)) (resp. SV (d)))

(I

by X — p(9)X’p(9) for X e /IZEV(d)) (resp. X e SAV(d))), g ¢ G. Then o

’plll

are up to equivalence uniquely determined by p.

PROPOSITION 13. Assume that 2n>=d. Then a triplet (Sp(n) X G,
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4, Qp, V)R V(A) is a P.V. if and only if the triplet (G, p-, 4,(V(d))

s a P.V.

Proof. Let {, > be a skew-symmetric bilinear form on V(2n) x V(2n)
which is left invariant under the action of Sp(n). Identify V(2xn) ® V(d)

a
with W=V@2n)® -.- D V(2n) and for an element v = (v, -- -, v, € W(w,
e V(2n)), let f(®) be a d x d skew-symmetric matrix with (4, j)-element
vy G7=1,---,2n). Then f(v) is an element of W’ = A(V(d)) and
f:W-— W is a generically surjective, G-equivariant morphism for G =
Sp(n) x G. By Lemma 5, (Sp(r) X G, 4,Qp, VCr)Q V(d)) is a P.V. if
and only if W’ is é—prehomogeneous, i.e., G-prehomogeneous since
each generic fibre is Sp(n)-prehomogeneous and Sp(n) acts trivially on
W' = AA(V(d)). Q.E.D.

PROPOSITION 14. Assume that n=d. Then a triplet (SOn) X G,
4, ®p, V)Q®V(d) is o P.V. if and only if the triplet (G, o, S*(V(d)))
s ¢ P.V. o

Proof. Let {, > be a symmetric bilinear form on V(n) X V(n) which
is left invariant under the action of SO(®). Then the rest of a proof is
the same as Proposition 13. Q.E.D.

Proposition 13 and Proposition 14 will be used in §3.

§3. Classification of reduced triplets (G, p, V) satisfying dim G > dim V
PRrOPOSITION 1. If o triplet (G,p,V) is a P.V., then we have

dimG>dimV.

Proof. By Proposition 2 in §2 we have dim G —dim V =dim G, > 0
for some x in V. Q.E.D.

According to this proposition we shall determine in this section all
the irreducible reduced triplets (G,p, V) satisfying dimG > dim V. By
Theorem 1 in §1, the Lie algebra g of p(G) is reductive with at most
one-dimensional center. We shall consider in §6 the case when g is
semi-simple. In this section we shall consider the case that the center
of g is of one dimension. Then by Theorem 2 in §1, we may assume that
a triplet (G,p,V) is of the form: G=GLA) X G X -+ X Gy, p=1OR
0®  ®pp V=VDOVWE)® - @ V(dy) with dy>dy> -+ >d,>2,
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where each G, is a connected almost simple algebraic group, p; is an
irreducible representation of G, on the d,-dimensional vector space V(d,)
(1<i<k), and 7 is the standard representation of GL(1) on the one-
dimensional vector space V(1).

Put 9, =dim G, (1 <i<k). These notations such as G, p;, d;, 9, &
will be used throughout this section. We shall denote by (G, the ex-
ceptional simple algebraic group of type G, of dimension 14 to distinguish
it from the second group G.,.

Proposition 1 implies:

3.1 1+, + - +g,>dd,---d .
We shall induce some inequalities from (3.1).

LEMMA 2. Let n be a natural number, and let a,c be any real
numbers satisfying o < ca™* — a. Then

s

n
>rai—c[] x < nat — ca®
i=1

=1

)

holds for any real numbers x, with a <, < ca"'—a v=1,--.,n).

Proof. Let M be the maximum value of

LYY

n n
J @ ooy @) = 2,27 — ¢ [] 2
1= 1=

on the closed interval [a, b]®, where b = ca™ ' — a. Since f is quadratic
in each variable with a positive leading coefficient, the maximum is at-
tained at the boundary points. Hence if M, (1 < p < n) denotes the value
of f at those points where x; = a for x distinct indices ¢ and x; = b for

n — p distinet indices j, then M = maxM,. We have M, = na* — ca®,
1Lu<n

and M, — M, = —(n — p)(O0* — @) + ca*(db"* — a""¥). If a =>b, then M,
= M, for all x. On the other hand, if a <b, then we have (M, — M,)/(d
—)>—m—pwb +a)+ n—pea*t =m— pla”* —a—>b) =0, and
hence M, < M, for all p. This implies that M = M, = na* — ca™.
Q.E.D.

PROPOSITION 3. Assume that a triplet (G,p, V) is a P.V. with 2%,
—2>d, Then we have

1+ 9 >2d —3k—1).
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Proof. Since the image p;(G;) of the simple algebraic group G; is
contained in SL(d,), we have d? — 1> g, for 2<i <k, and hence from

(3.1), we get
3.2) 149>k —-1)—(d3+ -+ +di —dd,---dy) .
Putting 2, =4d,, -, 2, =dy, n=k —1, c=d, a =2 in Lemma 2, we

have the inequality

d;—}- +di"d1d2"'dk

3.3)
< (b —1)2° — d,-2%! 2<Ld, <28, —2).

From (3.2) and (3.3), we obtain the desired inequality. Q.E.D.

ProPOSITION 4. If a triplet (G,p, V) is a P.V. with k > 3, then the
following inequality holds.

1+ 9, >2"d —3(ky,—1)  for k>k >3.
In particular, we have
3.4) 1+ 9, >4d, — 6.

Proof. Since k>3, we have 2¥%d, — 2 > d,, i.e., the assumption of
Proposition 3 is satisfied. Put f(k) = 2*"'d, — 3(k — 1). Then we have
J (k) — fly) = (287 — 2F7N)d; — 3(k — ko) > 8(2F % — 1) — 3(k — k) > 0 for
k>k >3, and hence 1 + g, > f(k) > f(ky) > f(3) = 4d, — 6. Q.E.D.

DEFINITION 5. Let G be a semi-simple algebraic group, and let p: G
— GL(V(n)) be an irreducible n-dimensional representation of G. Then
a triplet (G X GL(m), o ® 4;,, V(n) ® V(m)) is an irreducible P.V. for
n < m, because the natural action of GL(m) on V)@ -.- @ V(n) (m-
copies) for m > n, yields a P.V. This triplet is called a trivial P.V.
It is reduced except for G = SL(n) with m >n>m/2, p = 4,. When
G = SL(n) with m > n > m/2, p = 4,, its castling transform (SL(m — n)
X GL(m), 4, ® 4,, V(m — n)Q® V(m)) is a reduced trivial P.V.

From now on, we shall consider case by case according to the type
of the Lie algebra g, of G,.

I) The case for G, ~ SL(n) (i.e., g, = 3l(n,C))

We may assume that G, = SL(n). First of all, we shall determine
the irreducible representations p:SL(n) — GL(V) satisfying dim V < #»?
We denote p by 4 when the highest weight of the infinitesimal represen-
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tation dp of pis 4. Let 4, ---, 4,_; be the fundamental dominant weights
(see Example 21 in §1 and let 4 = > %zim A, (m; > 0, integer 1 <i<n
— 1) be a dominant integral form satisfying d(4) < n%

LEMMA 6. (1) 1<m, <38 (n=2).

@ 0<m +my; <2 (n2>3).

B) mym, ,=0 orl, and if m, =1 (resp. m,_, = 1), then m,_, =0

(resp. m, =0) and m;, =m,_, =0 (n > 4).
@ mym, ;=0o0r1, and if my=1 or m,_, =1, then m; =0 for
all other 7 (8 > n > 6).

B) m =0 (n=238).

®6) my=0for3<j<n—-3 n>9.

Proof. To prove this lemma, we shall use Corollary 13 in §1 and
the results of Example 24 in §1.

(1) When n =2, we have 4 =m4, and dim,4) =m; + 1. Hence
dd) =m, + 1< 4 =n* if and only if m, <3. Since 4+0, we have
1< m,.

(2) Since d(34,) = d(B4,_) = tnn + D(n + 2) > n* and d24, + 4,_,)
=d(4; + 24,_) = nn — Dn + 2) >n? if >3, we have 0 <m;, m,_,
<2 and m,_; =0 (resp. m, = 0) if m, = 2 (resp. m,_, = 2), i.e., 0 < m,
4 m, < 2 in view of Corollary 13 in §1.

(8) Since d(24,) = d24,_,) = #&n(n? — 1) > »* if n > 4, we have m,,
M,_, =0 or 1. Since d(4, + 4A;) = d(d,_y + A,_5) = tm(n® — 1) > n?, d(4,
Ap_)) = A4,y + 4) = 3n(n + D(n — 2) > 2%, and d(4, + 4,_) = §n*(n +
Dn -8 >n if n>4, m,=1 (resp. m,_, =1) implies that m,_, =0
(resp. m, = 0) and m, = m,_, = 0 in view of Corollary 13 in §1.

(4) It is sufficient to show that d(4, + 4) > n® for 1<y <n ~—1,
6<n<8 Forv=1,2, we have d(4; + 4) = in®* — 1)(n — 2) > n? and
A4, + 4) = Fm*nt — D(n — 2) > n? (6 <n <8). Since d(4d; + 4,.,)/d(4,
+4)=0C—-Dmn —v)/*—4)>1for 3<v<Im + 1+ vn? —6n + 33),
we have d(4, + 4,) > d@24;) = 1m*(n — D*(n + D — 2) > P ford <v <
i + 5+ +/n* — 6n + 33). Similarly if 1 + 5+ Vv —6n + 33) <uv <
n — 1, we have d(4, + 4,) > d(4; + 4,_,) = in(n* — 1)(n — 3) > n* (see Ex-
ample 24, (4) in §1).

()" Since d(4,) = (2) — 70> 64 = 72, we have m, = 0 (n = 8).

6) Since d(4,) = (’;) > (g) = d(4y) = dn(n — 1)(n — 2) > n?, we have
m; =0 for 3<j<n—3, n>9. Q.E.D.
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PRrROPOSITION 7. Let p:SL(n) — GL(V) be an irreducible represen-
tation satisfying dimV < n®: Then,

i) p is one of: 4,,24,,34, (n = 2).
ii) p 18 one of t Ay, Ay vy Ay Ay_y; 24,24, 45 Ay + Ay
n>9 or 5>n>3).
iii) o is one of 1 Ay, Ay_y; Aoy A5 241,24, 15 Ay + Ay_y5 Ayy A, s
8 >n>6).

Proof. 1) is from (1) in Lemma 6. By (5) and (6) in Lemma 6, we
may assume that 4 is of the form A = m A, + m,d, + mdy + m,_ A, _,
+ Mp_ydpy_y + My Ay, Assume that 6 <n <8 If m, =1 (resp. m,_,
=1), we have 4 = 4, (vesp. 4 = 4,_,) by 4). If my =m,_, =0, we have
A =md, + mdy + my,_yA4,_, + m,_A,_,. By (6), 4 is always of this form
if n>9, or n<5. Assume that n>4. If m,=1 (resp. m,_, =1), we
have 4 =4, (resp. 4=4,_,) by 3). If m,=m, ,=0, we have 4 =

md, + My d,,.. If n=38, 4 is always of this form. Assume that
n>3. Since 40 and by (2) in Lemma 6, we have 1<m, + m,_, <
2, ie.,, A =4, Ay_yy 24,y Ay + A,_1, 24, _,. Q.E.D.

COROLLARY 8. Let p: SL(n)— GL(V) be an irreducible representation
of SL(n) with n >3. Assume that p = Ay, Ay_y, A3y A,y Then if we put
d=dimV, we have d>in(n + 1) (n #6) and d > 20 (n = 6).

Proof. Since d(4, + A,_) =n* — 12> d@24) =d@4,_) = itnn + 1)
(n>3), we have d > d24) =4n(n + 1) for n>9 or 5>n>3 by Pro-
position 7, ii). Since d(4,) = d(4,_5) = tn(n — 1)(n — 2), we have d(4,)
> d@24,) for n =7,8 and d24,) =21 > d(4,) =20 for n =6. By Pro-
position 7, iii), we obtain our assertion. Q.E.D.

PROPOSITION 9. Let (G, p,V) be a reduced triplet with k=1, G, ~
SL(n) satisfying dim G > dim V. Then it is equivalent to one of the fol-
lowing triplets.

1) (GLm), 4,, V(n)) (n=>1).

) (GL(n), 24, V(En(n + 1)) (n > 2).

3) (GL), 4, V(En(n — 1))) (n > 4).

@) (GLm), 4, + Aoy, V> = 1)) (n > 3).

B) (GLMm), 43, VEn(n — 1)(n — 2))) (n = 6,7, 8).

6) (GL(2),34,, V(4)).
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Proof. A triplet (G, p, V) with k£ =1 is always reduced. Since the

contragredient representation A* of A = > *-lm,;A; is A* = > *=im,_;4; for
SL(n), and (GL(n), 4,V) = (GL(n), A*, V*), we have our assertion from
Proposition 7. Q.E.D.

Now we shall prove the following proposition.

PROPOSITION 10. Let (G,p, V) be o reduced triplet with G, ~ SL(n)
satisfying dim G > dim V. Assume that it is not a trivial P.V. Then
we have 1 < k <8. Moreover, when k = 3, it is equivalent to the triplet
(SL(n) X SL(n) X GL(2), 4,® 4, ® 4;, V(n) ® V(n) Q V(2)).

Proof. Assume that d, = n, i.e., p, = 4, or 4,_;. Then (3.1) implies
that W'+ g, + -~ + g =nd, - dy, i, g4 - F g =nld, - dy —
n). If n>d,-.-d, then it is a trivial P.V. (see Definition 5), and if
dy - - dy>n>3%d, - dy, it is not reduced. Therefore we may assume
that id,---d,>n>d, In this case, we have n(d, --- d, — n) — d,(d,
eldyg—d) = —d)d, - dy—n—d) > —d)(dy, - dy — %dy -
dy —d)=3dmn —d)d,- - d, —2)>0 for k>38. Now assume that
k> 4. Then we have 22>k, and hence (k — (2 — 1) > (di —1) + .-
T+ @ ~D>0+ -+ g =nldy - dpy —0) > dfd, - dy — dy) > A5
— 1) >k —1Dd i.e., a contradiction. Thus we have 1 <k < 3. Assume
that k¥ = 3. Then we have (di — 1) 4 (d2 — 1) > dy(d,d, — d,) = di(d, — 1),
and hence d; — 2 > di(d, — 2) > di(d, — 2), i.e., di — 3d: + 2 = (d; — 1)(dZ
— 2d; — 2) < 0. Together with d, > 2, we have d, = 2, and hence G, =
SL(2), g, =3, p, = 4, (see Remark 43 in §1). By the assumption that
d, = 3$d,d, >n>d, we have d, =n. Since n*+¢g,+ 9, =n"+ ¢, + 3>
nd,d, = 2n%, we have ¢,>n*> — 3. Assume that G, SL(n). Then by
Proposition 42 in § 1, we have g, < in(n + 1) and hence n* — 3 < n(n + 1),
i.e., » < 3. Again by Remark 43 in §1, we have n = 3, G, = SL(2) and
0, = 24,. In this case, however, the dimension of G is less than that of
V since dimG =n*+ g, + 9, =9 + 3 + 8 =15 and dimV = nd,d, = 18.
Thus we have G, = SL(n), p, = 4,, d, = n, and hence we obtain our as-
sertion when d, = n. Now assume that d, #n, i.e., p, # 4;, 4,_;. Then
we have d, > d(4,) = in(n — 1) (n>4) and d, > d@4) = inn + 1) (n =
2,8). Assume that %> 3. Then by (8.4), we have n’> 4d, — 6 > 2n(n
—~1—6®n>4), ie, n<2, and w?>4d, —6>2nn + 1) — 6 (n =2,3),
ie, 4>6 (n=2), 9>18 (n =3). This is a contradiction and hence
we have 1 < k < 2. Q.E.D.
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Finally, we shall consider the case for k = 2.

ProOPOSITION 11. Let (G, p, V) be a reduced triplet with k =2, G, ~
SL(n) satisfying dim G > dim V. Assume that p, # 4,, A,_, and it is not
a trivial P.V. Then it is equivalent to the triplet (SL(3) X GL(2), 24, ®
Ay, V(6) X V(2)).

Proof. If p,= A, or 4,_;, then it is a trivial P.V., and hence we
may assume that p, # 4,, 4,_, 4, 4,_,. First we shall consider the case
when d, —2>d,>2. Then by Proposition 3, we have n*=1+ g, >
2d, — 3, in particular, n >3 since d, > 4. By Corollary 8, we have d,
>inn +1) m+£6) and d,>20 (n =6) and hence »n*> n(n + 1) — 3
(n +#6), i.e., n =3, and #»*> 37 if n =6, i.e.,, n 6. Thus we get n =
3, and9 =14 g, > 2d, — 8, i.e., 6 > d, (> 4). Since 6 > d(4) > 4 implies
A =24, (or its dual 24,) for SL(3), we have p, =24, d,=6. If G,=
SL(d,), we may assume that 3 > d, > 2 since it is not reduced in the case
of 6 >d,>3. Since 9 4 (d} — 1) > 6d, with 3 > d, > 2 implies that d, =
2, we have a triplet (SL(3) X GL(2), 24,® 4,, V(6) @ V(2)). If G, + SL(d,),
we have 1d,(d, + 1) > ¢9,>6d, — 9 (d, — 2 =4 > d, > 2) by Proposition 42
in §1 and (8.1), and hence d, =2. This implies that G, = SL(d,) by
Remark 43 in §1, i.e., a contradiction.

Next, we shall congider the case when d,=4d, or d, =d, — 1. As-
sume that G, = SL(d,). In this case it is a trivial P.V. if d, = d,, and
it is not reduced if d, = d, — 1 since it belongs to the same castling class
as a triplet (GL(n), p,, V(d))). Assume that G, +# SL(d,). Then we have
n* + 3dy(d, + 1) > d,d, by Proposition 42 in §1. Since d,=d, or d, =
d, — 1, we have

3.5) n* > id(d, — 1) .

On the other hand, by Corollary 8 we have

3.6) d, > In(n + 1) (n+#6), d,>20 (n=26).
From (8.5) and (3.6), we have

n* > tn(n + DiEnn + 1) — 1} (n +=6) and

3D 36 > 190 if n=26.

Since (3.7) holds only for » =2, we have d, =3 from (3.5) and (3.6).
As we have assumed that G,= SL(d,) with d,=d, or d,=d, — 1, we

https://doi.org/10.1017/50027763000017633 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000017633

48 MIKIO SATO AND TATSUO KIMURA

have G, = SL(2), d, =3, p, =24, by Remark 43 in §1. In this case,
however, the dimension of G is less than that of V since dimG =1 +
34+383=Tand dimV =3 x3=0. Q.E.D.

PROPOSITION 12. Let (G, p, V) be a reduced triplet with k =2, G, ~
SL(n) satisfying dim G > dim V. Assume that p, = 4, or 4,_, and it is
not a trivial P.V. Then it is equivalent to one of the following triplets.

1) (SLm) X GL2), 4,® 4, V(Enn —1)Q V(2) (n > 4).

(2) (SL(4) X GL(3), 4, 4;, V(6)Q V(3)).

() (SL(5) X GL(3), 4,® 4,, V(10) ® V(3)).

@ (SL(GB) x GL@), 4, 4,, VA0) ® V(4)).

(6) (SLM@) X GL(2), 4,824, V(6)&® V(3)).

(6) (GL#4) X Sp(2), 4,& 4,, V(10) ® V(4)).

(M (GL&) x Sp3), 4,®4,, V(10)® V(6)).

Proof. We may assume that p, = 4, and » > 4. First we consider
the case when G, = SL(d,), i.e., p, = 4, or its dual. If d, = 2, then dim G
=1+ 3>dimV =n(n — 1) and it is reduced since d, = in(n — 1) > 6,
i.e., d, — d,> d,. Thus we obtain (1), and we may assume that d, > 3.
If in(n — 1) = d,, it is a trivial P.V., and if in(r — 1) > d, > in(n — 1),
it is not reduced. Therefore, we may assume

(3.8) Inn—1)>d,>3.

Thus if » = 4, we have d, = 3, i.e., (2). Since (3.1) implies that n* + d;
— 1> In(n — 1)d, (n > 5), together with (3.8) we obtain

3.9 i —-1) -V -1 —-160' - DI >d, >3 (m>5).

Thus if » = 5, we have d, = 3 or 4, i.e., (8) or (4). If n> 6, then (3.9)
has no solution d,. Now we shall assume that G, +# SL(d,). In this case
we have d, > 3 by Remark 43 in §1. By Proposition 42 in §1 and (3.1),
we have n? + 1d(d, + 1) > in(n — Dd,, i.e.,

(3.10) d—@m—n—Dd, + 207> 0.

On the other hand, we have

3.11) ¢=£@§£L2@23,

Now we shall prove that there is no solution d, which satisfies both (3.10)
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and (8.11) if » > 6. Let d, be a solution of (3.10) satisfying d, > i(n® —

n—14 /n* —n — 1*—8n¥. Then by (3.11), we have n(n — 1) > n?> —
n—1+4+ vV —n —1F =83 ie., 1>/ —n — 1) — 8% Sincen > 6,
we have 1 > (nf — n — 1) — 8n* > (n* — 2n)* — 8nf = n*(n — 2)* — 8} > 8n4,

i.e., a contradiction. Hence we have

3<d, < 55 ()

where f(x) = a* — 2 — 1 — V/(2F — 2 — 1)" — 8a7.

(3.12)

Since 1f(6) <3, it is sufficient to show that j(x) (z > 6) is monotone
decreasing, i.e.,

<o (x>6).
ox

Since

= 2r — DV(@* — o — 1)! — 8a°
— 2 —D@*—2—-1) -8 <0

if and only if 22° + 32 + 2> 0 (2 > 6), we have (0 /0z)(x) < 0, and hence
n<5. Ifn=25, wegetd,=31from (3.10) and (3.11). Since G, # SL(d,),
we have ¢, =3 by Remark 43 in §1. In this case, however, we have
dimG =28 < dimV = 30. ¥inally, assume that i = 4. Then from (3.1),
(8.11) and Proposition 42 in §1, we have

(3.13) id, + 1) >9,>6d, -16 B <d, <6).

If d, =3, we have 6 > ¢g,> 2, and hence by Remark 43 in §1, G, =
SL2), g, = 3, i.e., (5).

If d, = 4, then 10 > g, > 8. Note that in the case of d, = 4, G, must
be one of SI(2), SL(4), Sp(2), and hence we have G, = Sp(2), ¢, =10, i.e., (6).

If d,=25, then 15> g, > 14 by (3.13). Note that d, =5 only if G,
= SI(2), SL(5) and Sp(2). Hence we have d, + 5.

If d,=6, then we have 21 > g,> 20. Note that d, =6 only if G,
= SL(2), SL(3), SL(4), SL(6) and Sp(3). Hence we have G, = Sp@®), ¢, =

21, ie., (7). Q.E.D.

II) The case for G, ~ Sp(n)
We may assume that G, = Sp(n) and n > 2 since Sp(1) ~ SL(2) (see
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Example 45 in §1). First of all, we shall consider the irreducible repre-
sentations p: Sp(n) — GL(V) satisfying dim V <1 + dim Sp(n) = n(@n + 1)
4-1. Let 4, ---,4, be the fundamental dominant weights of Sp(n), and
let 4 = > 7.,m;4; be a dominant integral form satisfying d(4) < n(@n +
1) + 1.

LEMMA 13. (1) 0<m, <2 (n>2).

@) my,=0 or1l, and if m, =1, then m, =0 (n > 2).

B m;=0orl, and if m; =1, then m, =m, =0 (n = 3).
@4 m,=0for3<v<n (n>4).

Proof. (1): Since d(B4) =2n(n + D@2r + 1) >n@Cn+ 1) + 1 (n > 2),
we obtain (1) in view of Corollary 13 in §1 (see (1) in Example 26 in §1).
(2): Since d(24,) = tn(n — 1)2n — 1)2n 4 3) > n@n + 1) (n > 2), we have
0<m, <1, and by d4, + 4) =@ — 1D >n@Cn + 1) +1 (n>2), we
obtain (2) (see (2), (3) in Example 26). (3): Since d(24,) = 84, d(4, + 4,)
=70, d(4, + 4;) = 126, we have d(4; + 4,) > dimSpB) + 1 =22 1 <v <
3, n = 3) and hence we obtain (3) (see Example 26). Note that d(4,) =

14 <922 = dim Sp®) + 1 (= 3). (4): Since d(4,) = (2:@> - (,,z_nz)’ we
have d(4,) = 2n(n —2)2n +1) > n@n + 1) +1 (n > 4). Next we shall show
that d(4,) =2@2n + D!/n!ln +2!11>n@Cnrn +1)+1 (n>4). Put ¢, =
2nn + 1)/d(4,) = n(n + D!+ 2)1/@Cn + D!. Since ¢, <1 and ¢,,,/c,
=+ 2)n + 3)/2n@2n + 3) <1 (r > 2), we have ¢, <1 and hence d(4,)
> n@n + 1) for n> 4. Finally, we shall show that d(4,) > min (d(4,),
d(4,)) for 3<v<n n>4). Since d(4,) — d(4,_) =22n + 1! 2n — 2v
+3 4+ V210 +3){E2n + 3 — V20 4+ 3) —}/v!1(2n — v + 3)!, d(4,) is mono-
tone increasing if 1 <» < 1(2n + 3 — v/2n + 3) and monotone decreasing
if 1@2n + 3 — +/2n + 3) <v < n. This shows that d(4,) > min (d(4,), (d(4,))
(B8 <y < n) and hence d(4,) > n@n + 1) + 1. In view of Corollary 13 in
§1, we obtain our assertion. Q.E.D.

PROPOSITION 14. Let (G,p, V) be a reduced triplet with k =1 and
G, ~ Sp(n) satisfying dimV < dim G. Then it is equivalent to one of the
following triplets. ‘
@ (GLQ) X Sp(m), O® 4, VA V(2n)).

(2 (GLQ) X Sp(m), O®@ 4, VA ® V((n — D(2n + 1))).

B) (GLQA) x Sp(n), O0®24,, VA)® V(n2n + 1))).

4 (GLD) X Sp3), O® 4, VA)RV(14)).
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Proof. Since dim G =n@2n + 1) + 1, we have d(4) <n@n + 1) +1
for p, = 4. By Lemma 13, A must be one of 4,,24,,4, (n>2) and 4,
(n = 3). Since a triplet with ¥ = 1 is always reduced, we have our as-
sertion. Q.E.D.

PROPOSITION 15. Let (G,p, V) be a reduced triplet with G, ~ Sp(n)
satisfying dimV < dim G. Assume that p, + A,. Then we have 1 < k < 2.
Moreover, if k=2, it is equivalent to one of the following triplets.

1) Sp@2) X GL2), 4,8 4,, V(5) & V(2)).

@) Sp@2) X GLEB), 4,8 4,, V(5)® V(3)).

(3) (GL() X Sp2) X Sp(2), OR 4,4, V)R V(5)&® V(4)).

Proof. Assume that k > 3. Since d(24,) > d(4,), we have d, = d(4) >
d4) = (m — 1)@2n + 1) for A=+ 4, in view of Proposition 14. Then to-
gether with (8.4), we have 1 + n@n + 1) > 4(n — 1)2n + 1) — 6, i.e.,
(6n — 11)(n + 1) < 0. This is a contradiction since n > 2, and hence we
have 1 < k< 2. Now assume that t =2. If d, — 2> d,>2, we have
1+n@2n+1)>2d, —3>2n — 1)@n + 1) — 3 by Proposition 3. This
implies that #» =2 and 7>d, > 5. Thus we have p, = 4,, d, =5, and
hence d, —2=3>d,>2. By Remark 43 in §1, we obtain (1),(2) and
a triplet (Sp(2) X GL(2), 4,&® 4,, V(5) ® V(3)). This latter triplet, however,
does not satisfy dimV < dim G since dimV =15 and dim G = 14. As-
sume that d, =d, or d, — 1. 1In this case we have dd, — id,(d, + 1) =
3d,(d, — 1). Therefore, if G, =+ SL(d,), together with Proposition 42 in
§1 and (8.1), we have 1 + n(2n + 1) > id|(d, — 1) > i(n — 1)@2n + L){(n —
D@n + 1) — 1}, and hence n =2, d, =5, ie., pp=4,. If d,=d, =5,
then G, must be SL(2) or Sp(2) (G, # SL(5) by assumption). However,
in both cases we have dimG <dimV. If d,=d, —1 =4, then G, is
again SL(2) or Sp2). If G, = SL(2), we have dim G < dim V, and if G,
= Sp(2), we obtain (3). Finally, if G, = SL(d,), it is a trivial P.V. when
d, = d,, and it is not reduced when d, = d, — 1. Q.E.D.

We shall consider the case of p, = 4,.

LEMMA 16. Let (G,p,V) be a triplet with G, +# SL(d,) satisfying
dimV <dimG. Then we have d, > d, - d,.

Proof. Assume that d,---d, > d, > d, and hence ¥ > 3. By Propo-
sition 42 in §1 and (3.1) we have 1 + id(d, + 1) + 9, + -+ + g, > dd,
ceedy, le, g+ -+ 9 >3d@2dy - dp—1—d)—1=13d(A—d)—1
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where A =2d, ---d, — 1. Since A/2>d, > d, and (4 — z) is a mono-
tone increasing function for z < A/2, we have d,(4A — d) > d,(A — d,).
Assume that £ > 4. Then we have 22>k, and hence (k¥ — 1)(d: — 1)
>d@—-D+ -+ —-D=0+ - +ge=3d(A—d) —1>%dA—
d)—-1=dd; - dp— 1) + 3dy(d, = 1) — 1> 32"~ 1) > (k- Dd;.
This is a contradiction, and hence we have k¥ = 3. In this case we have
d, = 2 since 2(dz — 1) > di(d, — 1) + $dy(d, — 1) — 1 and d, > 3 implies 0
> 4d(d, — 1) + 1. Therefore, we have (d; — 1) + (2* - 1) >di2 — 1) +
1dfd, — 1) — 1, i.e., dy(d, — 1) < 6. This implies d,=2 or d,=3. By
Remark 43 in §1 and G, # SL(d), we have d, >3, and d, = 3 implies
¢, = 3. Hence if d, =2, then d,d; =4 > d,>2 and we have d, =3, g,
= 3. In this case, however, we have 10 =1 4+ ¢, + g, + ¢, > dd,d, = 12,
i.e., a contradiction. Hence we have d, =3, and d,d, =6 > d, > d, = 3.
Assume that d;, =3. Then15=1+34+8+3>1+ 9, + 9, + 9, > d,d,d,
= 18, i.e., a contradiction. Since d, =4 or 5 does not satisfy the in-
equality 1+ d(d, +1)/2+8 +3>1+ 9, + 9, + ¢, > d,d,d, = 6d,, there
is no triplet such as G, # SL(d), dimV <dimG and d,<d, <d,---d,.
Hence we have d, > d, - -- d,. Q.E.D.

LEMMA 17. Let (G,p, V) be a triplet satisfying dim G > dim A%(V) =
3d(d — 1) where d = dim V. Then it is equivalent to one of the following
triplets.

1) (GL(), 4, V(a).

2 (GL(1) x Sp(m), 0@ 4;, V(DR V(d) (d = 2m).

3 (GLM) x SO(d), O® 4, VO V().

Moreover, if dim G > S¥(V) = 3d(d + 1), it is equivalent to (1) or (2).

Proof. First assume that £ > 2. In this case, we may assume that
G=G xG, V=Vn)QV®m), d=mnmn, n>n>2, where G, and G,
are not necessarily simple. If n, > 3, then we have 2n} —1>1 + (0} — 1)
+ @ -1 >dimG> idd — 1) = nn,(nn, — 1) > 0} — $n, > 3n;. This
is a contradiction, and hence we have n, = 2. Then we have n, = 2 since
"+ 3>dimG > dd — 1) =20} — n,, ie., n(n, —1) <3. In this case
we have (SL(2) X GL(2),4,® 4,, V2)® V(2)) =~ (GL(A) x SO4), O1® 4,, V(1)
Q@ V(4) (see Example 51 in §1), i.e., (8) for d = 4. Next, assume that
k =1. Since we have seen in §1 that the least representation degree d
of (G, (rvesp. F,E,,E, E) is 7 (resp. 26,27, 56,248) while the dimension
g of (G (rvesp. F,E,FE, E,) is 14 (resp. 52,78,133,248), we have g <
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1d(d — 1) and hence G, is not an exceptional algebraic group. If G, =
SL(n), i.e., G = GL(n) we have p = /4, (n > 1), i.e.,, 1), p =24, (n = 2),
and p = 4, (n = 4) in view of Proposition 9. Note that (GL(2), 24,, V(3))
~(GLA) x SO®), OI1®4,, VR V@A), i.e., (3) for d =3, and (GL4),
A, V(6)) = (GLQ) x S06), O® 4, VA ®V(6)), i.e., (8) for d =6 (see
Example 45 in §1). If G, = Sp(n), we have p, = 4,, i.e., (2) and p, = 4; (n
= 2) in view of Proposition 14. Note that (GLQ) x Sp(2), O® 4,, V(1)
® V() ~ (GLQ) x SOG), O® 4,, V)R V(5)), i.e., (3) ford =5. If G,
= S0(n), p, = 4,, i.e., (3) since in this case dimG =1 + in(n — 1) > 1d(d
— 1), i.e., d =n. The second assertion is now obvious. Q.E.D.

PRrOPOSITION 18. Let (G, p, V) be o reduced triplet with k> 2, G, ~
Sp(n), o, = 4;. Then it is not a P.V. unless it is a trivial P.V. or equiva-
lent to one of the following triplets.

1 (Spn) X GL(m), 4,®4,, V2n) @ V(m)) (n>m > 2).

(2) (GLQ) x Sp(n) X Sp(m), OR4,® 4, VA)Q V(2n) ® V(2m)) (n >
m > 2).

() (GL@) x Sp(n) x SO(m), ORA4L K 4, VA ® V(2n) ® V(m)) 2n >
m > 3).

Proof. From Proposition 13 in §2, Lemma 16 and Lemma 17, our
assertion is obvious. Q.E.D.

III. The case for G, ~ SO(n)

Since SO(n) is not simply connected, we have to consider its cover-
ing group Spin(n) when p, is a (half-) spin representation. However, we
need not consider Spin(8) since (SO(R), 4,, V(8)) =~ (Spin(8), half-spin rep.
V(®)) (see Example 28 in §1). Note that if 4, , and 4, are two in-
equivalent half-spin representations of Spin(2m), we have (Spin(2m), A, _,,
V@2mY) ~ (Spin@m), 4,, V2™ ). We denote it by (Spin(2m), half-spin
rep. V(2™1). Since we have seen in Example 45 in §1 that Spin(6) ~
SL4), Spin(5) ~ Sp(2), Spin(4) =~ SL(2) X SL(2), Spin(3) =~ SL(2), we may
assume that n > 7.

PROPOSITION 19. Let (G, p, V) be a reduced triplet with G, ~ SO(n),
0o =4, Then it is not a P.V. unless it is a trivial P.V. or equivalent
to one of the following triplets.
@) SOm) x GL(m), 4,Q4;,, Vim)Q@ V(m)) (n>17, n/2>m > 1).
(2) (GL(1) x SOm) x Sp(m), OR4,®4,, VA1) ® V(n) ® V(2m))
m>17, n>2m>4).
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Proof. From Proposition 14 in §2, Lemma 16 and Lemma 17, our
assertion is obvious. Q.E.D.

PROPOSITION 20. Let (G,p, V) be a reduced triplet with G, ~ SO(n),
o1 # Ay, satisfying dimV < dim G. Then we have 1 < k < 2. Moreover,
if k=1, it is equivalent to one of the following triplets.

1) (GLQ) x Spin(7), O spinrep., V(1) ® V(8)).

(2) (GLQ) x Spin(9). O spinrep., V(1) X V(16)).

3) (GL1) x Spin(10), O half-spin rep., V(1) ® V(16)).

4) (GLQ) x Spin(11), O spin rep., V(1) ® V(32)).

B) (GLQA) x Spin(12), X half-spin rep., V(1) Q V(32)).

6) (GLQA) x Spin(13), X spin rep., V(1) V(64)).

(M (GLQA) x Spin(14), O half-spin rep., V(1) Q V(64)).

®) (GLM) x SOm), O®4,, VAR V(Enn — 1)) (n>17.

Proof. First we shall show that d, > in(n — 1) (»n>15) and d, >
2-1721 (14 > n > T7) where [«¢] is an integer satisfying 1>« — [a] > 0.
As we have seen in Example 27 and Example 28 in §1, d(4,) = (13) for
1<v<In—3)/2] and d(4,) = 2i*-/2 for y = (» — 1)/2 when » is odd,
and for vy = n/2, n/2 — 1, when » is even. Since d(24,) = 3(n — )(n + 2)
> d(4,) = in(n — 1), we have d, = d(4) > min {{n(n — 1), 2[=-21} for any
A # 4,. Since 20@-Y21> 1y(p — 1) (n > 15) and In(n — 1) >2[e-0721 (14 >
n>"T), we have d,>in(n —1) (n>15) and d, > 2"V (14 >n>").
Here if n = 8, we may assume that d, > d(4,) = 28 since (SO(B), 4,, V(8))
~ (Spin(8), half-spin rep., V(8)). Assume that k> 3. Then together with
3.4), if n>15 or n =8, we have 1 + in(n —1) > 2n(n — 1) — 6, ie,
n(n — 1) < L4t This is a contradiction. If 14 > n > 7 and n # 8, we have
1+ n(n —1)>4.2v-021 _ ¢ This is also a contradiction and hence
we have 1 < k< 2. Since 292> Iy(n — 1) + 1 (n > 15), and d(24,) >
mm —1) +1 (m>17), we have d(4) < in(rn — 1) + 1 if and only if 4 is
a (half-) spin representation for 7T<n <14, n+8, or 4 = 4,. Hence
we obtain our assertion. Q.E.D.

PROPOSITION 21. Let (G,p,V) be a reduced triplet with k =2, G, ~
SOm), p, # 4, satisfying dimV < dim G. Then it is a trivial P.V. or
equivalent to one of the following triplets.

1) Spin((T) X GL(d), spinrep.@ 4, VRQV(d) 2<d<4).

(2) (Spin(T) X GL(2), spinrep. R 24,, V(8) ® V(3)).
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B) (GLQ1) x Spin(7) X Sp(2), IR spinrep. ®4;, VAR V(8) ® V(4)).
@) (Spin(9) x GL(2), spinrep.® 4;, V(16)® V(2)).

B) (Spin(10) x GL(d), half-spinrep. ® 4, V16)R V(d)) 2 < d < 3).
6) (Spin(10) X GL(2), half-spinrep. ®24,, V(16)® V(3)).

(D Spin(12) x GL(2), half-spinrep. @ 4,, V(32) ® V(2)).

Proof. First assume thaf d, —2>d,>2. Then by Proposition 3,
we have 1 + In(n — 1) >2d, — 3. If p, is not a (half-) spin representa-
tion, by the proof of Proposition 20, we have d, > d(4,) = in(r — 1) and
hence 1 + in(n — 1) >nn — 1) — 3, ie., n(n — 1) <8 (i >17). Thisisa
contradiction, and hence p, is a (half-) spin representation (n # 8). In
this case we have 1 + in(n — 1) > 2.2I*221 _ 3 (5 £ 8, n > T7) and hence
we get n = 7,9 (spinrep.) and n = 10,12 (half-spin rep.). We shall con-
sider each case. In the case of n =17, we have 2<d, <d, —2=6. If
G, = SL(d,), we have 2 < d, <4, i.e., (1) since otherwise it is not reduced.
If G,+# SL(d,), by Proposition 42 in §1 and (38.1), we have 1 + 21 +
3d(d, + 1) > 8d, (2 < d, < 6), hence d, =3, G, = SL(2), i.e., (2) or d, =
4, G, = Sp2), p, = 4,, i.e., (3) since otherwise the condition (3.1) or G,
#+ SL(d,) is not satisfied. In the case of n =9, we have 2<d, <14 =
d, — 2. If G,+ SL(d,, we have g, < 3d,(d, +1) and d,>3, and hence
(3.1) implies 1 + 36 + }d(d, + 1) > 16d,, i.e., (3 — d,)*> 166 + L (14 > d,
> 3). This is a contradiction and hence we have G, = SL(d,). In this
case we have 2 < d, < 8 since otherwise it is not reduced. Then (3.1)
implies that 1 4+ 36 + (d — 1) > 16d, 2 < d, < 8) and hence d, = 2, i.e.,
(4). Inthecaseof =10, wehave2<d, <14 <d, — 2. If G,= SL(d,),
we have 2 < d, < 8 since otherwise it is not reduced. Then (3.1) implies
14+45 4+ (d2—1)>16d, 2<d, <8 and hence 2<d, <3, ie., (5). If
G, # SL(d,), we have 1 + 45 + 1d,(d, + 1) > 16d, (3 < d, < 14) and hence
d, = 3, G, = SL(2), p, = 24,, i.e., (6). In the case of = = 12, we have
2<d,<30. If G,+ SL(d,), we have 1 + 66 - id,(d, + 1) > 32d, 8 < d,
< 80). This has no solution and hence G, = SL(d,). In this case we
may assume that 2 < d, < 16 since otherwise it is not reduced. Then by
(3.1) we have 1 + 66 + (di — 1) > 32d, (2 < d, < 16) and hence d, = 2, i.e.,
(7). Finally, we shall consider the case when d, =d, or d,=d, — 1. In
this case we have d,d, — 3d)(d, + 1) = id,(d, — 1). Hence if G, + SL(d,),
by (8.1) we have 1 + in(n — 1) > id,(d, — 1), i.e., n = d,, p, = A;. Asour
assumption is p, # 4,, we have G, = SL(d,). However, in this case it is
a trivial P.V. if d, = d,, and it is not reduced if d, = d, — 1. Q.E.D.
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IV. The case when G, is an exceptional algebraic group
We shall denote by (G, the exceptional simple algebraic group of
dimension 14, of rank 2, to distinguish it from the second group G,.

PROPOSITION 22. Let (G,p, V) be a reduced triplet satisfying dim V
< dim G with an exceptional simple algebraic group G,. Then we have
1<k<2. Moreover, if k=1, it is equivalent to one of the following
triplets.

1) (GLQ) X (Gy, O 4, V)R V(7).

2 (GLQ) X (Gy, O® 4, V(1)K V(14)).

3 (GLQ) X F,, O® 4, V(1) ® V(26)).

@ (GLQ) X F,, 04, V) V(52)).

6) (GLQ) X E;, O®@ 4, VAR VETD).

(6) (GLQ) X Ky, O® 4, VA)® V(78)).

(M (GLQ) X E,, O® 4 V(1)@ V(56)).

® (GL) x E,, O®4,, V(1)® V(133)).

9 (GL) X Ey, O® 4, V(1) ® V(248)).

Proof. If k=1, we obtain our assertion from the calculation of
representation degree in §1 (see Example 30 for (G,), Example 38 for F,,
Example 39 for E,;, Example 40 for E, and Example 41 for F;). Assume
that k& > 3.Then we have g, > 4d, — 7 by (3.4). However, as we see above,
there is no solution of this and hence we have 1 < k < 2. Q.E.D.

PRrROPOSITION 23. Let (G,p, V) be a reduced triplet satisfying dim V
< dim G with an exceptional simple algebraic group and k = 2. Then it
is a trivial P.V. or it is equivalent to one of the following triplets.

1) (G) X GL2), 4,4, V()R V(2)).

2) ((G) X GL3), 4,® 4, V(1)® V(3)).

3) (Fy X GL(2), 4,® 4,, V(26)® V(2)).

@) (E, X GL2), 4,4, V2T)Q V(2)).

(G) (Ey X GL3), 4,® 4;, V2T)QV(3)).

6) (B X GL(2), 4,®24,, V(2T7)® V(3)).

(M (E, X GL2), 4,& 4,, V(56)R® V(2)).

Proof. First we shall show that d, < g,. Assume that d,>g,. In
this case, (3.1) implies that 1 + d, + (d2 — 1) > d,d,. Since d, > 14 and
d, > 2, we have d, > 4(d, + V& — 4d)) > d, — 1 and hence d, = d, or d, =
d, — 1. Hence if G, SL(d,), together with Proposition 42 in §1, we
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have 1 + d, > d,d, — id,(d, + 1) = {d,(d, — 1), i.e., d\(d, — 3) < 2 (d, > 14).
This is a contradiction and hence G, = SL(d,). In this case, however,
it is a trivial P.V. when d, = d, and it is not reduced if d, = d, — 1.
Hence we may assume that d, < g,. Assume that G, = (G,). Then we
have d, =17 since 2< d, < g, =14. If G,+# SL(d,), we have 1 + 14 +
1d(d, + 1) > 7d, 2 < d,<7) and hence d, = 3, G, = SL(2). However, in
this case we have 18 =14+ ¢, + g, > d,d, = 21, i.e., a contradiction.
Hence G, = SL(d,). Then we have 2 < d, < 3, i.e., (1) and (2) since other-
wise it is not reduced. Next assume that G, = F,. Then d, = 26 since
2<d, <g, =56. If G,+ SL(d,), we have 1 + 52 + id,(d, + 1) > 26d,
(26 > d, > 3). There is no solution and hence G, = SL(d,). In this case
we have 2 < d, < 13 since otherwise it is not reduced. Since 1 + 52 4
(2 —1)>26d, (13> d,>2), we have d, =2, i.e., (8). Assume that G,
= FKE,. Then d, =27. If G,= SL(d,, we may assume that 13> d,>2
since otherwise it is not reduced. Then (3.1) implies that 1 + 78 4 (d?
— 1) >27d, 183 > d, > 2), and hence 2<d, < 3, i.e., (4) and (6). If G, +#
SL(d,), we have 1 + 78 + id,(d, + 1) > 27d, (27 > d, > 3) and hence d, =
3, G, = SL(2), i.e., (6). Assume that G, = F,. Then d, =56. If G,+#
SL(d,), we have 1 + 133 + 1d,(d, + 1) > 56d, (56 > d, > 3). Since there
is no solution we have G, = SL(d,). We may assume that 2 < d, < 28.
By (8.1) we have 1 + 133 + (d; — 1) > 56d, (28 > d, > 2) and hence d, = 2,
i.e., (7). Finally assume that G, = E;. Then the least representation of
E, is the adjoint representation (see Example 41 in §1), we have g, = d,
< g, i.e., a contradiction. Thus we obtain our assertion. Q.E.D.

THEOREM 24. Let (G,p,V) be a reduced triplet and let § be the Lie
algebra of ﬁ(@). Assume that the center of § is one-dimensional. Then
it is not a P.V. unless it is equivalent to one of the following reduced
triplets. ’
(1) (G X GL(m), p® 4,, V(n) ® V(m)) where p: G — GL(V(n)) is an
n-dimensional irreducible representation of a semi-simple alge-
braic group G (= SL(n)) with m >n > 3.

(2) (SL(n) X GL(m), 4,® 4,, V(n)Q V(m))
m/2>n>1, or n =m>1).

(3) (GLQ) x G, O adjoint rep., V(1) @ V(n)) where G is an almost
simple algebraic group of dimension n (> 3).

(4) (GLMm), 24,, VEnn + 1)) (n > 3).

(5) (GL(n), 4,, V(En(n — 1)) (n > 5).
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(6) (GL®), 34,, V(4)).
(7) (GL(6), 4, V(20)).
(8) (GL(7), 4,, V(35)).
(9) (GL®), 4, V(56)).
10) (SLB3) x GL(2), 24, 4,, V(6)® V(2)).
(11) (SL(m) X GL(2), 4,® 4,, V(En(n — 1) Q V(2)) (n'>]5).
12) (SL(5) x GL(3), 4, 4;, V(10)® V(3)).
13) (SL(5) x GL(4), 4, 4,, VA0)® V(4)).
(14) (SL(n) X SL(n) X GL(2), 4,Q 4,® 4,, V(n) ® V(n) ® V(2))
(n > 3).
(15) (Sp(n) X GL(m), 4,®@4,, V) Q@ V(m)) (n >m > 1).
(16) (GL(1) x Sp(n) x SO(m), ORA4,&X 4,, VA)Q V(n) ® V(m))
@n>m > 3).
17 (GLQ) X Sp(m), O&® 4;, VIH®V((n — D(2n + 1)) (n > 3).
(18) (GLQ) X Sp(n) X Sp(m), OR 4, 4,, V) ® V(2n) ® V(2m))
(n>m>2).
(19) (GL) x SpB3), O 4;, V(1) V(14)).
(20) (SO(n) x GL(m), 4, 4,, Vim)@V(m)) (n >3, n/2>m>1).
(21) (GLQ) X SO(n) x Sp(m), OR 4, 4;,, VA ® V(n) ® V(2m))
(n > 2m > 4).
22) (Spin(7) X GL(d), spinrep. @4, VO QV() A1 <d<4).
23) (Spin(7) X GL(2), spin rep. @ 24,, V(8) X V(3)).
24) (GL(1) x Spin(7) X Sp(2), 1R spinrep. @ 4, VI Q V()X V(4)).
(25) (Spin(10) x GL(d), half-spin rep. @ 4;, VA6)R V(d)) 1L d <L 3).
(26) (Spin(10) X GL(2), half-spin rep. ®24,, V(16)Q V(3)).
@27 (Spin(9) X GL(d), spinrep. ® 4, VA6)R®V(d)) A1 <Ld<L2).
28) (Spin(12) X GL(d), half-spin rep. @ 4,, VB2)Q V(d)) (1 < d <L 2).
(29) (GL(1) x Spin(11), O spin rep., V(1) ® V(32)).
B0) (GL() x Spin(14), O half-spin rep., V(1) ® V(64)).
31) (GL(1) x Spin(13), 1R spin rep., V(1) Q@ V(64)).
(32) (G X GL(d), 4,® 4, V(DA V() A< d<3).
(33) (Fy X GL(d), 4,0 4,, V(26)Q®V(d)) 1 < d < 2).
(34) (E; X GL(d), 4, 4;, V2D V() 1<d<3).
35 (F,x GL(2), 4,®24,, V(27) X V(3)).
(36) (E; X GL(d), 4, 4;, V(56)@V(d) 1<Ld<2).

Proof. By Propositions 9,12, 14,15,18 ~ 23, and Example 45 in §1,
we obtain our assertion. Note that the adjoint representation of SL(n)
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(n > 2) (resp. Sp(n), SOn)) is A, + A,_, (resp. 24,,4,). A triplet (5) in
Proposition 12 is equivalent to the triplet (GL(1) x SO®6) x SO®3), O® 4,
X4, VORV®)®V(3)). Hence it should be omitted in view of Pro-
position 14 in §2 and Lemma 17 in §3. Q.E.D.

§4. Relative invariants and the regularity

Before going on to investigate the reduced triplets in Theorem 24
in §8, we shall prepare some general notions about prehomogeneous
vector spaces. Since it is convenient to consider them in a general
situation, we do not assume the irreducibility in this section. The results
in this section are already published in Japanese (see [11]) except Propo-
sitions 15, 16, 18, and 23.

DEFINITION 1. Let G be a connected linear algebraic group. A
rational homomorphism y: G — C* (C* = C — {0}) is called a rational
character of G. The group of all rational characters of G will be denoted
by X(G). Rational characters y, ---,x, are called multiplicatively inde-
pendent if they generate a free abelian group of rank ¢ in X(G).

DEFINITION 2. Let (G,p, V) be a triplet where p is not necessarily
irreducible. A non-constant rational function f(x) on V is called a
relative invariant of (G,p, V) if there exists a rational character y of G
satisfying f(o(9)x) = x(g)f(x) for any ge G and xeV. A relative in-
variant corresponding to the identity character y = 1, is called an absolute
mvariant.

PROPOSITION 3. Let (G,p,V) be a P. V. Then a relative invariant
18, up to a constant multiple, uniquely determined by its corresponding
character. In particular, any relative invariant is a homogeneous func-
tion.

Proof. Let fi(x) and f,(®) be relative invariants corresponding to
the same character. Then the quotient fi(x)/f,(x) is an absolute invariant,
and hence constant by Proposition 8 in §2. Let f(x) be any relative
invariant. Since f,(x) = f(tx) (e C*) is also a relative invariant with
the same character as f(x), we have f(tx) = ¢- f(x) for some cc C. This
implies the homogeneity of f(x). Q.E.D.

LEMMA 4. Relative tnvariants f, - -+, f, corresponding to multiplica-
tively independent characters y,, -« -,y are algebraically independent.

https://doi.org/10.1017/50027763000017633 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000017633

60 MIKIO SATO AND TATSUO KIMURA

Proof. Assume that 1, - - -, f, are algebraically dependent. Then there
exist monomials U, ---, U, of f}, - - -, f, such that they are linearly depend-
ent and any (s —1) of them are linearly independent. By the defini-
tion, the subspace W of C* defined by W = {(¢;, -+ -, ¢) € C*| D 5., ¢;U; = 0}
is one-dimensional. On the other hand, U, is a relative invariant cor-
responding to some character p;, (1 < ¢ <s). Then (¢, ---,c) e W implies
(@) - - -5 eeps(g)) e W for any ge G. Since dim W =1, we have y =
-+« = p,. This is a contradiction since multiplicative independence of
X+ **rxe implies that g, «--, g, are different from each other. Q.E.D.

Let (G,p,V) be a P. V. and let S be its singular set, i.e., V— S
=o(G) -z, (x, eV —8). Let S, ---,S, be the irreducible components of
S with codimension one. Then we may assume that each S; is the zeros
of some irreducible polynomial f;(x) A1 <i< ¥4):S; ={xeV|filz) =0}

PROPOSITION 5. These f(x), ---,f(x) are algebraically independent
relative tnvariants. Moreover, any relative invariant f(x) is of the form
J@) = cf(@)m™ - f o)™ (ce C,(my, -+, m) € ZY.

Proof. First we shall show that each f,(x) is a relative invariant
1<i<¥). Since G is connected and S; is irreducible, the Zariski
closure o(G)-S; of p(G)-S; = {p(9)x|ge G, xe8,;} is also irreducible and

as S; C p(@)-S; C S, we have o(G).S, =S8,. In particular, we have
o(G)Y-S; = S;. Therefore, a polynomial JSie(g) ') coincides with [ () up
to a constant multiple and hence there exists a character x; of G satisfying

Fio(x) = () fi(x) for g G, zc V. Since fi(x), - - -, f(x) are irreducible
and different from each other, corresponding characters y, :---,y, are
multiplicatively independent. Hence fi(x), - - -, f,(«) are algebraically inde-
pendent by Lemma 4. Finally, let f(x) be any relative invariant. Since
G is connected, every prime divisor of f(z) is also a relative invariant.
Hence we may assume that f(x) is an irreducible polynomial. Then the
zeros of f(x) must coincide with S; for some ¢ (1 <17 < ¢) since it is a
G-invariant irreducible hypersurface. This implies that f(x) = c¢f,(x) for
some ceC. Q.E.D.

COROLLARY 6. Let (G,p, V) be a P. V. and let S be its singular set.
Then there exists a relative invariant of (G,p, V) if and only if S has
an irreducible component of codimension one.

DEFINITION 7. A prehomogeneous vector space is called regular if
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there exists a relative invariant f(x) such that the Hessian H(x) =
det( 7
0

At

(x)) of f(x) is not identically zero.

PROPOSITION 8. Let (G,p, V) be a regular P. V. Then there exists
o relative tnvariant corresponding to the character y,(g) = det p(9)* (9 € G)
where det p(g) denotes the determinant of o(g) in V.

Proof. Let f(x) be a relative invariant satisfying H,(x) # 0, and
let ¥y be the character of f(x). By choosing a basis of V, we may
assume that V ~ C® and G C GL(n,C) where n = dim V. Then we have

O (g =L 53 U (g DLl

0x,0%; X, * 0Ly 0%

0 of
= . aqx
Zk:gkj oz, @ k( )

2
Zng" a7 (gx)'gkjy
Tyt 02,02,

i.e.,

(azmmﬁa%ﬁlmw

0%,0 ; 02,02,

for g = (9:) € G. Since f(gx) = y(9)f(x), we have
( 77 (gx)) = x(g)-‘g"(—%(x))g“

0x,0%, 0%,0%,

and hence by taking the determinant, we have H  (gx) = y(9)"-det (9)~2-
H (x). This implies that H,(x) is a relative invariant corresponding to
the character y(¢)"-det p(¢9)~>. Hence the quotient f"(x)/H () is a relative
invariant with the character y,(g9) = det p(9). Q.E.D.

Let (G,p,V) be a P. V. and let S be its singular set. Assume that
this P. V. has a relative invariant f(z). By choosing a basis, we may
identify V with C*. Moreover, by the inner product {x,y> = >, x.y;
(x,y € C"), we identify the dual vector space V* of V with C*. Then
we can define a rational map ¢: V — S — V* by

_( 1 of L af
ﬂw{ﬁaa#m KM)MW»

Sometimes we denote ¢ by gradlog f.
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Let y be the character of f(z) and let 6y be its infinitesimal char-
acter, i.e., y(exp tA) = exp tdy(4) for any te C, A eg, where g is the Lie
algebra of G. Similarly, let dp be the infinitesimal representation of p
(see Definition 44 in §1).

PROPOSITION 9. A rational map ¢ = gradlog f of V — S into V*
does not depend on the choice of coordinate systems and it satisfies the
following conditions.

@) olp(@x) = p*( @) for xeV — S, ge G, where p* is the con-
tragredient representation of p.

2) <dp(A)z, p(x)> = oy(A) for Aeg, xeV — 8.

Proof. We may assume that G € GL(n,C) and g C gl(n,C). Since

3 rign) = 37 gy 29 — 52 9T (gayg.. for g = (g,) € G, we have
oz, E 0Xy 0x; 0%y

grad f(g2) = 1(0)'™ grad F@) where grad /@) = (2@, -, -2L(w))
1 n
and hence we obtain (1). By differentiation of the equality f(gx) =
w9 Sf(x) for g=-exptAecG, we obtain (2), ie., <{Az, grad f(x)) =
0x(A)f(x). Note that this condition (2) characterizes ¢ = grad log f since
{dp(A)x|Aegl =V for any xeV — S. This shows that the definition of
grad log f does not depend on the choice of coordinate systems.
Q.E.D.

PROPOSITION 10. The following conditions are equivalent.

(1) gradlog f:V — S — V* is generically surjective, i.e., the image
is Zariski dense.

(2) Hygpmy #0 eV —9).

@ H, @) +0@eV—5, degfzz);det(gj; %L) + 0 (deg f = 1).
1 J

Proof. For xeV — 8, let (do),: T,(V —8) - T,,V* be the differ-
ential map of ¢ = gradlog f. By (1) in Proposition 9, ¢ is generically
surjective if det (dp), # 0 for some xeV — S. Since

det (dg), = det (379”;‘(90)) — det (5%(_}* gi )(x))

azlogf>
:d t( :Ho ’
¢ 0 ;0 et

the equivalence of (1) and (2) is obvious. Moreover, since
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det (dg), = det (327(—1— 2 @)

J oz,
—det (1. 8 gy L . of of
_det( 7 a0n, 0 T T o, axj)’

if deg f = 1, we have

det (dg), = (—1)nf(x)-2n-det( gg{ %) ,
@ J

i.e., (8) for deg f = 1. Assume that » = deg f(x) > 2. Then the Euler’s

identity says that
So/(L P L2 Lo

= [ ox0x; [ ox,ox, f ox;

=1
=‘(r—1.af o r—=1 af 'r)
Soooow O f  aw,’

and hence we have
det (dg), = det (J_._aZJi.( y — 1 of ﬂ)

S ox0x; J? ox, oxy
1 of )

-

(,1_. s _,1_._3_J1._QJ"_>
= det S oz, J: ox; oxy

= det 1
f ox

-
(>))
<
—
D
~
-t

r

- det( 77 rx))- f(i)n '(1 - 7?1_) :

dx 9z,

i.e.,
-1 H@® .y
det (dp). = r—1 fa)" (e 8-
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Hence we obtain our assertion. Q.E.D.

Remark 11. If deg f =1 and det (if—ﬂ_> # 0, then Hpn(x) = 0

ox; 0x,
2
since i B (2 S or > = 2—~af o7 (note that vF  _ 0 since
0x,0%; or; 0w, 0x, 0x; 02,0% ;

deg f = 1). Hence (G,p,V) is regular if and only if there exists a

relative invariant f(x) such that gradlog f is generically surjective. In
general, a prehomogeneous vector space (G, p, V) is called quasi-regular
if there exist w e g* (= the dual space of g) and a regular rational map
0: V — 8 — V* gatisfying the following conditions:

1) olo@a) = p*@e@) (geG, eV — 9,

@ {dp(A), pla)y = 0(4) (Aeg, zeV — ),

(8) ¢ is generically surjective, i.e., o(V — S) = V*.
In this case it can be proved that a triplet (G, p*, V*) is also a P. V.
and ¢ is a biregular rational map of V — S onto V* — S*. Moreover,
the number of irreducible hypersurfaces in S is the same as in S*.
Note that in general the dual triplet (G, p*, V*) is not a P. V. even if

(G,p,V) is a P. V. For example, G = {(1 Z)'a,bec, o % 0}, V=c,

p«l 2))@) = (x gyby)_ By Propositions 9 and 10, a regular P. V. is

always quasi-regular. But the converse is not true. For example, put

o (¢ mreconl, e ot D))= (") T

this triplet (@, A V) is a quasi-regular P. V. but not regular. However,
if G is reductive, then the regularity and the quasi-regularity are
equivalent. Hence we omit the detail of quasi-regularity.

Now we shall return to the irreducible case.

PROPOSITION 12. Let (G,p, V) be an irreducible P. V. Then there
18, up to o constant multiple, at most one trreducible relative invariant
polynomial f(x), and hence any relative invariant is of the form c- f(x)™
(ceC*, me2).

Proof. Assume that there exist two such polynomials f,(x), f,().
Let 7, be the degree of fi(x) 1 <7<2). Then the quotient f(x) =
Ji@)r2] f(x)™ is not constant by Propositions 5. Moreover, it is an abso-
lute invariant by Theorem 1 in §1. This is a contradiction in view
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of Proposition 3 in §2. Q.E.D.

DEFINITION 13. Let (G, p, V) be an irreducible P. V. By the relative
invariant of (G,p, V), we mean the irreducible relative invariant poly-
nomial which is, if it exists, uniquely determined up to a constant multiple
by Proposition 12. Note that its degree is uniquely determined by
(G, 0, V).

PROPOSITION 14. Let (G,p, V) be an irreducible regular P. V. and
let f(x) be the relative tnvariant and y tts character. Put r = deg f(x)
and n =dim V. Then we have r|2n and y(g)™'" = det p(g).

Proof. By Proposition 8, there exists a relative invariant F(x) with
the character det p(g)’. Then by Proposition 12, we have F(x) = ¢- f(x)™
for some ce C*, meZ. Hence we have y(g)™ = det p(9)>. If we take ¢
such as p(g) =1tI, (teC*), we have t™ =t (teC*) and hence m =

2n. Q.E.D.
r
PROPOSITION 15 (The degree formula). Let (G, p, V) be an irreducible
regular P. V. and let f(x) be the relative invariont. Assume that there
exists an orbit p(G)x, of codimension one, i.e., o(G)x, = {x e V| f(x) = 0}
Then

tr do(4) + tr ad,, A

(4.1) deg f(x) = tr do(4)

dimV  (Aeg,, trdo(4) # 0)

where tr dp(A) is the trace of dp(A) in V and trad, A is the o trace
of the adjoint representation of the isotropy subalgebra g, at x,.

Proof. By differentiating the equality y(¢)*" = det p(g)* in Propo-
sition 14, we have ﬁ6;5(A) = tr dp(4) (A € g = the Lie algebra of G), i.e.,
r

_ x4

g J = dold)
vector space at xz,. Then the isotropy subgroup G, at z, acts on V,,
since p(G,,)-dp(@)-2, C dp(g)-x,. We shall show that x(9) = dety, g for
g€ G,. Since f(z) =0 and df(x,) #+ 0, we have f(z) = {x — x,, df(z)>
+ higher term of (x — x,). Since f(p(9)x) = x(9)f(x) and p(g)x — z, =
e(@)(z — x,) for g € G,,, we have {p(9)x — %y, df (X)) = Y& — @4, S (20)).
On the other hand, Euler’s identity says that <{z,, df(x)> = deg f- f(x,)

-dimV (Aeq). Let V, = V/do(g)-2, be the normal
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= 0, and hence we have {p(9)z, df (%)) = x(9){x, df(xy)), i.e., {p(@)x—
@Dz, df@)> =0 (9eG,). Since <{dp(A)x,, df(z)> = dy(A)f(x) =0 for
any Aecg (see Proposition 9, (2); note that <dp(A)x grad f(x)) =
{dp(A)x,df(x)) by definition), and codim, dp(g)z, = 1, we have p(g)x =
x(@)x mod do(g)-x,. In fact if p(g)x — x(9)x ¢ do(g)x, we have <V df(x,))
=0, i.e., df(x) = 0. This is a contradiction. Hence we have det,, g
= y(9) (note that dim V,, = 1). By differentiation of this equality, we
have dy(4) = try, A (Aeg,). Since g is reductive, we have trad, A =0

and hence try, A = tr dp(4) — try,.., A = tr dp(4) + trad,, A, i.e., 5y(4)

= tr dp(A) + trad,, A (A eg,). Together with deg f = ﬂ@—-dim v,
tr dp(A)

we obtain our assertion. Q.E.D.

PROPOSITION 16. Let (G,p, V) be an irreducible P. V. satisfying
dim G =dimV (=n). Then it is regular and there is a relative tnvari-
ant polynomial f(x) of degree n. Moreover, if there exists an orbit of
codimension one, then f(x) is irreducible.

Proof. Since G is reductive and the generic isotropy subgroup is
finite, it is regular by the following Proposition 25. By choosing a basis
we may assume that V ~ C* and G C GL(»n,C). Let g(C gl(n, C)) be the
Lie algebra of G, and let A,---, 4, be a basis of g over C. Then
A,.--,A, are n X n matrices. Define a polynomial f(x) by f(x) =
det (4,2, - -+, A,x) for x ¢ C*. We shall show that f(x) is a relative in-
variant. Let (¢;;(9)) be an n X n matrix of the adjoint representation
of G w.r.t. a basis 4,,.-.,4,, i.e., (9749, ---,97'4,0) =(A,,---,4,)
(¢;/(9)). Then we have

f(gx) = det g-det (97'A 9w, - -+, 97'A,9%)
= detg-(Z ca(@AL, -+, 23 cin(g)Az-x>
= det g-det (¢;;(9))- f(x) .

Assume that there exists an orbit Gz, of codimension one. Then
dimg,, = dimg — (n — 1) = 1 and hence g,, is abelian. This implies that
trad,, A =0 (A eg,,), and hence the degree of the relative invariant is
n by Proposition 15. Therefore f(x) is the relative invariant of (G, p, V),
i.e., irreducible. Q.E.D.

Remark 17. Consider a triplet (G,p, V) where G = GL(2,C), V =
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M@2,C), p(A)X = AX (AecG, XecV). Although it is not irreducible, it
is regular and its singular set S is an irreducible hypersurface: S =
{xeV|detx = 0}. Moreover, we have

dim G = dim V, deg f = %@ gim v
tr, A
where dy is the differential character of jf(x) = detx. However, there
is no orbit of codimension 1, and deg f = +dim V. '

Now we shall consider relative invariants and regularity of the
castling transform.

Let (G X SL(n), p® 4;, V(m) ® V(n)) be a triplet with m > n > 1.
Identify V(m)® V(n) with all m X n matrices M(m,n,C). We may
assume that G € GL(m). Then we have p® A(g, 9.)X = g, X'g, for
XeM(@m,n,C), 9:.€G, g, SL(n). Let f(@y, Ty, -+, Zpy) (X = () € M(m,
n,C)) be a relative invariant of this triplet. Put

xill’ ] xiln

Xy, = det | A<y oemyiy < m)

1

-

xi,,l) St xi,.n

Since f is invariant under the action of SL(n), the first main theorem
for SL(n) (see p. 45 in [1]) says that there exists a polynomial F of

(’jj)-variables satisfying (@) = F(X,.0)) (L <00y - yin<m, 1< g

< n). Now we shall consider the castling transform (G x SL(m — n),
p* @ 4, Vim)® V(im — n)) of this triplet. Similarly, we may assume
that Vim) ® Vim — n) = M(m,m — n,C) and G < GL(m). Then we have

(0* ® 4)(g,, 92X = ‘97'X’g, for X = (@ icicm € Mim,m —n,C) .

n+1<j<m
Put
xin+1,n+1’ ] xin-(»l,m
X‘in+l aaaa im = det . 4
xim,n+1’ R xim,m
and to each X, .., correspond X, ,, ... under the condition that
{0 - 5%y Tnyrs 5T} = {1, - -+, m} and sgn <,L ;) =1. This gives
19 ° " "y b
a one-to-one correspondence between X, .., and X, , ...
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Hence in this case, we denote X, ., ... by X ... We shall show
that f(z;) = F(X},....) A <i<m,n+1<j<m)is a relative invari-
ant of (G X SL(m — n), p* ® 4,, V(m) ® V(m — n)). Since each Xj ..
is invariant, f is also invariant under the action of SL(m — n). To see
f invariant under the action p* of G, we may assume that G < SL(m).
Then an element of the Lie algebra g of G is an m X m matrix of
trace 0. Since f is absolutely invariant under the action p* of G if and
only if it becomes zero under the action dp* of g, we may consider
infinitesimally.

It is sufficient to show that the action dp of gto X, ..., is the same
as the contragredient action dp* of g to X7, .., since in that case f =
F((X,,...;;) is invariant under the action p of G if and only if f =
F((Xj,,...;,) is invariant under the contragredient action p* of G. To
show this, we may assume that X, ..., = X, .. ,. Then dp induces

nm k
X1 ,,,,, n > Z Z a/k[le...,\g/,...’n = (a'n + -0+ a/nn)Xl,-n,n

n m %
+ 20 20 XY for A=()eg.

k=1{¢=n+1

Note that > ™;,a;; =0. On the other hand, the contragredient action
dp* induces

m m
..... > 25 2, (=0 Xpin e m

r=n+1s§=1

= "(a’n+1,n+1 + o+ amm)XnH,'--,m + Z Z (_asr)Xnﬂ,---,\é ,,,, m

= (all + o+ a’nn)X; ,,,,, n + Z Z a’sr(Xl,u-,\r/,---,n)
for A = (a;)eg.

Hence we obtain our assertion that f is a relative invariant of
(G X SL(m — n), p*® 4,, V(m) ® V(m — n)). Since this correspondence is
one-to-one, if f is irreducible, then f is also irreducible. Therefore, we
obtain the following proposition.

PROPOSITION 18. There is a one-to-one correspondence between rela-
tive invariants f(x) of (G X SL(n), p® Ay, V(im) @ V(n)) (m > n > 1) and
relative invariants f(%) of its castling transform (G X SL(m — n), p* ® 4,,
V(im) @ V(m — n)). Moreover, there exists a positive integer d for each
S (@) such that deg f(x) = nd and deg (&) = (m —n)d. If f isirreducible,
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then f is also irreducible.

Next we shall consider some conditions that a given P.V. has no
relative invariant.

PROPOSITION 19. Let (G,p, V) be a P.V. where p is not necessariyl
irreducible. Let y (# 1) be a rational character of G. Then there exists
a relative tnvartant f(x) corresponding to y if and only if the restriction
Xle,, Of x to a generic isotropy subgroup G, (x, eV — S) 1is identity.
Note that the property x|G,, =1 does not depend on a generic point x,
since G,ge = 9G4,97"

Proof. If there exists a relative invariant f(z) satisfying f(o(9)x)
= y(¢9)f (@), we have f(x) = x(9)S (%) and f(x,) # 0, co for geG,, 2 ¢
V — 8. This implies that x(9) =1 for any ge G,,. Conversely, assume
that y|G,, =1 for 2, V —S. Then y can be regarded as a rational
regular function on G/G,, =~V — S, and hence there exists a rational
function f(x) on V satisfying f(p(9)x)) = x(g9) for any g € G. Clearly, f(x)
is a relative invariant corresponding to the character y. Q.E.D.

PROPOSITION 20. Let (G,p, V) be an irreducible P.V. and let g be
the Lie algebra of G. Denote by 8(V) the Lie algebra of all endo-
morphisms of V of trace 0. Then

) If dp(g) C 8(V), there exists no (non-constant) relative invariant
and hence (G, p, V) is not regular.

(2) Let g,, (x,e¢V — 8) be a generic isotropy subalgebra. If do(g,,)
Z 8l(V), there exists no (non-constant) relative invariant and hence
(G, p, V) is not regular.

3) If do(g) ¢ sU(V) and dop(g,) C 3U(V), then there exists a (non-
constant) relative invariont of (G, p, V).

Proof. (1) By Theorem 1 in §1, dp(g) C 3((V) implies that dp(g) is
a semi-simple Lie algebra, and hence we may assume that g is semi-
simple. If there exists a non-constant relative invariant f(z) satisfying
So(@)x) = x(9)f(x), then the infinitesimal character dy of y is not identi-
cally zero since G is connected. Hence dx: g— gl(1) is an onto map and
its kernel Ker gy is an ideal of g of codimension one. Since g is semi-
simple, this is a contradiction.

(2) Assume that there exists a relative invariant f(x) corresponding
tox. Then by Theorem 1 in §1, dy = ctr, for some c¢ce C where tr, is
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the trace of dp in V, and hence dy|,, # 0. In particular, we have yls,,
# 1. This is a contradiction in view of Proposition 19.

(3) In this case tr;, is not identically zero and det p(G,,) is a finite
group. Hence some power (detp)’ satisfies the condition (detp)’ # 1,
and (det p)’|s,, = 1. By Proposition 19, there exists a relative invariant
corresponding to (det p)‘. Q.E.D.

Remark 21. Let (G,p, V) be an irreducible P. V. and let G, be a
generic isotropy subgroup. Let SL=(V) (resp. SL(V)) be the group of
all non-singular transformations of V of determinant +1 (resp. 1). If
(G,p, V) is regular, then we have p(G,,) © SL*(V) by Propositions 8 and
19. In general, if o(G) ¢ SL(V), then po(G,,) € SL*(V) (resp. p(G,) C
SL(V)) if and only if there exists a relative invariant of degree 2n
(resp. m) corresponding to the character det p(g)® (resp. det p(9)) where
n =dim V. (Note that since G is connected, o(G) ¢ SL(V) implies that
do(g) Z 3((V)). In particular, if dim G = dim V, then p(G,) is a finite
group contained in SL(V) by Proposition 16.

PROPOSITION 22 (D. Luna). Let G be a reductive algebraic group
which acts on a smooth affine variety X. For xe X, let G, be the iso-
tropy subgroup of G at x. Assume that, for any point x in X, there
exists a mon-degenerate symmetric G -invariont bilinear form on the
tangent space at x. Then there exists an open dense subset of X which
consists of closed G-orbits in X. In porticular, an open orbit in X is
closed.

Proof. See ([21]).

COROLLARY 23 (J. Dorfmeister). Let (G,p, V) be a regular P.V. with
a reductive algebraic group G where p is not mecessarily irreducible.
Then its generic isotropy subgroup is also reductive.

Proof. Let f(x) be a relative invariant satisfying H.(x) = 0. We
may assume that f(x) is a polynomial, and hence its Hessian H(x) is
also a polynomial. Put X = {xe V|H,(x) + 0}. Then X is a smooth

2
affine variety and, for each xze¢ X, B, (u,u) = >, of

i 02,00

(®)u;v; is a non-

degenerate symmetric G,-invariant bilinear form on the tangent space
of X at x (see the proof of Proposition 8). Since H,(x) is also a rela-
tive invariant, the open G-orbit in V is contained in X. It is dense in
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X, and closed by Proposition 22; hence it coincides with X. Since G
is reductive and the open orbit is affine, the generic isotropy subgroup
is reductive. Q.E.D.

Finally, we shall prove the converse of Corollary 23.

Let (G,p,V) be a P. V. with a reductive algebraic group G, where
o is not necessarily irreducible. Let (G, p*, V¥) be the dual P. V. of
(G,p, V), ie., p* is the contragredient representation of p on the dual
vector space V* of V. Choosing a basis of V, we may identify V with
C* (n = dim V) and V* with C* by the inner product {z,y> = > 7. 2 ¥;.
In this case we may assume that G C GL(x). It can be proved that a
reductive algebraic group G is a Zariski closure of a maximal compact
subgroup K. Moreover, by choosing a suitable basis of V, we have
K C U(n) where U(n) is the group of all n x n unitary matrices, i.e.,
Umn) = {9eGL(n)|'9g = I,}. Then we have p*(g)y = ‘g~'y = gy for g e K,
yeC" = V*. Let f(x) be any relative invariant polynomial of (G, p, V)
corresponding to a character y. Put f*(y) = f(¥) where ~ is the complex
conjugate (yeC® =~ V*). Then for each ge K, we have [f*(o*(9)y) =
F*gy) = S = xS @ = 17 (S *@W) eC* = V*). Note that [y(9)| =
1 for ge K C U(n). Since G is the Zariski closure of K, we have
T**(@)y) =y {(9)f*(y) for any ge G, ye V*, ie., f* is a relative in-
variant polynomial of (G, p*, V*) corresponding to y™'. Put

f@m™= > am. et x

T1teestin=rm

where r = deg f = deg f*. Then we have

JSE™ = 2L ey Y
Ti+eee+in=rm
and
Sr@grad)™ f@™ = >0 i, PG e @D
L1+ tip=rm
where

f*(grad,)" = 3] aéffi..,in(i)“ . < 0 )“’
Tt tin=rm a.’X/'l axn
and m is any non-negative integer. By choosing a suitable basis of V,
we may assume that f((1,0, ---,0)) #0, i.e., @ = @y,...,7# 0. Then we haev
S0, ,0)™ = @y y,...0 = @™ Since (f* (grad,) /™) gx) = f* (grad,,)-
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S™gx) = y(@™ ' f* (grad,) f(x)™, f* (grad,) f(®)™ is a relative invariant
corresponding to y™!, and hence there exists a constant b(m) satisfying
f*(grad,) f(@)™ = b(m)f(x)™'. Clearly b(m) is a polynomial in m with
degree < 7. Put 7" = deg b(m). Then there exists a constant C satisfy-
ing |b(m)| < Cm™ for any m > 1. Hence we have

Ccm-(m1)” > [b(m)b(m — 1) -+ b(1)| = | f* (grad,)™ f(x)™|
= Z+} e o P @ D) - @) > Jaf™ (rm)!
for any m > 1. Since there exists a positive number m, satisfying m!
> C™/|laf™ for any m > m,, if ¥ <r, we have (m!)" > (m!)”"* > (rm)!
for any m > m, This is a contradiction for »r > 2. If r =1 and 7’ =
0, we have C™ > |af*-m! for any m >0 and again a contradiction.
Hence we have deg b(m) = r (= deg f = deg f*). Since

f*(grad,) f(x)™ = m". f* (grad f(x))- f(x)™ " + (lower term in m)
= bm)f(x)™ ! = m b f(x)™! 4+ (lower term in m) ,

we have f* (grad f(®))- f(@)™" = b f(®)" 7, i.e., [* (grad log f(x)) = b,/ f(®)
where b, = 0 since deg b(m) = r. Therefore, we obtain the following
proposition.

PROPOSITION 24. Let (G,p,V) be a P. V. with a reductive algebraic
group G where p is not necessarily irreducible. Assume that there exists
o relative invariant polynomial corresponding to a character y. Then
there exists a relative invariant polynomial f*(y) of (G, p*, V*) corre-
sponding to x7', where po* is the contragredient representation of p on
the dual vector space V* of V. Moreover, we have f* (gradlog f(x)) # 0
for xeV — S.

Now we are ready to prove the following proposition.

PROPOSITION 25. Let (G,p,V) be a P. V. with a reductive algebraic
group G where p is not necessarily irreducible. Assume that a generic
isotropy subgroup G,, (x,e V — S) is also reductive. Then it is a regular
P. V.

Proof. It is well known that the quotient G/G,, = V — S of reduc-
tive algebraic group G is an affine variety if and only if G, is reductive
(see [8]). Since V — S is affine if and only if S is a hypersurface, in
our case the singular set S is a hypersurface. Let f(x) be a relative

https://doi.org/10.1017/50027763000017633 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000017633

PREHOMOGENEOUS VECTOR SPACES 73

invariant polynomial satisfying S = {xeV|f(x) = 0}. Then by Proposi-
tion 24, there exists a relative invariant polynomial f* of (G, p*, V*)
corresponding to f(x). Moreover, the singular set S* of (G, p*, V*) is
also a hypersurface defined by f*, i.e., S* = {yeV*|f*(y) = 0}. Since
F* (grad log f(x)) = 0 for zeV —S by Proposition 24, we have
gradlog f(V — S) = V* — S* 1ie., gradlog f is generically surjective.
This shows that (G, g, V) is regular by Remark 11. Q.E.D.

Remark 26. Let (G,p, V) be a P.V.with a reductive algebraic group
G. Then it is regular if and only if its generic isotropy subgroup is
reductive, and hence the regularity is invariant under the castling trans-
form (see Proposition 9 in §2). Since its generic isotropy subgroup is
reductive if and only if the singular set S is a hypersurface, a reductive
P.V. is regular if and only if its singular set is a hypersurface. How-
ever, if G is not reductive, it is false. For example, put G =

{(1 2) J“’ beC,a+ 0}, V=c, p(l 3)(5) = <x Z—yby)_ Then a triplet

(G,p, V) is a P.V. and its singular set is a hypersurface defined by
y = 0. But it is not regular. Conversely, it is an open problem that
the singular set of any regular P.V. is a hypersurface or not.

§5. The prehomogeneity and relative invariants of reduced
triplets obtained in §3

In this section we shall investigate the reduced triplets obtained in
Theorem 24 in §3, especially we shall determine their prehomogeneity.

(1) (G X GL(m), p® 4, V(1) ® V(m))

where p is an n-dimensional irreducible representation of a connected
semi-simple algebraic group G (= SL(n)) with m = n = 2. This is a trivial
P.V. (See Definition 5 in §3). We may identify V(n)® V(m) with the
totality of # X m matrices M(n,m). We may assume that G < SL(n).
Then (o &® 4)(g;, g)X = g, X*g, for g, € G, g, GL(m), and X € M(n, m). If
m = n, then the isotropy subgroup at I, is {(g,,’97) ]9, € G} = G and hence
it is a regular P.V. by Proposition 25 in §4. The relative invariant is
det X. If m >n, the generic isotropy subgroup G,, at x, = [1,0,,,_,]
where O, ,_, is the n X (m — n) zero matrix, is the totality of (g,, 9,) of
the form
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‘9" | 0
g, = -

*
and hence G, is isomorphic to the semi-direct product of (G X GL(m — n))
and the n(m — n)-dimensional vector group (G,)"™ ™ ie. G, = (G X
GL((m — n))-(Gy)*™ ™ where (G,) denotes the one-dimensional additive
group: G, = C. By (2) in Proposition 20 in §4, it is not regular. There
are no relative invariants.

(SL(n) x GL(m), 4,® 4,, V(n) ® V(m))
m/j2=2n=1or n=m2=1)

(2)

This is also a trivial P.V. Similarly it is regular if » = m and not regular
if » <m. (1) and (2) are essentially of the same type. The reason why
we separated (2) from (1) is only to avoid the triplets (SL(n) X GL(m),
A, ® 4, V)@ V(m)) (m > n > m/2) which is not reduced.

PRrOPOSITION 1. A trivial P.V., (G X GL(m), p® 4,, V(n)® V(m))
(n < m) s regular if and only if m = n.

(3) (GL(Q) X G, O® adjoint rep., V(1) ® V(n))

where G is an almost simple algebraic group of dimension % = 3.

Let g be the Lie algebra of G. We may assume that G C GL(n) and
g C gl(m). Then the adjoint representation Ad is given by Ad(¢9)X = ¢gXg™*
for any ge G, Xeg. PutgX) = {Y egladX)"Y = 0 for some n > 0} for
Xeg. An element X in g is called a regular element if dim g(X) is mini-
mum. If X, is a regular element, then § = g(X,) is a Cartan subalgebra.
Note that dim g(X) is the multiplicity of the eigenvalue 0 of ad (X). Let
A,, -+, A, be a basis of g and put det (¢ — ad (X)) = t" + ¢\(z,, - - -, T )t"!
F oo F O Xy 2 (U= 1) for X = 37,24, €9, where £ = rankg
= dimY. Then the totality of non-regular elements is a hypersurface S
given by S={X =27, 24 ,eg|o, (@, -, 2,) = 0}. Since g(gXg™) =
9a(X)g~!, this hypersurface is G-invariant, and hence if this triplet is a
P.V., then a generic point must be a regular element. Let X, be a
regular element. Let §y be the isotropy subalgebra dx, = {(¢e, X) e gl(1)
®DgleX, + [X,X,] =0} at X,. Then it is a P.V. if and only if dimgxo
= dim(GL(1) X G) — dimg = 1. Since § = g(X,) is a Cartan subalgebra
and hence commutative, we have ) = {(0, X) e gl(1) D g|[X, X,] = 0} 3z,
This shows that dimgy = dim} = rankg and hence it is not a P.V.
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if rankg > 1. Assume that rankg = 1. Then g = 3((2) (= 3p(1) = 0o(3))
(See Example 45 in §1), and it is equivalent to (GL(2),24,, V(3)). The
representation space can be considered as the space of all binary quad-
ratic forms F (u,v) = xu® + 2,40 + 2,0° with z = (2, 2, 2,) € C®.  The
action p = 24, of GL(2) is given by (o(9)F,)(u, v) = F ,((u, v)9) for ge GL(2).
Since the isotropy subgroup Gy, at X, = uv is

0w = (5 2.

it is a regular P.V. by Proposition 25 in §4. The relative invariant f(x)
is a discriminant of F, i.e. f(#) = x} — 4x,x, for x = F,.

PROPOSITION 2. The composition of scalar multiplications and the
adjoint representation of an almost simple algebraic group G is prehomo-
geneous if and only if rank G = 1. If rank G =1, it is a regular P.V.
equivalent to (GL(2),24,, V(3)).

(4) (GL(m), 24,, VGnn + 1)) (= 3)

Put V={XeMx,0)|'X = X}. Then the action p = 24, of GL(n) is
given by p(4)X = AX’A for AeGL(n), XeV. The isotropy subgroup
at the unit matrix I, is by definition the orthogonal group O(n) =
{AeGL(n)|A'A =1} and since dimO®) = inn —1) = dimGL(n) —
dim V(n(n + 1)), it is a P.V. By Proposition 25 in §4, it is regular
and the relative invariant is given by det X for Xe V.

ProrosITION 3. A triplet (GL(n), 24,, V(in(n + 1))) is a regular
P.V. and its generic isotropy subgroup is the orthogonal group O(n).

(5) (GL(n), 4, V(En(n — 1))  (n=5)

Put V={XeMm, ©)|’X = —X}. Then the action p = 4, of GL(»n)
is given by p(4)X = AX'A for Ae GL(n), X V. Assume that = is even,
i.e.,, n = 2m. Then the isotropy subgroup at

0|7
J:( _"‘>
—1,10

is by definition the symplectic group Sp(m) = {A € GL(2m)|*AJA = J} since
tAJA = J if and only if AJ'A = AJCAJA)A-J ' = AJN)A W= —J?
=J. Since dimSp(m) = m@m + 1) = dim GL2m) — dim V(m@2m — 1)),
it is a P.V. By Proposition 25 in §4, it is regular and the relative in-
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variant is the Pfaffian of a skew-symmetric matrix X in V. Next as-
sume that » is odd i.e. » =2m + 1. Put

o)
Ty =|—1—]-
0]0

Since

A|VBN(J|O0N(A|BY [AJ'A]AJ'CN L‘L

(c‘D><0!0><ct0>‘<CJcAchtc>‘(o 0)
(5.1) A|B

for <7|—> eG, ,
c|D 0
we have
A|B

G, — {(Tlﬁ) A7 - 7} = S0n) x GLAY- G

Since

dim (Sp(m) X GL(1))-(G)*™
=m + D@Cm + 1)
= dim GL@2m + 1) — dim V(m@m + 1)),

itisa P.V. By (2) in Proposition 20 in §4, there is no relative invariant
and hence it is not regular. Thus we have the following proposition.

PROPOSITION 4. A triplet (GL(2m), 4,, V(m@m — 1)) is a regular
P.V. and its generic isotropy subgroup is the symplectic group Sp(m).
The relative invariant is the Pfaffian and -hence of degree m.

PrROPOSITION 5. A triplet (GL@2m + 1), 4,, V(m@m + 1))) is a P.V.
There is no relative invariant and hence not regular. The generic isotropy
subgroup is isomorphic to the semi-direct product (Sp(m) X GL@Q))-(G)*™.

(6) (GL(2), 34,, V(4)

The representation space can be identified with the space of all binary
cubic forms F(u,v) = x,u® + xu’v +x,uv® + 2,0° with « = (x,, 2,, 2, 2,) € C*.
Then the action p = 34, of GL(2) is given by (o(9)F,)(u, v) = F ((u, v)g)
(See (6) in Example 24 in §1). For each binary cubic form F, = F (u,v)
= 2,u® + zu*v + 2uv® + 2,07 let F, be the binary quadratic form defined by
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o o'F
F,= L get|0@u udv| .. (leu + @, X+ T )
4 o:F o'F TU + 2,0, XU + a0
ovou  dvav

= Bx,x; — aDu’ + (n,x, — Xx)Uv + Bwyx, — XV .

Then the correspondence F,+— F', gives a generically surjective GL(2)-
equivariant morphism ¢ of V into V/ where V (resp. V') denotes the space
of all binary cubic (resp. binary quadratic) forms. As we have seen in
(8) just before Proposition 2, a triplet (GL(2),24,,V’) is a regular P.V.
and the generic isotropy subgroup Gy, at Xj = 9uv is given by Gz, = 0(2)

— {(‘6‘ 2_1){a + 0}. The fiber ¢~X(X}) of ¢ at Xj is by definition ¢(X})

= {F,(u,v) e V|3x2; — @} = 3w, — a3 = 0, 92,0, — 2,0, = 9} = {F,(u,v) =

x® + 27| @, # 0}, Since an element <g 2-1> of Gy, acts on the fiber

¢ M(XP) such as xw® + 27— (ax)u® + (ax) 0%, ¢7H(X() is Gg-homogene-
ous, and hence by Lemma 5 in §2, a triplet (GL(2),34,,V(4)) is a P.V.
We shall determine the isotropy subgroup Gy, at X, = 4’ + ¥° in ¢ '(Xp).
If we identify V with C* by an isomorphism F',(u, v) — & = (x,, x,, 2, ,) € C*,

we have
a3 aZ‘B aﬂz ﬂ3 xl
@ = |2ET @O+ 2abr 2af5 4 pf 369\,
(5.2) OIZ 7 3arr 2076 +1°8  ad® + 2870 3p5°) | a,
7’ 70 70? o J
for g = (“ ﬁ) c GL2)
y O
and hence

Gx, = {(“ §> eGLO)|a' + P =71 +8=1, oy + f5=ap + p5' = 0}

5 Ohe=r-io(( ]

={G %)

From (5.2), the kernel of p is the central cyclic group £ of order 3:

e~ (s =1}

Thus the isotropy subgroup Gy, is a finite group of order 18 and

[33=7*3=1}.

https://doi.org/10.1017/S0027763000017633 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000017633

78 MIKIO SATO AND TATSUO KIMURA

its image o(Gy,) = Gx,/% is a finite group of order 6. In particular, it
is a regular P.V. by Proposition 25 in §4. Since ¢ is equivariant, the
discriminant of F7, i.e.

92,2, — 2,2,)* — 4822, — x)D(Ba,2, — 23
= —3(xkx? + 18x,x,2,2, — du,xd — dase, — 27xixl)

is a relative invariant, and its character is (det g)°® for gec GL(2). Note
that P(x) = (w22 + 18x,2,2.0, — 4x,28 — 4ady, — 27T22x)) is the discriminant
of the binary cubic form F,(u,v).

Let y be any rational character of GL(2) i.e. y(9) = (det 9)™ for some
integer m.

Since the restriction xls,, of x to Gy, is identity if and onmly if
(a@0)™ = (—pr)™ =1 for any a, B,7,0 satisfying ¢’ = =¢"=8=1 ie,
m = 6n for some integer n. Hence any relative invariant is of the form
cP(x)" (ce C, ne Z) by Proposition 19 in §4. In particular P(x) must
be irreducible. The existence of the equivariant polynomial map ¢ of
degree 2 is based on the fact that the symmetric product S*(V) of the
representation space V of 34, decomposes into the direct sum S*V) =
V.®V, as a representation space of GL(n) where V, (resp. V,) is cor-
responding 64, (resp. 24, + 24,) i.e.

S (34y) = 64, D (24, + 24,

or

SCT D=1 1T )@ L

by the Young diagram (See §1). For n = 2, we have (SL(2), 24, + 24,,
V) = (SL(2), 24,, V) and hence we know that ¢ is a map obtained by
the composition V- S (V) =V, ®V,—V,= V’. Since dim GL(2) = dimV,
we can also use Proposition 16 in §4 to construct a relative invariant.
By (6) in Example 30 in §1, we have

(30& b 0 0] Z,
do(A)s = 3¢ 2a +d 2b 0,
(5.3) 0 2¢ o+ 2d 3b||xs
0 0 c 3d) \x,
for A = (“ b) cgl®) .
¢ d
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Note that (5.3) is also obtained from (5.2) by putting
G =09+ 2
r O 01 c d

in (5.2) and taking out the coefficients of the linear term ¢ since

a b (a b)
= td
p(exp t(c d)) exXp vap ¢ d

for any teC. The isotropy subalgebra at X, = u*+ v* (i.e. X, =1,
0,0,1)) is 0 from (5.3) and hence it is a regular P.V. by Proposition 16
in §4. The isotropy subalgebra gy, at X{ = wv (i.e. X =0, 1,0,0)) is

= (g _9ea)

and hence the orbit of X} is of codimension one. By Proposition 16 in
§4, there exists an irreducible relative invariant polynomial f(x) of degree
4 (= dim V). We shall construct it according to the proof of Proposition
16 in §4. Let A, (resp. A,,A;, A,) be the 4 X 4 matrix with a = 1 (resp.
b,c,d = 1), all remaining entries zero in (5.8). Then {4, ---,4} is a
basis of dp(gl(2)) and for z = (x,, x,, 3, x,), we have

3x, 0 0

2x, 2x, 3z x

F@) =det(Aw, -, Ax) =det | ~ T T

(5.4) x, 3x, 2x, 2,
0 0 =z 3z,
= 3w} + 18w, 22,0, — 4,28 — dade, — 27x2x) .

PROPOSITION 6. A triplet (GL(2),34,, V(4)) is a regular P.V. and its
generic isotropy subgroup is a finite group of order 18. The represen-
tation space can be identified with the space of binary cubic forms F (u,v)
= 2,4 + U + 2wt + 2,0° (@, X0, T, ) € CY) and then the action p =
34, of GL(2) is given by ((p(¢)F ) (u,v) = F ((u,v)9) for ge GL2). The
relative invariant f(x) is the discriminant of F, i.e. f(x) = xxi + 18x, 2,22,
— 42 — dadx, — 27xcxs.

(7) (GL(6), 4, V(20))

Let V, = >7_,Cu, be a vector space with a basis {u;, ---,%;}. Then
GL(6) acts on V, as (uy, -+, u) —> (y, - - -, u)g for g € GL(6). In general,
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let V, =2 <.cooCug A\ -+ - ANy, be the skew-symmetric tensors of ranky
1<vy<6). Then dimV, = (S), Ve = Cr where ¢ = u, A --- AU and the
representation space of (GL(6), A, V(20)) can be identified with V, under
the induced action of GL(6). Denote by A the Grassmann algebra gen-
erated by V, ie. A=C+V,+ --- +V,;, and define the polarization
D,:V,-V,®V, as a part of the derivation map D from A to a left
A-module A ®V, determined by D,: V,— CQ® V, which is given by D,(w)
=1®o. Namely D, is defined by D,(uy A -+ Auy) = 323, (=1 u; A
AU N U N A u;, @ u;,. For each peV, and eV, we have
GRADADMeV,Q®V, =Cc®V,=7Q®V,, and hence there exists a bili-
near map L:V, x V,— V, satisfying (p® 1) A Dy = t® L(y,6) for any
neV, 6eV,. Now for each #eV,, define a linear endomorphism S, of
V, by S)(w) = L(w N\ 8,0) for we V,. Note that matrix elements of S, are
quadratic forms of coefficients x;;, of 0 =2 x;;u, ANu; ANueV, For
Op = Uy N U A\ Uy + U A\ Us AU, Trom 7@ Sy(w) = (0w A\ 0) ®1) A Dy(6), we
have S, (u) = u,(1 <i<3) and S,(u) = —u;(4 <7< 6). Hence we can
divide V, into eigenspaces V; of S,

(5.5) Vi=V; + V5 where Vi = Zsj Cu;, Vi = fﬁ’_, Cu; .
i=1 =4

On the other hand, for weV,, T e GL(6), we have t® Sy, o T'(w) =
tQ LT ANT®),T®) = (TNATO Q1) ADTO = T{(@ N0 Q1A Dy6))
=T(z®8S)(w) = (det TNe® T > S,(w) and hence S;,, = (det )T >S,oT"'. Let
G,, be the isotropy subgroup {T e GL(6)|T(6,) = 6} of GL(6). Then we
have S, T(u,) = (det T)T(w,) for T e G,. This implies (det T) = +1 since
eigenvalues of S, is +1. If det7 =1, then we have S, T =TS, and
hence T(V;) C Vi and T(V;) C V;. Therefore T(0,) = det(T |V+)u1 A U,
Au, + det (T [V )u4 A us A\ U = 6, and hence T must be in SL(V3) x SL(V ).
Conversely it is clear that SL(V;) X SL(V;) C G,,. Put

I
T, = <—L) .
I,

Then T,e G,, and det T, = —1, moreover for any T in G, with detT =
—1, TT;* is in SL(V;) X SL(V;). Hence the isotropy subgroup G,, is

given by
A0 0|1,
G, = {(T'—E) ‘ A,Be SL(?))} X {(I—ST>, Ia}
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= (SL(3) x SL(3)) x {+1}.

Since dim G,, = 16 = dim GL(6) — dim V,, a triplet (GL(6), 4,, V) is a P.V.
and by Proposition 25 in §4, it is regular. Hence we obtain the first
assertion of the following proposition.

PROPOSITION 7. (1) A triplet (GL(6), 4,, V(20)) is a regular P.V. and
its generic isotropy subgroup is isomorphic to (SL(3) X SL(3)) X {£1}.
@) trace S, =0 for any 6eV,. (3) There exists an irreducible relative
wmvariant polynomial P of degree 4 satisfying S: = P@)I; for any 0eV,.
(4) Let K be a subfield of C, and put V,, = > %, Ku;. Then SL(V,) operates
transitively on K-rational points of the hypersurface W = {§¢ V,|P(0) = 1}.

Proof. (2) Since eigenvalues of S, is 1,1,1,—1,—1, —1, we have
trace S, =14+1+1—-1—-1—-1=0. For 6 =T6, (det T = 0),

trace S, = trace (det T)7S, T~ = 0 .

Since the Zariski closure of {#eV,|0 = T(@6,), detT + 0} is V,, we have
our assertion. (3) Since Sj (u) = u; (1 <¢<6), we have S; = I,. For
0 = To(det T + 0), we have S; = ((det T)T'S, T")* = (det T)’l,. Since the
Zariski closure of {#eV,|6 = T(6,), det T =+ 0} is V,, there exists a poly-
nomial P on V, satisfying S? = P(9)I,. Clearly P(0) is a relative invariant
corresponding to (det T)%

Since (det7)"|s, = 1 if and only if m is even i.e. m =2n (ne Z),
P(0) is irreducible and any relative invariant is of the form c¢P(@)" (ceC,
n € Z) by Proposition 19 in §4. For T = tI; (t € C*), since (det T)* = ¢
and P(T6) = t*%e?, P(4), we have t'* = t*% % (t ¢ C*) and hence deg P = 4.
(4) Let 6 be a K-rational point in W. Then S, is defined over K and
Vig =3y = S,)Vx is an eigenspace of S, corresponding to 41 since S
= I;. Note that V, =V + V;x.

Since P(0) # 0, there exists T € GL(6) satisfying 6 = T(4,). Put o, =
Tu; 1<41<6). Then we have 0 = 0, AU, A0, + U, \ 0, /\ D5 and Sy(?;) =
(det THYT'S, T~1(T0;) = (det T)o; (1 <1< 3), Sy(¥) = —(detT)d;, 4 <1<6).
Since V, = V;,+ V;. where Vi, =11 + S,)V,, an eigenvalue of S, is
+1, and hence (detT) = +1. Therefore by changing indices if hecessary,
we may assume that 0 = 9, A0, A\ Dy + D, NV, \ Dy, Vie=>3,C0; and

sc=219.4C0;. Thereexistv; 1<¢<6)inVgandc,eC ({=1,2)such
that 0 = ¢ VI AN Vi A VS + eI ANVEA UG, Vi =231 Kv; and V; x = >, Kv;.
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If ¢, =0 or ¢, =0, we have P@#) = 0 by simple calculation. This is a
contradiction since § e W. Therefore ¢, #0, ¢, # 0 and moreover ¢, and
¢, are in K since 6 is K-rational.

Put v, = e}, v, = ¢, v, =2, (i #1,4). Then we have § = v, A\ v,
NV + VNV AV Vig=201Kv, and V; = > ,Kv,. Hence there ex-
ists TV in GL(V ) satisfying T'(u;) = v, (1 <7< 6). Since S, = (det )T’
08y, 0 T'71, we have S,(v;) = (det T")v; = v; (1 <1< 3) and S,(v;) = (—det T")v;
= —v;, 4<1<6), and hence detT’ =1 i.e. T ¢ SL(Vy). Q.E.D.

The existence of the equivariant polynomial map 6+~ S, of degree 2
from V, to 3((6,C) is based on the fact that S*4,) = 24, & (4, + 4;) i.e.

sz<

by the Young diagram. The representation (4, + 4,) of GL(6) is the
composition of the adjoint representation of SL(6) and scalar multiplica-
tions (det 9) (¢ € GL(6)). We can also say that the existence of a rela-
tive invariant of degree 4 is based on the fact that

Q- TTR TP R

for GL(6). The representation space 24, is one-dimensional and the action
of GL(6) is given by scalar multiplications (det ¢)? for g € GL(6).
We shall determine the explicit form of P(x) for x = > @, ;,u; Au; A\
u, € V(20) where (2;;,) forms an alternating tensor of rank three with
coefficients in C.
For example @) = @y = Typ = —Xygp == — Ly = —Lyyy.  Sinece deg P(x)
=4, P(x) is a linear combination of ;%% 1500%0r0inie. Where 1 <4,
++,1, < 6. Under the action of u;— au;, u;—u; (j#19 for 1<t <86,
each term Z,;,;, * -+ @4,05,,0,, 1S multiplied by o” and hence we have {3, - - -, 4,5}
={1,1,2,2,---,6,6} as a set. Moreover P(x) is invariant under the
action of &; C GL(6) where ©; denotes the permutation group of {1, - -, 6}
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and hence P(x) is of the form

_ /2 2 ’
P(x) =a eZ:@ X2 1o @e@Prityomam T 0 ;@xv(l)a(Z)v(S)xu(l)v(Z)u(4)xv(3)¢(5)a(6)x0(4)a(5)a(6)
g 6 14 6

/
+ (4 Z@ xv(l)a(Z)v(3)xa(l)a(li)a(5)xd(2)0(4)d(6)xa(3)0(5)0(6)
oECg

where > denotes the sum of distinet terms.

Since P, =1 for 6, = u, N\ U, A\ uy + u, /\ u; \ 4g;, we have a = 1.
For 0 = u; A\ uy A\ Uy + U, N Uy A\ Uy + Uy N\ Us /N Ug + U N\ Uy N\ U; We have
S,(u;) =0 1<1<6) from z® S,(u) = (u; A ) ®1) A\ D,(6). Hence we
have PO =20+ b=24+b=0 ie. b =—2. For 6 =u Au, A\Nu, +
Uy AN\ Uy A\ Uy + Uy A\ Uy N\ U+ U N\ U N\ U, We have Sp(u) = —2ug, S,y(u)
= —2u, and hence P@O)u, = Si(u,) = S,(—2u;) = 4u, i.e. P@) =c = 4.

Hence we have a =1, b = —2, and ¢ = 4.
We can also express P(x) as follows.
Put
x423 x143 x124 x156 x416 x451

X = Loz X1z Lizs and X = Losg  Tgzg  Lap2

x623 x163 leG x356 x436 x453

We denote by X,;; (resp. Y,;) the matrix obtained from X (resp. Y) by
crossing out its ¢-th line and j-th column. Put z,= x, and Yy, = Z.
Then we have

P(x) = (xyy, — tr XY)? 4 4zx,det Y + 4y,det X
o

One can also use Proposition 15 in §4 to check that the degree of the
relative invaiant is four since the orbit of X| = u, A\ uy A u; + u; A\ Uy N\ s
+ u, A\ u, N\ Uy is of codimension one.

(8) (GL(7), 45, V(35))

Let V, be a vector space spanned by u, ---,u%,. Then GL(7) acts on V,
as p( @)y, + -+, u) = Uy, -+ -, u)g for ge GL(7). Let V be a vector space
spanned by skew tensors u; Au; Au, 1<i<j<k<T). Then GL(7)
acts on V as p(9)(u; N\ u; A u) = p(@u; A p(@u; N pi(9u,, for g e GL(T),
and p = 4, V(35) =V. We shall prove the prehomogeneity by seeking
a generic point X, in V. Let H be a subgroup of GL(7) defined by H
={9=(09:)eGL(M |9 =0 for 2<k<7}. Then H is isomorphic to
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(GL(1) X GL(6))-(G,)°* and GL(6) acts prehomogeneously on the subspace
of V spanned by u, Au; Au, 2<i<j<k<T7. As we have seen in
D, uy A\ Uy A\ Uy + us A us A %, is a generic point and a generic isotropy
subgroup is isomorphic to (SL(3) X SL(3)) X {#1}. Therefore we may
assume that X, is of the form

uz/\us/\u4+u5/\u6/\u7+u1/\( Z aijui/\uj>,

2Li<j<7
and (GL(1) x SL(3) x SL(3))-(G,)" leaves this form invariant. By the
action of (G,)’, we may assume that a;; =0 2 <14, <4 or 5<4, j <6).
In fact for g = (g;;) where g,, =1 A1 <1<T), go= —Qg Gis = Oy G4
= —Oy G = — Qg Gis = Usy Y1 = —0y, all remaining entries 0, we have
(DX = Uy N\ Uy N\ Uy + Uy N\ Ug N\ Uy

4 7

4+ u A (Z 5a”ui N uj> )

i=2 j=

and GLQ) x SL(3) x SL(3) = SL(3) x GL(3) leaves this form invariant.
The action of SL(3) X GL(3) on the 3 X 3 matrices (a;,),<:<, iS isomorphic
5<j<T7

to a triplet (SL(8) x GL®3), 4,®4,, V(3)®V(3)). As we have seen in
(2), it is a regular trivial P.V. and (a,;;) = I; is a generic point with the
isotropy subgroup SL(3). Hence we have X, = u, A\ uy A\ %, + Uy A ug A\ %,
4wy A Uy A Uy + Uy A\ Uy + U A\ u;) and the (connected component) of the
isotropy subgroup Hy, of H is isomorphic to SL(3). Since dim Hy =8
= dim H — dim V(35), a triplet (H, 4;|4, Vs, is a P.V. and hence a triplet
(GL(7), 4,,V(35)) is a P.V. with a generic point X, = u, A u; A\ u, +
Us N\ U N Uy + Up N Uy N\ Us + Uy N\ U + U N\ Up). Let gy, be the isotropy
subalgebra of g = gl(7,C) at X,, and let § be the Lie algebra of H, i.e.,
h={A =()egl(M|ay =0 for 2< k< 7). Then we have dim gx, =
= dim GL(7) — dim V(35) = 14 and

gx, N = X Xe3l(3,0)
—tX

Therefore to determine gy, it is sufficient to show that dp(4:)X, =0
(1 <i1<6) where A, (resp. 4,,---,4,) is the matrix of the form (1.8)
in Example 30 in §1 with ¢ =1 (resp. b=1,.-.,f = 1), all remaining
entries zero.

For example we shall show that dp(A)X, = 0. Since A4, acts on V,
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a8 Uy > Uy Uy > Uy Uy — U, Us—> 20y, U;—> 0 (7 =2,6,7), we have

dp(ADu, N\ s N Uy = Uy /N Uy N\ Uy — Uy N\ U N\ U
do(ADus N\ us N 1 = 20 A\ Ug A\ Uy
doCADu, A (U N U -+ 2y N U + 2y N\ Uy
=y, A\ (U A Uy + 2wy A\ )+ oy AU A Uy — U A\ U)

and hence dp(4)X, = 0.

This shows that the isotropy subalgebra gy, at X, is a simple Lie
algebra of type (G, (See Example 30 in §1) and hence a triplet (GL(7),
4,, V(35)) is a regular P.V. by Proposition 25 in §4.

Now we shall determine the isotropy subgroup Gy, not infinitesimally
but glebally. First we shall show that Gy, C GO(7). There exists, up
to constant, uniquely a quadratic form q(x) = zdAx (xe V(7),A c M(7))
which is invariant under the action of gp i.e. ‘BA + AB =0 for any
Becgy, (See the case of d =1 in (32)). In general the quadratic form
g 'w) = ta(tgtAg~YHa is invariant under the action of the isotropy sub-
algebra g,y = ggr,0~"' at gX, where ge GL(7). In particular, if ge Gy,
ie. gX,= X, ¢(g~'x) is invariant under the action of gr, and hence it
must coincide with ¢(z) up to a constant multiple. This implies that
Gy, C GO(7). Next we shall show that an element T of GO(7) can be
written uniquely as T = ¢f,- T, where ce C* and T e SO().

Assume that T' = ¢T', = ¢/T, where T,, T, ¢ SO(7). Put @ = ¢’¢'. Then
we have al, = T, 7,'e SO(7) and hence det(al,)) =a" =1, a’4 = A, i.e,
¢ =1 where () = 'wAx. Therefore we have o« =1, i.e.,, ¢ =¢ and
hence 7, = T{. TFinally we shall show that Gy can be written as the
direct product of the connected component G% and the finite group H
which is contained in the centralizer of G% in GL(7). Note that by the
Schur’s lemma, an element of H is of the form ¢, where ¢ e C*.

In general let G be a connected and simply connected semi-simple
algebraic group with the Lie algebra g. Then we have the exact sequence
1— Z(G) — G — Aut (g) — Aut (Dynkin) — 1 where Z(G) is the center of G
and Aut (Dynkin) is the automorphism of the Dynkin diagram of g. Since
the Dynkin diagram of gy = (g) is 0 =0, we have Aut(Dynkin) =1
and hence G — Aut(gy)— 1 (exact). Since G is connected, Aut (gx,) 1s
also connected. On the other hand, we have the exact sequence

1—— H— Gy, 75 Aut (ax,) —>1
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where ¢ is defined by ¢(9)X = gXg~ for ge Gy, and Xegy. As we
have gar 97" = g, x, = 8x, for ge Gx, ¢(9) is well-defined for ge Gy,
Since the Lie algebra of G% and that of Aut(gy) are gx, p(G%) is an
open subgroup (and hence closed subgroup) of Aut(gy), and hence we
have o(G%) = Aut(gy). This implies that an element 7' of Gy, can be
written as T = ¢I-T, where cle H and T,e G% C SO(7). Since this ex-
pression is unique, we have Gy, = G%, X H.

If cI, e H, then p(cI)X, = ¢*’X, = X, and hence we have Gy, = (G,) X
{ol;|o®* = 1}. Any rational character y of GL(7) can be written as yx(g)
= (det g)™ for some integer m (g9 € GL(7)). Since yls, =1 if and only
if m = 0mod 3, by Proposition 19 in §4, any relative invariant is of the
form cf(x)! (ce C*, ¢cZ) where f(x) is the relative invariant with the
character (detg)’. For g = tI,e GL(7), we have (detg)’ = t* = {*%&/®,
i.e., deg f(x) =T1.

PROPOSITION 8. A triplet (GL(7), A,, V(35)) is a regular P.V. and its
generic isotropy subgroup is (G,) X {wl;|0® = 1}. The relative invariont
1s of degree 7.

Remark 9. Let W be the totality of 7 X 7 symmetric matrices. By
the inner product <X,Y> =tr XY (X,Y e W), we may identify the dual

:

N ] HEEE
:I) _ ’:L—([‘l(ﬁ}ﬂlvlﬁ @ ’j‘———@ il:‘ there, exists
v L | ]

vector space W* of W with W. Since the symmetric product S3(

decomposes as S3(

~
- O

a polynomial map ¢ of degree 3 from V(35)—t_o W satisfying ¢(p(g)x) =

) con-

tains . Note that this fact corresponds to the existence of the

(det 9)g-o(x)'g for ge GL(7), x € V(385). On the other hand, S‘(
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relative invariant of degree 4 of (GL(6), 4,, V(20)). Therefore there exists
a polynomial map ¢* of degree 4 from V(35) to W* satisfying ¢*(o(g)x)
= (det 9)*-‘g7'p*(x)9~". Hence f(2) = {p(®), p*(2)) = trp(x)-¢p*(2) is a rel-
ative invariant of degree 7 satisfying f((o(9)x) = (det 9)°f(x) for g € GL(T)
and x € V(35). However, it is necessary to prove that {p(x), ¢*(x)> is not
identically zero.

One can also use Proposition 15 in §4 to check that deg f = 7 since
the orbit of X[ = u, A Uy A Uy + us A Uy A\ U + Uy A Uy A Uy — Uy A Uy /N U
is of codimension one.

(9) (GL(®), 45, V(56))

Let V, be a vector space spanned by u,, ---,u; over C. Then GL(8)
acts on V, as p(@)(uy, -+, %) = (Uy, -+ -, u)g for ge GL@B). Let V be a
vector space spanned by skew-tensors u; A u; Au, A <1<j<k<8) of
rank 3 over C. We identify V(56) with V. Then the action p = 4, of
GL(®) is given by o(9)(u; N u; A up) = p(@u; N p(Pu; A p(@Pue 1 <0< 7
<k <8). We shall determine the prehomogeneity by seeking a generic
point X,. By the action of GL(7), we have X, = o, + u; A\ 7 where w, =
Uy AN Uy A Uy + Us A Ug AN\ Uy + U A Uy A Uy + Uy AUy + % Au;) and 5 is a
2-form of u,, -, u, (see (8)). The isotropy subgroup (G, of GL(7) at w,
acts on the space V(21) of all 2-forms of %, ---,u,. Let §) be the Cartan
subalgebra of (g,) defined in Example 30 in §1. Then the weights of
this action of (g,) on V(21) w.r.t. § is given by {0, =24, =2, =, + )}
U {0, 0, =4, 4, =24, &+ A, =4 + 22,), =(22, + 2,)} and hence this action of
(Gy is A, D 4,, i.e., V(21) decomposes into the direct sum of the 7-dimen-
sional representation space V(7) and the adjoint representation space V(14)
= (g,): V(21) = V(7) ® V(14) (see Definition 4 and Example 30 in §1).

Let »; = dw,/ou; (1 <¢<7) be the polarizations of w, i.e. y =u, A
Us + Uy N\ U + Uy A\ Ugy 2= Uy N\ Uy — Uy N\ Uy 3 = —Uy /N Uy — Uy N\ Ugy 7y
= Uy N\ Uy — Uy N Ugy Dy = U N\ Uy Uy /N Uy g = —Us N\ U + U N\ Uy 9 =
Uy N\ Ug + Uy /\ Uy

Since

Oy gy + oy Up) = 9 ooy, - -+, U Q)
ou, U,

=%

0w, (T u»g)Mgﬂ‘_

https://doi.org/10.1017/5S0027763000017633 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000017633

88 MIKIO SATO AND TATSUO KIMURA

=3 00 (s )9

e
for g = (g94;) € (G,)), we have
(2 o), o 20 Gy - u)g) = (D0, D00 g
ou, ou, ou, ou,

for g € (G,), and hence {y,, - - -, 7;} is a basis of V(7). Put X, =w, + us A ¢’
+ ug A\ 5, where 7, = ap, + -++ + a7, and 7’ € V(14). Then by the action
of u,—u, —au, (1 <y <7 and ug— ug, we have X, = o, + 43 A 7’ where
7 e V(14) = (g). Moreover we may assume that 7’ is a regular element
of (g, (see (3)). A regular element 7’ can be transferred to an element
of the Cartan subalgebra § by the action of (G,). We shall determine
the subspace of V(14) corresponding to §. Let ¢:(g) — V(14) be the
(G)-equivariant isomorphism. Since § is abelian, we have Agp(X) =
o([4, X]) = ¢(0) = 0 for A,X e, and hence ¢(§) = {x e V(14)|Az = 0 for
any A ebl = {cu, A us + cus A ug + cuy A\ uley + ¢, + ¢ = 0}

Therefore we may assume that X, = w, + s A (city A %5 + cuy A U,
+ eu, A\ u;) with ¢, + ¢, + ¢, = 0. By changing indices and generalizing
this form, we shall consider the 6-dimensional subvariety V’/ of V con-
sisting of the forms u; A 2, A\ Uy + 2w, A\ Uy A\ Ug + U A (@0, A Uy 4+ au, N
Uy + gty A\ Ug) + U N (DU A\ Uy + Dy, N\ Uy + Dus A\ ug). Let H be the
subgroup of GL(8) defined as follows

4 0
(5.6) H= A A, 4 eSLE3), AeGL(Q2), 4,1 = diagonal
0 A

Then the subgroup H acts on the subvariety V’ as

o, a, a,

X = — AN’ XA .
b, b, b,

Obviously this action is prehomogeneous, and we may take X =

b(% =3 __‘1)> as a generic point. Hence the triplet (GL(8), 4, V(56))

is a P. V. and the corresponding point X, = u;, A\ u, N\ uy + %, A U /N ug
+ oy A (U A Uy — Uy N\ u) + ug N\ (U A Uy — Uy N\ %) is a generic point.
We shall calculate the isotropy subalgebra gy, at X,. The infinitesimal
action dp of p is given by dp(A)(u; N\ u; N up) = dp(A)u; N\ u; N\ wy + u;
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N do(Aus A\ w, + u; A uy N do(A)u,,. For example dp(A)(u, A U, \ uy) =
(A + 'ty + Gl + Qglhg + Qplly + Gys) N\ Uy N\ Uy + Uy A\ (ol + Oty +
Usglhs + Qs + Qs + Beghs) N\ Us + Uy N Uy N (Qaglls + Gyl + Gty + Q52 +
QU + agus) where A = (a;)€gl(8). Such a calculation shows that
do(A)X, = 3 a;;5u; N\ u; N\ u, where a,;, are given by the following table.

ijk Aijr ijk aijk ijk Aijk l]k Aijk

123 ay+asetass 148 | ay+au+ass+as; | 247 A1 —Ays 358 —ase

124 Q43— Qg7 — Agg 156 ay 248 dg; 367 —dagg

125 Ags— ay7 157 Ass— gz 256 A4—dgr 368 | —as3—ags— ass
126 ags 158 asy 257 | —ag—ass—ar || 378 —arg

127 | awt+autas || 167 Qg4 258 —agr 456 | au+ass+aes
128 Azt ag; 168 Ags— 13 267 — Qg5 457 | agg—asp—ag
134 | —ayzr—ap—asx || 178 agy—Qgy 268 —ag 458 agg— ds1
135 —asy 234 ag 278 ass 467 —ag1—ars
136 —d13— dga 235 asz+as 345 asp 468 | —as3—as—asgs
137 Ag—ar 236 Qg1—das 346 Qyg—asgs 478 ag—an
138 a6+ ass—age 237 an—ass 347 as 567 age+ag
145 16+ asr+asg 238 Qg+ ag 348 51— 0y 568 ag4—ags
146 agr+Qgs—asp 245 Qg+ dyr 356 asy+agg 578 —ag

147 | an+agtaptag || 246 —Qgp 357 —dagy 678 arg

Hence by simple calculation we have dp(4)X, =0, i.e. a;;, =0 for
1<1<j<k<8, if and only if A is of the following form (5.7).

144} 0 0 0 73 Ip B B
0 A, 0 —7s 0 —7 | —2B B
0 0 a; | =7 T 0 | —pB; | 28
A = 0 —Bs| =B | — 0 0 I8! T
Bs 0 B 0 | —a,| O | =27, 7.
B | —B 0 0 0 —ay | —73 | 273
| —T2 0 B | =B 0 0

T1 0 £ B 0 Bs

6.7

with &, + @, + @, = 0.

Let ) be the subalgebra of gy, = {4 € gl(7)|dp(A)X, = 0} consisting
of the diagonal matrices H(a;, a,, ;) in (5.7).

For 1 <i<3, let E, (resp. F,) be the element of the form (5.7)
with g, =1 (resp. r; = 1), all remaining entries zero. Then one can
easily check that for each ¢=1,2,3, ad (H)E;, = o;F, and ad (H)F, =
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—a;F; where H = H(ay, a5, @) €. This shows that § is a Cartan sub-
algebra of gy, and the root system of gy, w.r.t. § is given by 4=
{Lay, ta, tazla, + a, + a; = 0} ie. gy, = 3((8) and A in (5.7) is the ad-
joint representation 4, + 4, of 3((3). Hence this triplet is regular by
Proposition 25 in §4.

Put X;=u A uy A\ uy + uyg A uy A\ g + uy A\ g N\ g + U N (U N\ %y —
Uy N Ug) + Uy N (U A\ U, — u; A ;). Then by the same calculation as the
case of X, the isotropy subalgebra gy, is given by

@ B T2 s 7o | =B 2B, 2B
B 44 I8! — 74 Ts —B —4p 2B
— 20 Bs Be
_ 0 —B;  —2a B 0
QXf) - 'ﬁ ﬂz ‘BI —2C¥ g
B —Ba|1s— 75 T2 7 44 213x —4ﬁ1
(5.8) B B 0 -7 7 0 o 0
B. O T4 -n 0 | =5 0 a
ﬁl 132 _ ﬁs
() ® 2 2 @ ( )
= | (« 72T T6]s
B+ By 3 _& ToTo T TeT
| 2 2 )

= @l D32 D V(5

where the second @ denotes the semi-direct sum and V(5) denotes the
Lie algebra of the 5-dimensional vector group. Hence the isotropy sub-
group Gy, at Xj is locally isomorphic to (GL(1) X SL(2))-(G,).

Since dim GL(8) — dim Gy, = 55, the orbit of X is of codimension
one. For an element A of gy, we have tr, A = —2la and tradgy,A =
—21a + 15«

—2la

The orbital decomposition of this space was completed by I. Ozeki
(see [20]).

15«, and hence deg f = X 56 = 16 by Proposition 15 in § 4.

PROPOSITION 10. A triplet (GL(8), 4,, V(56)) is a regular P.V. and
its generic isotropy subgroup is locally isomorphic to SL(8). The relative
mvariont is of degree 16.

10) (SL3) X GL(2),24,® 4,,V(6) ® V(2)) .
We identify V(6) ® V(2) with V = {X = (X,, X))|X,, X, e M(8), X, = .
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X,, ‘X, = X,}. Then the action p =24, ® 4, of SL(3) X GL(2) is given
by o(4,B)X = (A@@X, + bX,))!'A, A(cX, + dX,)'A) where X = (X,,X) eV,
(A,B) e SL(3) x GL(2), and B = (‘(‘j Z) For each X = (X, X,) in V, we
can obtain the binary cubic form Fy(u,v) = det (uX, + vX,) which is

invariant under the action of SL(3). Let Gy, be the isotropy subgroup
of G = SL@®) x GL®) at X, — ((1 1 1), (1 o w)) where o' =1, 0 # 1,

and let (A, B) be an element of Gy, where A< SL(3), Be GL(2). Then
B must be in the isotropy subgroup

(G Dle=e=1vi{C )

of GL(2) at Fy(u,v) =’ 4 v* (see (6)). In the case of B = (1 1), we

b= =1

have A'A = I, A<1 " wQ)tA - (1 w wz) and hence

£t b

This implies that A is diagonal. Since A!A =1,, we have A =
(il +1 +1>, i.e., {4} is an abelian group of order 8 of type (2,2,2).

Similarly we have

+w +o 4+ w?

when B = (w m)(resp. (w mz),<1 1)) This implies that G, is a finite
group of order 8 x 18 = 144. Hence it is a regular P.V. by Proposition
16 in §4. The kernel of p is a finite group {(i(w 1) w), (a’ w)) o = 1}

of order 6, and hence the image p(Gy,) is a finite group of order 24.
Since X — Fy(u,v) is equivariant, the discriminant f(X) of Fx(u,v) is
a relative invariant of SL(3) x GL(2) (see (6)). Any rational character
x of SL(3) X GL(2) is of the form yx((4,B)) = (det B)™ for some mecZ
where (A4,B)e SL(3) X GL(2). Since deg f(X) =12, if (det B)™ is the

character of f(X), we have (det B)™ = t*™ = ¢ for B = (t t) and hence
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m = 6. Since y|Gx, =1 if and only if m =6n for some neZ, by
Proposition 19 in §4, any relative invariant is of the form c¢f(X)* and
hence f(X) is irreducible.

PROPOSITION 11. A triplet (SL(3) X GL(2), 24,Q 4,, V(6) ® V(2)) is
a regular P.V. and its generic isotropy subgroup is a finite group of
order 144. The relative invariant is of degree 12.

11) (SL(n) % GL®), 4,® 4, V(Mzi_ll) ® V(z)) (n = 5)

I) The case of n = 2m.

We identify V = V(m@m — 1)) ® V(2) with {X = (X, X,) e M(2m)
M@2m)|!X, = —X,, ‘X, = —X,}. Then the action p =4, 4, on V is
given by p(9)X = (A(aX, + BX)'A, AGX, + 6X,)'A) for

g = (A, (‘;‘ §)) e SL(m) X GL() .

For each X = (X, X,) in V, we can obtain the binary m-form Fy(u,v) =
Pff(uX, 4+ vX,) which is invariant under the action of SL(m) where Pff de-
notes the Pfaffian. This map ¢: X — Fx(u, v) is clearly equivariant. More-
over it is generically surjective since ¢o(X) = +(u — 2) --- (u — 2,v) for

0o |I, 0]—
X = — |, ———/i where 4 =
—I1,10 4] 0 :
0 Am

For m = 4, a triplet (GL(2),m4,, V(m + 1)) is not a P.V. and hence the
triplet (SL(@2m) x GL(2), 4,Q 4,, V(2m* — m) ® V(2)) is not a P.V. for
m =4 by Lemma 5 in §2. Assume that m =3. Put

x= {25 () W( ! )

In general the infinitesimal action dp of p is given by

4

dp<A, (‘;‘ Z))X = (AX, + XA + aX, + bX,, AX, + XA + X, + dX))

where X = (X,,X,) in V, 4 3(2m,C) and (‘g Z) egl(2,C). Hence we

have dp(A, (;‘ 3)))(0 — (X}, X) where A = (a;) € 8(@m), and X} = (c:),
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X3 = (¢},) are 6 X 6 skew-symmetric matrices given as follows.

Crz Qpy — Ay [ Cys | Ay + Uy i Cha Uy
Ci3 A3y — Qg { Csg { @ — b+ Gy + gl Co Q1
Cu|0 + 0+ ay + ay | C Ay — Oy Cas c
Ci5 Qy, + Qg Cus Qg3 — Qg Cis — Uy
(5.9) Cie O3 + g Cfs Q53 — gy | C§4 Qg — g
Ca3 Qg5 — Qg Cyy Qpy | Cs5 — g
Ca4 O + Oy Cis Oy + Oy g € — d — Qg — Qgg |
Cos| A+ Oy + O | culc+d+ ay + ay ‘ Cis — Oy |
Cag Qs + g I s (7 Cio — Oy — Uy
Cs4 Og1 + Gyg 1\ o Qg — Qg | — O3

Therefore the isotropy subalgebra gy, at X, is given by

ox, = {(A, (‘c” Z)) & 5U(6) ® ()] ¢sy = ¢}, = 0 in (5.9)}

(5.10) = {<ﬁs£> @ (0)|a, B,y are diagonal 3 X 3 matrices}
7T«

=~ 3[(2) D 3(2) D 3(2) .

Since dim gy, = 9 = dim SL(6) X GL(2) — dim V(15) ® V(2), it is a
P.V., and by Proposition 25 in §4, it is regular.

The discriminant f(X) of the binary cubic form Fy(u,v) (= Pff(uX,
+ vX,)) is a relative invariant of degree 12 (see Proposition 6). We
shall show that f(X) is irreducible.

Put
Jl 0 __1
J = J, where J, = (1 ) .
0 J,

Let X be a 3 X 3 quaternion matrix. In general a quaternion can be

represented as a 2 x 2 matrix (g _zg_é> and hence we can consider X as
a 6 X 6 matrix. In this case, if X is a quaternion hermitian i.e. ‘X =
X, then ¥XJ) =—(XJ). This gives a one-to-one correspondence from

3 X 8 quaternion hermitian matrices to 6 x 6 skew-symmetric matrices.
Moreover we can define the determinant of quaternion hermitian matri-
ces which corresponds to the Pfaffian of skew-symmetric matrices. There-
fore f(X) can be considered as a discriminant of the binary cubic form
det (uX, + vX,) where X,,X, are 3 X 3 quaternion hermitian matrices.
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We have seen in (10) that the restriction of f(X) to X = (X,, X,) where
X, X, are 3 X 3 symmetric matrices over C, is irreducible and hence
SF(X) itself must be irreducible.

PRrOPOSITION 12. A triplet (SL(2m) X GL(2), 4,® 4,, V(m@m — 1))
® V(Q)) is not a P.V. if m = 4. A triplet (SL(6) X GL(?2), 4, 4,, V(15)
® V(?2)) is a regular P.V. and its generic isotropy subgroup is locally
isomorphic to SL(2) X SL(2) x SL(2). The relative invariant s of
degree 12.

II) The case of n =2m + 1.

We identify V = V(m@m + 1)) @ V(2) with {(X,,X)eM2m + 1) D
M@m + 1)|'X, = —X,, ‘X, = —X,}. The subgroups GL2m + 1) = SL(2m
4+ 1) X GL() of SL@2m + 1) X GL(@2) acts on V as X =X, X))~
(AX A, AXA) for Ae GL2m + 1). Let X, be a point

L\ (2
X, = ( 0 ), 0 —1I,
—1, I,

Then the isotropy subalgebra gy, of gl(2m + 1) at X, is

40
[¢2) 0
m + 1
.ao
(5.11) gy, =+ egl@m+1)y.

Ay Qp v gy | — 0
Ay Qg v v v s

m .
a:m a’2m “ao

Since dimgy, =2m + 1 =dimgl2m + 1) — dim V, it is a P.V. and
there is no relative invariant by (2) in Proposition 20 in §4. Hence
(SL2m + 1) X GL(®2), 4, 4,, Vim@2m + 1)) ® V(2)) is a P.V. and there
is no relative invariant.

PropPOSITION 13. A triplet (SL(2m + 1) X GL(2), 4,® 4,, V(m(@2m
+1)®V(?) is a P.V. There is no relative invariant and hence it is
not regular.

(12) (SL(5) X GL(3), 4,® 4,, VA0 ® V(3)).
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Let V, be a vector space spanned by u, --.,%,. Then SL(5) acts

on V, as p(@)(®y, « -+, %) = (Uy, - - -, u)g for ge SL(5). Let V, be a vector

space spanned by 2-forms u; A u; (1 <¢<j<5). Then SL(5) acts on

V, as p(@)u; N\ uy) = p(@u; N\ p(@)u; for geSL(5). The infinitesimal

action dp, of p, is given by dp,(A)(u; N\ uy) = dp,(A)u; N\ u; + u, A dp,(A)u,

for Aecsgl(5). Put o, = u A Uy 0, = Uy N\ Uy, @3 = Uy /\ Us, 0, = Uy /\ Uy,

O = Uy N\ Uy U= Us \ Uy @ = Uy N\ Uy, @5 = Uy /\ Ugy W9 = Uy /\ Uy, Wy =

u, Aus.  Then {wy, -+, 0} is a basis of V,, and for A = (a;;) € 3((5), by
simple calculation we have

sz(A)(wn ) wm) = (wn trey wlo)(AliAZ)

Qy + Gy —0y Q3 —Qyy Q4
—Qy |+ Gz Ay Q3 0
s, Az a; + a, 0 A3y
— Oy Qg3 0 O + Q| Ay
A, = Oy 0 Qg3 Az a, + ay
0 — 0y — Oy (429 Ay
0 0 0 —Oy | —Qy
— Oy A3 0 sy 0
0 —Qy | —Oy 0 0
(56.12) g, 0 Qs 0 Ay,
0 0 — 0y 0 Qg
— gy 0 Qgp — Uy 0
— Oy 0 0 — Q5 Q35
Qa3 — Oy Qg5 0 0
4 [/ — 0 0 Oy
’ O3 + Q| —0 0 Gy 0
=l | QO+ Q| Oy 2% 2
0 Oy |G + Q5| Qg Uy
(2N A3y A3, @ + Q5| Oy
0 Qyy Ay 3 |Q + O

where a;,;, = a; and > a; = 0.

We denote this matrix also by dp,(4), i.e., dp,(A) e M(10). Identify
V = V(10) ® V(3) with 10 X 3 matrices M(10,3). Then the action p = 4,
® 4, on V is given by p(9)X = p,(9.)X’g, for g = (g;, 92) € SL(5) X GL(3),
X eM(10,8). The infinitesimal action dp of p is given by dp(A)X =
dp,(A)X + X*B for A=(4,Be¢ g = 3l(5) D gl(8). We shall calculate the
isotropy subalgebra gy, at X, = ‘(I;0|1;0) ¢ M(10,3). Then for A=(4,B)
with A = (a;,) € 8((5), B = (b;;) € gl(3), we have
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a, + a, + b, by —
by, — Ay — Q| Gy + @y + b,
Qg — Gy + Dy Oy + by
Upy — gy Qg — Qo
Oy + Qg — Q5
a; + oy + b, by — 0y — ay
b — 5, a, 4+ a; + b,
by — @y Oy + Qg5 + by
N Q3q — Qg
Oy, Qyy

where dp,(A) is given by (5.12).
Hence the isotropy subalgebra gy, = {fﬂd‘o(ﬁ)Xo =0} is given as

follows.
, 0 |—8| 7
—3r | 2o
Qx, = 38 — 20
-7
B8

This is 44, @ 24, of 3((2).

—4a |

B

7| 200

Gy — Q5 + by
Uy + Oy + Dy,
a + a; + by
A5
Ay
b31 — Oy )
O + Dy
a, + a; + b,
A3y — Uy
Qy, + Qg

B } = 3((2) .

Since dim gy, = 3 = dim SL(5) X GL(3) —
dim V(10) ® V(3), it is a P.V. and moreover it is regular by Proposition

25 in §4.
Next we shall calculate the isotropy subalgebra gy, at
41 0 0 0 0 0 0 0 0 O
X;=10 0 0 0 01 0 0 0 1}.
01 00 0 0 1 O0 0O
Similarly, we have
o, + a, + b, Oy + by by — g
by — iy by — @y a, + a; + b,
U3y g5 — Oy, Uy
— Oy o3 Qg — Oy
. ) a4, + a —a
d A X/ — 42 13 45 15 .
oLAX; by O+ @, + b, by — @y — ay
by Oy — Qg3 + by | @y + a5 + b,
— g gy sy + Qyy
0 Q3 + Oy A3y — Qg
05 + by a; + a5 + b, Oy + by,
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Hence the isotropy subalgebra gy, = {/I]dp(fi)Xg = 0} at X{ is given

as follows.
20 + 48 0
. —20¢ — 28 7
Qx; = A= o
A1
(5.13) —a — 3
—28
0 a + 28

Since dim g — dim gy, = 33 — 4 = 29, the orbit of X7 is of codimen-
sion one. For Ac ax;p the trace try AonV=V10)Q VA is 10(—28 —
(@ + B + (@ + 2p)) = —10p and the trace tradg Xﬁfi of the adjoint repre-
sentation on gy, is 58. By the degree formula, i.e., Proposition 15 in
§4, the degree of the relative invariant f(x) is given by

deg f(z) = tr, A + trij.d QX"A-dim V- —108 + 58

X 30=15.
try A —108

PROPOSITION 14. A triplet (SL(5) X GL(3), 4,& 4,, V(10) ® V(3)) is
a regular P.V. and tts generic isotropy subgroup ts locally isomorphic
to SL(2). The relative invariont is of degree 15.

(13) (SL(5) X GL(4), 4,& 4,, VA0) ® V(4)) .

We identify V = V(10) ® V(4) with 10 X 4 matrices M(10,4). Then
the action of p, = 4,® 4, is given by p(9)X = p,(9)X’g, for g = (91, 9,)
e G = SL(5) X GL(4), X ¢V where p, is defined as in (12). The infini-
tesimal action dp of p is given by do(A)X = dpf(A)X + X‘B for A =
(A,B)eg = 3((5) ®gl(4) where dp,(A) is the 10 x 10 matrix of (5.12).
We shall calculate the isotropy subalgebra gy, at X, = 4I,0|1,0) € M (10, 4).
Similarly as in (12), we have

do(A)X, = dp(A)X, + X,'B
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a; + a, + b, by — Gy Upy — G5 + Dy by — ay
by — Oy — Qo | @y + G5 + Dy |Gy + Qg + by | @y — Gy + Dy
Oy — Qg + Dy Oy + by a, + a; + b, by —
Oy — Oy + Dy | Qg — Ay + Dy, Oy + Dy a, + a, + b,
= Cpy + Oy — Oy Ay 20
B a; 4 0y + D, |by — @y — 0y by — 0y Oy + Gy + by
by, — @y ay + a; + b, @y + Dy Qs — Qg + by
by — ay Oy + Qgy + byy| @y + @5 + by G5y + @y + by
b14 + Q54 U3y — Oy + b24 Q32 — Qg + b34 a3 + Qs + b4
Q5o Qyy Oy + Qs Q3

Hence the isotropy subalgebra gy, = {fi egl dp(ﬁ)X0 = 0} at X, is zero.
Since dim gy, = 0 = dim SL(5) X GL(4) — dim V(10) ® V(4), it is a regular
P.V.

Since dim G = dim V, there is a relative invariant polynomial of
degree 40 by Proposition 16 in §4.

Similarly one can check that the isotropy subalgebra gy, at

000 00001 OO0 O
, 1 01 0 0
X, = (o, 05 + w5, 0y + @y, 0y + @) = g g 0 8 2 g 00 0 0
0 0 01 00 O0O0OCO0T1
is of one-dimension, i.e., the orbit of X} is of codimension one. Hence

by Proposition 16 in § 4, the relative invariant of degree 40 is irreducible.
This point X was found by I. Ozeki ([20]).

PropoSITION 15. A triplet (SL(5) X GL(4), 4, 4, V(10) ® V(4)) s
a regular P.V. and its generic isotropy subgroup is a finite group.
The relative invariant is of degree 40.

(SL(n) X SL(n) X GL(2), 4,® 4, ® 4, V() ® V() ® V(2))

. n=3.

We identify Vi) @ V(n) @ V(2) with V = M(n) ® M(n). Then the
action p=4,8®04,® 4, is given by p(@)X = (AaX, + BX)'B,AGX, +
5X)'B) where g — (A,B, (‘;‘ g)) e SL(n) x SL(n) X GL®) and X = (X,,
X,)eV. For each X = (X, X,) in V, we can obtain a binary n-form
Fy(u,v) = det (uX, 4 vX,) which is invariant under the action of SL(n)
X SL(n). Clearly the map ¢: X — Fy(u,v) is equivariant. Moreover,
it is generically surjective since ¢(X) = (u — 4,v) --- (u — 2,v) for
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__.,21
X =\I, .
—2,

in V. Therefore by Lemma 5 in §2, if n =4, then it is not a P.V.
since (GL(2), nd,, V(n + 1)) is not a P.V. for n = 4. Assume that n =
3. The infinitesimal representation dp of p is given by

a0 s
¢ d
= (AX, + X|!B + oX, + bX,, AX, + X,)B + ¢X, + dX),)

for (A, B, (a Z)) edl(n) @ 3l(n) ® g[(Z). Hence for

T

we have
a b o+ b+ ay, + by 0y + by 0y + by
dp(A, B, (C d))XO = Ay + b12 a + Qy + bzz Qa3 + b32
03 + by Oy + by |0 — D + Gy + by
c+d+ay + byl by —ay; + by
Uy 4 — O3
Uy — by, —bylc — d — ay — by

where A = (a,)), B = (b,) € 3(3), (‘C" g) & gl(@).

Therefore the isotropy subalgebra

O, = {(A, B, (Z Z» e 3(3) @ 2L(3) @ gl(2) | do (A, B, (‘; Z))Xo - o}

A0 )

Since dim gy, = 2 = dim SL(8) x SL(3) X GL(2) — dim V, it is a regular
P.V. by Proposition 25 in §4. The discriminant f(X) of the binary
cubic form Fy(u,v) = det (uX, + vX,) is a relative invariant of degree 12.
This is irreducible since we have seen in (10) that the restriction of f(X)
to (X=X, X)eMB)DM®B)|'X, =X, X, =X} is irreducible.

a+ B+ =0} = gl(1) @ gl(D) .
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PROPOSITION 16. A triplet (SL(n) X SL(n) X GL(2), 4, ® A4, ® 4,, V(n)
R Vm) ®V(Q)) is not a P.V.if n =4. A triplet (SL(8) x SLB) X GL(2),
A QAR 4, VB R V(B)X® V(2) is a regular P.V. and its generic isotropy
subgroup is locally isomorphic to GL(1) X GL(1). The relative tnvariont
s of degree 12.

(15) (Sp(m) X GL(m), 4, ® 4,, V(2n) ® V(m)) nrnz=mz=1).

We identify V =V(@2n)® V(m) with 2n x m matrices M@2n, m).
Then the action p = 4, ® 4, is given by p(¢9)X = ¢,X’g, where X ¢ M(2n, m)
and g = (g9, 9.) € Sp(n) X GL(m). Let g = 3p(n) ® gl(m) be the Lie algebra
of Sp(n) X GL(m). Then the infinitesimal action dp of p is given by
dp(A)X = A X + X'A, where A = (4,,4,) ¢ g = 3p(n) D gl(m).

I) The case when m is even, i.e., m =2¢ (n = 24 = 2). We shall
calculate the isotropy subalgebra gy, at

X_tzgo 0
T\ o |I, o

) e M(2n,2¢)

where I, denotes the identity matrix of size 4. An element A of g can
be written as follows.

A, A, B B,

A3 A4 tBZ B4 Dl |D2
(56.14) A= @( )

C. C,|—A, —:A, D,|D,

LCz C4 —LAZ _tA4J

where A, B,,C,,D; e M(¥)

for 1<j<4;A4,B,C,eM{U,n—40);A,cMn—4,8); A,B,C,e M(n— )
and ‘B, =B, ‘B,=B,, ‘C,=0C,, ‘C,=C, Then we have

(A, A, B, B,) IJO] (I, OH‘DI ‘D3]
A, A, ‘B, B, loo o olltp, D,
0
Lo

QX =10 ol . —allon] T o1,
5.15) L«c, ¢, —4, —tA,)00]0 0 0J
fAl + tDl Bl + tDS )
_ A, ‘B,
- Cl + tDz _tAl + lD4
:C, —t4, J

Hence the isotropy subalgebra gy, = {4 €g|dp(4)X, = 0} is given as
follows.
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A, 0| B 0
. 0 4, 0 B, @( ‘<A1 B, )) ~ 30(0) @ 3001 — £)
gXo_“ 01 0 _,;Al 0 Cl ___tAl = ’p p .
0 ¢l 0 —‘A4J

Since dimgy, = 424 + 1) + (0 — H)2n — 24 + 1) = (n@2n + 1) + 447} — 4nd
= dim Sp(n) X GL(2¢) — dim V(2n) ® V(2¢), this triplet is a regular P.V.
by Proposition 25 in §4.

The relative invariant f(X) is given by Pff(‘(XJX) where

and Pff denotes the Pfaffian of the 2¢ X 2¢ skew-symmetric matrix ‘XJX.
Since Sp(n) = {9, € GL(2n)|'9.Jg, = J}, we have [f(o(9)X) = f(9.X'¢)) =
Pff(9,'X'9,J9.X'g,) = Pff(9,/XJX'g,) = det g, Pf((XJX) = det g,- ff(X) for
9 = (9, 9,) e Sp(n) X GL(2¢). By Proposition 18 in §4, the degree of
any relative invariant is multiple of 2¢4. Since deg f(X) = 24, f(X) is
irreducible.

ProPOSITION 17. A triplet (Sp(n) X GL(2m), 4, ® 4,, V(2n) ® V(2m))
n=2m=2) is a regular P.V. and its generic isotropy subgroup 1is
locally isomorphic to Sp(m) X Sp(n — m). The relative tnvariant is of
degree 2m.

Note that this proposition holds even if 2n =>2m > n, but in this
case, it is not reduced.

II) The case when m is odd, i.e., m = 2¢ + 1.
We shall calculate the isotropy subalgebra gy, at

I, 0, 0
X, = [—— M@2n,2¢ 1.
° ( 0 |1, 0>e @20+ 1

An element 4 of g can be written as follows.

] 1 n—4-1 ] 1 n—4~1
(5.16) oA | Ay | Ay B B B;
| An | A, | Ay | 'B | B, | B PSS SN S
wen{| Ay | Ay | A, | B, | ‘B, | B, (D De Dy |1
Aol a oy | DB D e
1|« | c, | ol —A, —4, ’_cAsz [Dm!Dn!Ds 1
n=e-1 L 1Cy | 1Cy | C —'tAw'; '—tAzal —'A, )
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Al AIZ A13 Bl B{ B; 1 IZ Ié tDI tDZl t-DSl
An 4, Ay| ‘Bl B, B Dy, |*D, | *Dy
Ay Ay Ay | ‘B 'Bj B, + *Dy;| "Dy | Dy
Cl C; Cg —tAl —"cAZI ——tAsl IE ll
t1cy C, Cj|—tA, —'A, —‘'A, 1 1
L G tCé Cs —tAIS —tAzs —zAs J
Al + tDl Bl + ZDZI B:’l + tDBl
Ay ‘B B,
Ag ‘B; ‘Bj
Cl + tDlZ '—tAl + tDZ —tAZI + ZD32
tC; + LD13 "‘tAlz + 6D23 "‘tAz + tD3
'C; —tAy — Ay
and hence the isotropy subalgebra gy, = {4 € g|dp(A)X, = 0} is given as
follows.
(A, A, O] B 0 0 )
R A WATIEIR
8x, = 1 0 - I 0 e L1 Bl R !
’ c, C; 0|-—'A, 0 0 ?}7|—5A A,
‘C; G G| —tA, —'A, —'A, T
L0 ¢ Gy 0 0 —t4, |
—!'A,| 01— *A, | G5 — "Ay | C, )
o |4 B, A A B
C, — 4, | O . 0
=1 A wma ol e
ol o podg) Vel
0 o | o0 4]

n

where u(@n — 1) is the nilpotent Lie algebra of dimension (2n — 1).

(gl(1) @ 2p(4) ® 8p(n — £ — 1) D un — 1)

The

first isomorphism is obtained by changing rows and columns from

{,---,6} to {5,1,4,3,6,2}.

Since

dimgy,=14+42¢(+ D+ -6 —-1D2n -2 —-1D 4+ 2n—1)
=n@2n+1) + 2¢+ 1) —2n2¢ + 1)
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= dim Sp(n) X GL(2¢ + 1) — dim V,

it is a P.V. Since gy, & 3((V), by (2) in Proposition 20 in §4, there is
no relative invariant. In particular, it is not regular.

ProPoOSITION 18. A triplet (Sp(n) X GL@2m + 1), 4, ® 4,, V(2r) ®
Vem + 1) (n=2m +1=1) is a P.V. and its generic isotropy subgroup
1s locally isomorphic to (GL(1) x Sp(m) x Sp(n — m))-U@2n — 1) where
U2n — 1) is a unipotent group of dimension (2n — 1). There is mno
relative invariont and hence it is not regular.

(16) (GL(1) x Sp(n) x SO(m), O ® 4, ® 4, V(1) ® V(2r) @ V(m))
@nzm =3)

By Proposition 13 in §2, this triplet is a P.V. if and only if
(GL() X SO(m), 0 ® 4, VA) @ V(im(m — 1))) is a P.V. Since 4, is the
adjoint representation of SO(m), it is a P.V. only when rank SO(m) = 1,
i.e., m =3, by Proposition 2. Assume that m = 3. We identify V =
VA)®V(@nr)Q V(E) with 2n X 3 matrices M(2n,3). Then the action
=04, @4, is given by p(g)X = cAX'B where g = (¢, A,B) e GL(1)
X Sp(n) X SO(m) and X e M(2n,3). Let g be the Lie algebra of GL(1)
X Sp(n) X SO(m) i.e.

0 a b
—-b ¢ O]

A B
(d)®[ % ]@
—a 0 —c¢

g:

Cc —A ‘B=B,'C=C

A, B, CecMn) J

The infinitesimal action dp of p is given by dp(d,4,B)X = dX + AX +
X‘B for (d,A,B)eg. Put

1 0
X, = (0 1 0 0leV =M2n,3) .
0 0 {01

Then we have

(5.18) dp(d, A, B)X,
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(d 0 ) (@, @y a,] b Do b1 0 )
0 d y Oy . by, b, 010
a"n,l a’n bln bn
= -
0 00 € Cpprrt G| —Qp —0y Uy 0
a Cyy (2 — O —Q 1
J kcln Cn| — iy —ay, J
(1 0 (0 —b —a]
0 1 0Ofla c 0
b 0 —cJ
1
1
{ )
o, +d o oay+a Qg » s Oy G €, + b Ci3* " Cip
=|a,—0 a,+d+¢ Ay -ty Cy c, Caz ++* Cyp
by, —a b, byg oo by —Qy —Q+d—C —Oy - —0y,
Hence the isotropy subalgebra gy, = {(d, 4, B)|dp(d, A, B)X, = 0} at X, is
given by
(0 0 Qyg =0 Qg b1 0 bls"' bln
0O —¢ 0 ---0 0 0 0 ...
0 0 Qg v v Oy bl3 0 bs e b3n
|0 O dua by 0 by by |
= _— e
8o 0 0 0.---0] 0 0 0. 0 ,
0 0 0..-0 0 c 0..- 0
0 0 Cyove Cy |~y O — il 2%
L0 0 ¢y € | =t 0 —ay - —a, |

Since dim gy, = 2n* — 5n + 4 = dim GL(1) X Sp(n) X SO3) — dim M2n, 3),
this triplet is a P.V.

However, its generic isotropy subgroup is not reductive since it is
locally isomorphic to the semi-direct product of Sp(n — 2) X SO(2) with
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a unipotent group U(@2n — 3) of dimension (2n — 3).

By Corollary 23 in §4, this P.V. is not regular. Since gy, C si(V),
there exists a relative invariant f(z) by (3) in Proposition 20 in §4. In
fact, a polynomial f(x) = tr (XJXK)? is a relative invariant where
Sp(n) = {A € GL(2n)|*AJA = J} and SO(m) = {B € SL(m)|*BKB = K} since
fAX'B) = tr (B*X'AJAX'BK)* = tr (B XJXKB™')? = tr (XJXK)* = f(X)
for A e Sp(n), B e SO(m). Since f(X,) = 2, f(X) is not identically zero.
Note that tr ‘{XJXK is identically zero.

Since this P.V. is not regular, the Hessian of f(X) = tr (XJXK)?
must be identically zero. We can check this directly as follows.

The infinitesimal character 6y of f(X) is given by 6;((21) = 4d for
A=(d,A,B)e g. By Proposition 10 in §4, Hessian H(x) of f(x) is not
identically zero if and only if gradlog f:V — S — V* is generically
surjective. In view of (1) in Proposition 9 in §1, the map gradlog f
is generically surjective if and only if gradlog f(X, is a generic point
of the dual P.V. By the inner product (X,Y) =tr!XY for X,Ye
M@2n,3), we may identify this P.V. with its dual. By (2) in Proposition
9 in §1, we have {(dp(d, A, B)X,, grad log f(X,))> = dx(d, 4, B) = 4d for any
(d,A,B)eg. This condition completely characterizes gradlog f(X,) since
{dp(d, A, B)X,|(d, A, B) ¢ g} = M(2n, 3).

From (5.18), we have

00
(5.19) grad log f(X,) = <0 2 0“ 0) .
00 |0 2

Since the rank of this 2n x 3 matrix is 2, it cannot be a generic
point and hence the Hessian of f(X) is identically zero.

PRrROPOSITION 19. A triplet (GL(1) x Sp(n) X SO(m), 1 ® 4, ® 4,, V(1)
® V(2n) ® V(m)) is not a P.V. for 2n=m = 4. A triplet (GL() x Sp(n)
X SO0B), 1RARA, VA QR V(2r) QV(A)) s a P.V. and there exists a
relative invariant of degree 4. However it is not o regular P.V.

an (GLA) x Sp(n), 3 @ 4, VIO @ V((n — 1D2n + 1))  (r=3)

Let V' = {XeM2n)|'X = —X} and p'(9)X = sAX’A for g = (s,4) ¢
GLQA) x Sp(n). Then
J _( 0 & 744

0
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and its complement V can be identified with V((n — 1)@n + 1)) (see
Example 25 in §1). Then p = [J ® 4, is the restriction of p’ to V. Since
tAJA =J for AeSp(n), we have (o(g9)X)J = sAX'AJ = sAXJA™' and
hence eigen-values of XJ are invariant under the action of g = (1,4) e
GL@1) x Sp(n). Therefore if n = 3, it cannot be a P.V. Note that the
trace, i.e., the sum of eigen-values, of skew-symmetric matrices is zero.

PRrROPOSITION 20. A triplet

(GL(1) X Sp(n), O ® 4,, V) ® V((rn — D2n + 1))

18 not a P.V. for n = 3.

(18)  (GL(1) x Sp(m) X Sp(m), 1 ® 4, ® 4,, V(1) ® V(2n) ® V(2m))
mz=mz=2)

Let V be the totality of 2m X 2m skew-symmetric matrices, i.e., V =
{XeM@m)|'X = —X}. Define the action pﬂ of G = GL(1) x Sp(m) on
V by pﬂ(g)X — tAX'A where X eV and g = (¢, A) ¢ GL(1) x Sp(m). Note
that pﬁ is not irreducible. By Proposition 13 in §2, our triplet is a
if andAonly if a triplet (G, p,—_|, V) is a P.V. As a representation space
of G, V decomposes to the direct sum V = VA V((im — DR2m + 1))
where V(1) is a one-dimensional vector space spanned by

0 |1,
J = — 1,
< _I m 0 >
and the action of p on V((m — D@m + 1)) is equivalent to a triplet
(GLQ) X Sp(m), O ® 4, VA) ® V((m — 1)(2m + 1))) (See (17)). The pro-
jection of V into V((m — 1)(@m + 1)) is clearly surjective and G-equi-
variant. By Proposition 20, a triplet (GL(1) X Sp(m), 0 ® 4, V(1) ®

V(m — 1)@m + 1))) is not a P.V. for m = 3, by Lemma 5 in §2. Assume
that a triplet (G, pﬂ, V)isa P.V. for m =2 and let X, = (2, 2) eV =
V) @ V(5B) be its Eeneric point. Then 2z, is a generic point of a triplet
(GL() X Sp(2), O ® 4, VA ® V(5)) = (GL) x SO(B), 1 ® 4, V) ® V(5))
and the isotropy subgroup at z, is isomorphic to SO®4) x {41} by Pro-
position 23. Since the action of SO4) X {£1} on #, is given by , — +2x,,
X, = (2, x,) can not be generic point. This is a contradiction and hence
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a triplet (G,p—,V) is not a P.V. for m =2, i.e., our triplet is not a

PVv..

PROPOSITION 21. A triplet (GL(1) X Sp(n) X Sp(m), (1 ® 4, ® 4,, V(1)
X V2r)®V(E@m)) (n=m =2) is not a P.V.

(19) (GL(1) X Sp(3), O ® 4;, V(1) ® V(14))

First we consider (GL(6), 4, V(20)) (See (7)). If we restrict 4, to
the subgroup GL(1) X Sp(3) of GL(6), V(20) decomposes into a direct
sum V(20) = V(6) @ V(14) since the restriction of weights {2, + 2; + 2,|1
<t <7 <k<6} of GL(6) decomposes into {+2;|t =1,2,8} U {4 + 2+ 2,
+2, £4, £4}. The action p of GL(1) X Sp(3) on V(14) is [0 ® 4,. Note
that the same notation /4, is used for GL(6) and Sp(38). Every element
of V(20) can be written uniquely in the form z = >3, ;. @0 A u; A\ Uy
with (x;;;) forming an alternating tensor of rank three with coefficients
in C. Moreover the element x is contained in V(14) if and only if x,,
+ X5 + X = 0 for 1 <4 < 6. Let g be the Lie algebra of GL(1) X Sp(3).

(d + a, 427 Q3 b, by b )
0y  d+a, Q3 b, b, by
(5.20) g =44 = a3 Ay d+a;| by b bs e gl(6)
G Crz €y |d—a — iy — Oy
Cr2 C, Ca3 —a, d-—a, — 3,
L Cun Ca3 Cs — 3 —Qy  d— asJ

We shall calculate the isotropy subalgebra gy, at X, = u; A u, A u,
+ ug A us A\ ug. Since dp(A)X, = Bd + a, + a, + au, A u, A\ u; + (3d —
U — @y — @) Uy /\ Uy N U + Dyt AN Uy AN U+ DUy A Uy AN Uy + DUy A Uy N\ Uy
+ ety N Uy N\ Uy + Gy N\ Uy AN Uy N CUy N Uy N U+ (G — Dpttg) A (U A
Uy — Uy N\ Ug) + (Coglhy — Dogtty) A\ Uy N\ Uy — Uy N\ Ug) + (C51y — bygtty) A (uy A
Uy — u, A\ 1), we have

gx, = {A e g|dp(4)X, = 0}
={Adegld=a, + a, + a, = 0,(b;;) = (¢;;) = 0}

-{s=3)

Since dim gy, = 8 = dim GL(1) X Sp(3) — dim V(14), it is a regular P.V.
by Proposition 25 in §4. Similarly, for Xj = u; A u, A us + us A\ (U, A

de §I(3)} = 3[(3) .
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Uy — U, A\ Uy), we have dp(4)X; = {Bd + au; + csugt N (U N Uy — Uy A Up)
— (@ + a)uy + cpud N (U N\ Uy — Uy A\ %) — {(Qos + @3y + Costts} N (Us A
Uy — Uy N\ W) + (Colhg — 20,5u5) N Uy N Uy — (€ 4 205,Us) N\ Uy N\ Uy — 2C1505 N
Uy N\ Uy + (by + 200U, A uy N\ Uy + Bd + a, + a, — adu, A\ u, A\ 4, and hence
ax; = {A e gldp(A)X; = 0} is given by

(—2d + a 0 Q5 bl blz bla ]
(5'21) 0 '—‘2d — a23 blg bZ b23
— Oy — O3 —2d by by —2b,,
8x; = A=
4d — « 0 [22%
0 0 4d + « Oy
L — Q3 — Oy 4d
= (gl(1) @ 50(3)) @ u(5)

where 1u(5) is the Lie algebra of a 5-dimensional vector group. Since
dim {dp(A)X[| A e g} = 13, the orbit of X; is of codimension 1. For
Aegxé, the trace try A in V =V14) is 14 x 3d = 42d and the trace
trad gy, A of the adjoint representation is —30d, and hence we have

try A +tradA4
tr, A

_ 42d — 30d
42d

deg f = dim V X 14 =4

by Proposition 15 in §4, where f(x) is an irreducible relative invariant
polynomial. This shows that the restriction of the relative invariant of
degree 4 of (GL(6), 4;, V(20)) is still irreducible, and it is the relative

invariant of (GL(1) X Sp(3), 0 ® 4, V(1) ® V(14)).

Put
Lz Tz i L6 Tus  Tun
X =T Ty Tigs and Y =%y T Lin -
Leaz  Tygs  Lyge Lasg  Luzs  Lap3

Since Z;, + X5 + T = 0, X and Y are symmetric matrices. We denote
by X,; the matrix obtained from X by crossing out its ¢-th line and j-th
column. Put z, = x,,; and y, = %, Then the relative invariant f(x)
for o =2 @;u; A u; A u,eV(@14) is given by f(x) = (vy, — tr XY)* +
4z,det Y + 4y,det X — 4 3, ; det (X;;)-det (Y;,) (See (7)). This space was
investigated in detail by J. Igusa (See [2]).

PRrOPOSITION 22. A triplet (GL(1) x Sp3), 1 ® 4,, V(1) ® V(14)) is a
regular P.V. and its generic isotropy subgroup is locally isomorphic to
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SL(3). The relative invariant is of degree 4.

(20) (SO X GL(m), 4, ® 4, V(n) ® V(m)) (n =3, g

v

m

v

1).

The special orthogonal group SO(n) is defined by
SOmn) = {9 e SL(n)|'9Kg = K}

for some symmetric » X n non-singular matrix K. Since we consider
them over the algebraically closed field C, we may assume that K = I,,,
i.e., the identity matrix of size n. We identify V = V(n) ® V(m) with
n X m matrices M(n,m). Then the action p = 4, ® 4, is given by p(9)X
= 9,X'g, for g = (9,, 9,) ¢ SO(n) X GL(m). We shall calculate the isotropy
subgroup Gy, at X, = %I,0)e M(n,m). An element of SO(n) can be
written as follows.

A, A,

(G.22) A= (A3 i+

) where A,eM(m), A, tA,e M(m,n — m),

A,eM(n —m), and ‘AA =1,, detA =1. Then for g = (4,B) e SO(n)
X GL(m), we have

N i ) R

and hence the isotropy subgroup Gy, is given by Gy, = {(4, B) e SO(n) X
GL(m)|A)B =1,,AB = 0}. The equation A,'B =1,, A,B =0 implies

that A, = (A/B)B~' =0 and B = ‘A% Since (“(‘)l ‘22) is in SOm) if

4

and only if detA,.-detd,=1, ‘44, =1,, ‘A4, =0 (i.e. 4,=0) and
tAA, =1,_,, we have

G —_ f_l_i (tA-1
a= {57 ean)

= SO(m) x SO(n — m) x {£1} .

A, eO(m),A, e On — m),det A,-det A, = 1}

Since dim G,, = Im(m + 1) + {(n — m)(n — m + 1) = In(n + 1) + m?
— nm = dim SO(n) X GL(m) — dim V, it is a regular P.V. by Proposition
25 in §4. The relative invariant f(X) is given by f(X) = det (XX).
In general, f(X) = det (XKX) if SO(n) is given by {g e SL(n)|‘'9Kg = K}
since f(AX'B) = det (B'X*AKAX'B) = det (B:XKX'!B) = (det B)?. f(X) for
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(4,B) e SO(n) X GL(m). Any rational character y of SO() X GL(m) is
of the form yx(g) = (det B)* for some /¢ Z where g = (4, B) e SO(n) X
GL(m). Since yls, =1 if and only if £ is even, any relative invariant

"is of the form ¢-f(X)" (re Z,ceC*) by Proposition 19 in §4 and hence
F(X) = det CXKX) is irreducible.

PROPOSITION 23. A triplet (SO(n) X GL(m), A4, ® 4,, V(n) ® V(m)) with

n=3, g =m=1, is a regulor P.V. and its generic isotropy subgroup

18 isomorphic to SO(m) X SOn — m) X {£1}. The relative invariant is
of degree 2m.

Note that Proposition 23 holds even if n = m > g- although in this
case, it is not reduced.

2D (GL(M) X SO(m) X Sp(m), O Q@ 4 ® 4, VI ® V(n) ® V(2m))
(n>2m =4

By Proposition 14 in §2, it is a P.V. if and only if a triplet
(GL() x Sp(m), 1 ®24,,VA) ® V(m@2m + 1))) is a P.V. Since 24, is the
adjoint representation of Sp(m) and rank Sp(m) =2 (m =2), it is not a
P.V. by Proposition 2.

PROPOSITION 24. A #riplet (GL(1) X SOn) X Sp(m), 1 ® 4, ® 4,, V(1)
® V(n) ® V(2m)) is not a P.V.

A short outline of the theory of the spin representation necessary
for the following exposition will be presented below.

Let V be a vector space over the complex number field C of even
dimension n = 2m. Let @ be a non-degenerate quadratic form on V,
and let B(z,y) be the associated bilinear form, i.e., B(x,y) = Q + %)
— Q@) — Q) for z,yeV.

Then there exists a basis {e, -, enSf1 - s Sfn} of V satisfying
B(e;, e;) = B(fi,fy) =0, Ble;, f;) = d;; and we have

QS e+ Futs) = 3o

for any x;,y;eC. Let B, be the bilinear form on V X V defined by
(5.24) By (3l wees + 2 US4 2o w6 + 20 YD) = 2L 4y, .
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Note that Bz, 2) = Q(x) for ze V.
k

Let T(V) =33, V® - @V be the tensor algebra over V, and let

I, be the two-sided ideal of T(V) generated by the subset {x ® z — Q(x)-

1|z e V}. Then the quotient algebra C(Q) = T(V)/I, is called the Clifford
2k

algebra. Put T*(V) =27, V® --- ®V and let ¢: T(V) — C(Q) be the
canonical map from 7(V) onto C(Q). The image o(T*(V)) of T*(V) is
called the even Clifford algebra and denoted by C*(Q). It is known that
CQ) = M@2™,C) and C*(Q) = M(@2™1,C)® M(©2™1,C). The orthogonal
group O(Q, V)w,r,t, @ and the special orthogonal group SO(Q, V)w,r,t, Q
are defined as follows.

0@, V) = {ge GL(V)|Q(gxr) = Q(x) for any x e V}
SO0Q, V) = 0@, V) N SL(V)

We shall also define the Clifford group I'(Q) and the even Clifford
group I'*(Q) as follows.

IrQ) ={seC@]|3,sVstC V}
'@ =rm®nc«

Let y be the representation of I'(Q) on V defined by y(s)v = svs™* for
sel'Q and xzeV. Since Q(s)v) = (svs™)? = sv’™! = sQ(@)s™ = Q©),
we have x(s) € O(Q, V). This y is called the vector representation of I'(Q).

Let « be the anti-automorphism of T'(V) defined by a(v, & -+ @ vy)
=0, ® -+ ®v. As ally) CI,, « induces the anti-automorphism on C(Q),
which is also denoted by «. Note that « fixes an element of V and
hence svs™ = a(svs™?) = a(s) 'a(W)a(s) = a(s)wa(s) for sel'(Q), veV.
This implies that «(s)sv = va(s)s and hence «(s)s is an element of the
center C of C(Q). Since s is invertible, we have a(s)se C*. We shall
define the spin group Spin (@) as Spin (Q) = {se I''(Q)|a(s)s = 1}. It is
connected, simply connected and semisimple. Moreover if n # 4, then
it is simple. It is well-known that the following exact sequence (5.27)
holds.

(5.25)

(5.26)

(.27 1—>{+1} —> Spin(Q) ——> SOQ,V) —>1  (exact) .

Now we shall construct the half-spin representation of the spin group
Spin(Q). Let AV) = > 2., A%(V) be the exterior algebra of V. For each
xeV, let p(x) be an element of End (4A(V)) defined by p®)2 = (L, +
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0.)A(A € A(V)) where LA = x /\ 2 and

3
(00 N\ oo Awy) = Zl (=1)'Byx, v)v, A+ ANvig A Vg1 A\ o A0y

One can easily check that p(x)? = Q(x)-1, and hence the representation
of V on A(V) can be extended to that of the Clifford algebra C(Q) on
AV). Put f=fiN--- ANfn and M = AV) A f. Then one can check
that M is a p-invariant subspace of A(V).

Let F be the subspace of V generated by {e, ---,e,}. Then the
map ¢: AE) - M defined by ¢(n) = g A f for pe A(E), is clearly a linear
isomorphism. We identify A(E) with M by this map, and hence we
obtain the representation p of C(Q) on A(E). The subspaces A*(E) =
>k even A¥(E) and A~ (E) = 4. aa A¥(E) of A(E) are the irreducible repre-
sentation spaces with respect to the restriction of p to the spin group
Spin (Q). This representation of Spin (Q) on A*(E) (resp. A~ (E)) is called
the even (resp. odd) half-spin representation.

These two half-spin representations are inequivalent, however, they
are transformed to each other by the outer automorphism of Spin (Q).
Therefore we shall consider only the even half-spin representation of
Spin (Q).

Now we shall calculate the infinitesimal representation dp of the
half-spin representation.

Let E,; be the matrix unit of degree m (1 <4,7 <m) and put E;
= E;; — E,;;. Then an element A of the Lie algebra g = o(2m, C) of the
spin group Spin (Q) can be written as follows (See §1).

- £,
e gully 5) gl

(5.28) - " 00
‘ 0 0) n (E 0 )
1 a; .
+ z;*jcj(E;j o) T2y _g,

By the definition the product in C(Q) is given by e;f; + fi.e; =1, € = f?
=0,ef; = —f,e,e00; = —eze; and fif ;= —f;f; G #4,4,7=1,.-.,m).
We shall consider an element s =1 + te,f; (teC, i+ 7) of C(Q). Then
a(s) =1 + tf,e; and hence a(s)s =1 i.e. s7' = a(s). Since y(s)e, = se;s™
= (1 + te.fe.(L + tf,e;), we have y(s)e, = ¢, for any k+7 and yx(s)e;
=e; + te;. Also we have y(s)f, = fi for any k +# ¢ and y(8)f; = f; — tf;.
This implies that s =1 + te,f; € Spin(Q) and
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1 + te,f;) = exp t<E0” _?E )e S0@, V).

Jji
Similarly we have the following relations.

D+ tefy =expt(T O Yes0@,v) .

Jji

2) 1L+ tee) = expt(] T)e50@Q V) (<.

3 xl+tr) =expt( ) 0)eS0Q,V) (<.

E, 0
1E o
. t
1) x(«/Tekfk + ijkek)= . € 50@Q, V).
T
| 1)

Since y is an isomorphism in a neighborhood of the identity, we have

B, 0 1 E, 0
s g Jr=tim g (eleo (G ) - o)
o g ) imlelee iy g ) — oD

= lim %(p(l +teufy) — p() = pleo(f) = ed; 2

for i # 7,2 A (E) .

Similarly we have

1) dp(Ms O V1= ptepp(s )i = e

—E,,
2) dp<g Eoff)z = pledo(e)d = e, A e, A 2
, 0 0 _
3) dp( D OVa = (DS 2 = 8,0,
k m+k

N

9 P )= pledetsor — 12

and hence for an element A in (5.28) of 30(2m), we have the following
(5.29).
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(5.29) dp(A)d = X a0, 4 + 3 aied;, — DA+ X beed+ X ed i A
1#] i=1 1<j i<j

Next we shall consider the case when the dimension % of V is odd, i.e.,
n=2m 4 1. Let Q be a nondegenerate quadratic form on V, and let
B(xz,y) be the associated bilinear form. Let V, denote the subspace of
V' generated by e, ---,enf1, -+, fn satisfying B(e,e,;) = B(f,,f) =0
and B(e;,f;) = d;;. Then the subspace of V orthogonal to V, is of the
form Cwv, for some v, in V satisfying Q(v,) 0. We may assume that
Q(v,) = 1. Now consider a vector space V, of dimension » + 1 and re-
present it as V, =V 4+ Cv,. Let @, be the quadratic form on V, defined
by Q(V + v) = Q@) — 2 for veV, 2¢C, and let B,(x,y) be the as-
sociated bilinear form of @,. Then, if we put e,, = i(v, 4+ v;) and
Jme1 = 5(v, — v,), we have Bi(e, e;) = B\(f, ;) = 0 and B(e,;, f;) = d;; for
1<4,7<m+ 1. Let Spin(Q,) be the spin group of (V,Q), and let x
be its vector representation. Then the spin group Spin(Q) is defined by
Spin(Q) = {s € Spin(Q,) | x(s)v, = v;}. By restricting the half-spin repre-
sentation of Spin(Q,) to Spin(Q), we obtain the spin representation of
Spin(Q) (See [2], [3]).

In the following, we denote the spin group by Spin(n) instead of
Spin(Q), and denote the element e, A .-+ A e;, of A*(E) by e;, --- ;.

22)  (Spin(7T) X GL(d), spin rep. ® A, V(8) @ V(d)) 1<d<4d

First of all, we shall calculate the half-spin representation dp, of
o8, C)(=D,). The representation space V(8) is spanned by 1, e;e;, e,6,6¢,
1<i1<j7j<4). We may assume that an element A of o(8,C) is of the
form (5.28). Then by (5.29) we can calculate dp,. For example
dp,(A)ee, = 3101018, — D ins Oy + 3@, + a, — a; — a)ee, + byeseee,
+ 0125f15f23132 = — 056,65 — 0,68, + Upee; + 068, + 20, + 6, — a3 — aee,
+ bye.eee, — c,. Hence we have

N T
[ Ay | —cu| —cu| —€u] O | ol —Cul €x) (%)
bn| A, Qa3 Uy| —Co| 0 | —0y| ay]|l2,
by Gy | A, Q34 Coy Ay 0 | —ay||m

b Wy O3 Al —Cy| — Oy Uy 0 Ly
0 by| — 03 bos| —A | —byp| —byy| —by | |25}

(5.30)  dp(A)w =

—by, 0 Oy | — Oy Ciz| —Ay| — Qg | —ay | | T
bo| —y 0 Y23 Cig| — Q| —Ag| —ay | | 27
L — b Qg | — Uy 0 Cro| — Qg | — Qg | — A, J L %s
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where x = x, + 2,6, + Z:€.65 + 2,616, + T:€,€,€,8, — Te€:8, + 6,6, — L3046,

A1=_a1+a2+a/3+a4, A2=a1+az—'a3—a4
2 2 ’
A3=a1—a2+a3——a4 A4=a1—az—as+a4
2 ’ 2 '

Since dp,(A) in (5.30) is the same form as in (5.28), dp,(4) € o(8,C) and
it leaves the quadratic form q(x) = xx; + %25 + %2, + x,2; invariant
(See Example 28 in §1).

Put v, = 40001000 — 1) ¢ C®. Then the Lie algebra o(7, C) of Spin(7)
is given by o(7,C) = {4 €0o(8,C)|Av, = 0} and hence an element A of
o(8, C) of the form (5.28) is in o(7,C) if and only if

Av, = Y@y — Digy Qg — Dy Qgy — Dy @y Cop + Gy Cop + Gy Coy + Qg 0) = 0.

Thus the spin representation dp, of o(7,C) is given as follows.

p , .
Al| —ep| —e| —cu 0 C3y| —Cyy Co | ()
b1 A V2% bu| —Cy 0 | —Dby Qs | | X2

V4
bis| s A; b, Cay by, 0 | —ay ||o

biy| —Co| —Cy Af| —Cy| —ay (427 0 Xy
0 b34 - bzd bzs '—A; - b12 - b13 - b14 Ly
—by 0 | —cy|—ay Cp| —A3| —a, Cos | | X
by ¢y O Qyy Cig| — Oy | — A Cy | | 7
L —by|  Qy | —0y 0 Cr| —by | —by | —Aj ) Lxs

(5.3)  do(A)z =

where 2« = @, + 2,6,6, + X:0,6; + X,0,6, + 14€,6,€,6, — 4.8, + L:€,, — L4€,,,

A{:—a1+a2+a3, A;:a1+a2—as’ lélgzc’q—az_'*"asw and
2 2
a; — Ay, — Q.
A=Y 2 5
2

I) The case of d = 1.
Put X, =1 + ee.e;e, = 4(10001000) € V(8). We shall calculate the iso-
isotropy subalgebra gy, of g = gl(1) @ o(7,C) at X,. Since

¢
ax, + dpl(A)Xo = (d - —a—/l—i-’(;‘i'ﬂ’ bi; — €4y by + Copp Dy — Cyy

d + _a‘_l__!__(;ia_% iz — bgyy Gy + Dasy Cuu — b23)

for (d, A) e g, the isotropy subalgebra gy, at X, is given as follows.
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(5.32) o, 0y Qg by 0 b, by
y Ay Oy by|—by O [
(/2SI ¢ ZY S ! 7 by | —by; —by O

—b b, —b 0 |—b, —b, —b
Gr, = 14 = 23 13 12 14 24 34 0y + @, + @ = O}
0 by —by by —0 —y —ay by

—b, 0 by —Dby| —a, —a, —a; —by
by by 0 by|—ay —ay —a, by,
—by by —by, 0 | —by —by —by O

—
-

N
£

oS s &
-

Since dim gy, = 14 = dim GL(1) X Spin (7) — dim V(®), it is a P.V.
Let S be the element of GL(8) defined by

0 1 0 —3 0 |0|L] O
5.33 S-! ! 1 S 1 14]0) 0 GL(8)
(5. = N =] (<] N
( ) Lio| 0 0 0 (0|0]~—1,
0/—I, 0 | —1/4l0] o
Then we have
0 0 0 0 A
0 0 _‘2b23 2b13 '—2b12 2b14 2b24 2634
by Oy (V27 Q3 0 —b, —by
S-1AS = 0 Do sy [¢23 (L2%) by 0 —bys
(5.34) Dy O3y Q3 22 by, by 0
—by 0 —by, by | —0,  —ay —ay
0 by b, 0 —by | —a, —a, —ay
L —biz| — by b, 0 |—a; —ay, —a, )

with a, + a, + ¢, =0 .

By (1.8) in Example 30 in §1, this is an element of (g) i.e. gy, = (g,
and hence it is a regular P.V. by Proposition 25 in §4. The relative
invariant is the quadratic form q¢(x). J. Igusa completed the orbital
decomposition of this triplet (See [2]).

PROPOSITION 25. A triplet (GL(1) X Spin (7), (1 ®spin rep., V) ®
V() is a regular P.V. and its generic isotropy subgroup is locally iso-
morphic to (Gy). The relative tnvariant is o quadratic form.

II) The case of d = 2.

We identify V = V(8) ® V(2) with 8 X 2 matrices M(8,2). Put X,

= t((l)ggg(l)gg?)) eV. We shall calculate the isotropy subalgebra gy, of

https://doi.org/10.1017/5S0027763000017633 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000017633

PREHOMOGENEOUS VECTOR SPACES 117

g=0(7,C)®gl(2) at X,. From (5.31), we have

¢
dy— BT BT DB b b b
doy(A)X, + XD = ( 1 2 12 O 14
dy —C3 Cy —Cy
dy, —by by —by
dy, + Bl Tl B s (;2 + 4 Ciz Cy3 Cyy eV,

where A eo(7,C) and D = (d;;) €gl(2). Hence the isotropy subalgebra
gx, 18 given by

( 2“13 + Ao O

- 0o |0 o3 O
(5.35) g"““l Zoal, — 4,10 | \0  —3a

Ay e 3((3)

0

= 3l(3) D o(2) .

Since dim gy, = 9 = dim Spin (14) X GL2) —dim V() ® V(2), it is a
regular P.V. by Proposition 25 in §4. Since Spin (7) = SOB) by the
spin representation, there exists an irreducible relative invariant of
degree 4 by Proposition 23.

PROPOSITION 26. A triplet (Spin (7) X GL(2), spin rep. ® 4;, V() ®
V(2)) is a regular P.V. and its generic isotropy subgroup is locally iso-
morphic to SL(3) X O2). The relative invariant is of degree 4.

III) The case of d = 3.
We identify V = V(8) ® V(8) with 8 x 8 matrices M(8,3), and put

/10000000
X, = {00001000}c V. Then from (5.31), we have
01000100

dpl(A)Xo + XD

¢ Al +dy | by + dy by by,
= ( ds, —Cy + dy Cay —Cy3
(5.36) Cy — Cip + dy l Af + dyy |y + by | —Cy — 0y
( dy d; — by bu —byy
—Al+ dy  cp+ dy Ci3 Cuy ) eV.
by — by + dy| dyy— A% | Clu — Gy |Gy — by,

Hence the isotropy subalgebra gy, = {(4,D)|dp,(A)X, + XD = 0} of
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g =0(7,C) D gl(8) at X, is given as follows.

(56.37) a, Oy 0 0 by, \
a’ZI a’2 - blg 0
a —b 0 —b
0 cs 012 0 ; 012 4 | 0 |—by
12 12
8x, = 5 0 @ 0 |—as] —ep |-
Ciy 0 —Q; 0y 2¢,,12b,| 0
—cp, 9 —Qp —
0 —ec —a, —c
0 12 0 3 12
Cys 0 | by 0

= 3[(2) @ o(3) .

Since dim gy, = 6 = dim Spin (7) X GL(3) — dim V(8) ® V(8), it is a regular
P.V. by Proposition 25 in §4. Since Spin (7) = SO(8) by the spin
representation, there exists an irreducible relative invariant polynomial
of degree 6 by Proposition 23.

with a, + a, = a,

PROPOSITION 27. A triplet (Spin (7) X GL(3), spin rep. @ 4,, V() ®
V(3) is a regular P.V. and its generic isotropy subgroup is locally iso-
morphic to SL(2) x OB). The relative invariant is of degree 6.

IV) The case of d = 4.

Assume that this triplet is a P.V. and let H be a generic isotropy
subgroup. Then we have dim H = dim Spin (7) X GL(#4) — dim V(8) ®
V({4) = 5. Since Spin (7) = SOR) by the spin representation, we may
consider that this P.V. is contained in a regular P.V. (SO®) x GL(4),
4,0 4, V(8 ® V(4)) and hence by Proposition 23 we have H = Spin (7)
X GL(4) N SO4) x SO4) x {£1} D SO4) (See (20) in§ 5). This implies
that dim H = dim SO4) = 6, i.e., a contradiction, and hence we obtain
the following proposition.

PROPOSITION 28. A triplet (Spin (7) X GL(4), spin rep. ® 4,, V(&) ®
V(4)) is not @ P.V.

(23) (Spin (7) X GL(2), spin rep. ® 24,, V@ QK V(3)) .

Assume that this triplet is a P.V., and let H be its generic isotropy
subgroup. Then we have dim H = dim Spin (7) X GL(2) — dim V() ®
V(3) = 1. Since (SL(Q), 24,, V(3)) = (SO®B), 4, V(3)), we may consider
that this triplet is contained in (Spin (7) X GL(3), spin rep. ® 4,, V) &®
V(3)) and hence by Proposition 27, H° = SL(2) x 0(3) N Spin (7) x SOB)
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D SO(3) where H° denotes the connected component of H. This implies
that dim H = dim SO(3) = 3 i.e. a contradiction, and hence we obtain the
following proposition.

PROPOSITION 29. A triplet (Spin (7) X GL(2), spin rep. & 24,, V(8)
® V(@) is not a P.V.

(24) (GLQ) X Spin (1) X Sp (2), O spin rep. @ 4, VA ® V(@) ® V(4))

We may consider that this triplet is contained in a triplet (Spin (7)
X GL(4), spin rep. ® 4,, V(8) ® V(4)) which is not a P.V. by Proposition
28, and hence it is not a P.V.

PROPOSITION 30. A triplet (GL(Q) x Spin (7) X Sp (2), O ® spin rep.
R4, VO ®VE® ® V(@) is not a P.V.

(25) (Spin (10) X GL(d), half-spin rep. @ 4, VA6)Q V() (A<d<3)

First of all, we shall calculate the half-spin representation dp, of
0(10,C) by (5.29). The representation space V(16) is spanned by 1,
ee; 1<i<j<h), eeee, 1<i<j<k<¢<5). We may assume
that an element A in 0(10,C) is of the form (5.28). Then by (5.29) we
have

1) dpl(A).lz_a1+a2+¢;3+a4+a5 —{—;b
1<j

17616

o, + a a
2) dp,(Adee, = 3, €8, — D A8, + —E_——Leye, — 2, —S-eue
i%k i%e 2 s#Ek,e 2

+ ; b;je.e ene, — iy (B < 0)
1<J

3) dp(A)eieene, = U5 €:€8ney — (3y€:€1€0 €0 + Ugpn€€1€,€n — U, €s€1€,Ex,
a, +a,+a, +a, —a
+
2
— Cim€in + Cin€i€m — Cmnére, Where 1 < k< /4<m<n<5 and
{s,k,¢,m,n} ={1,.-.,5}.
Hence we have

£ €1€0€m€yn — Crifm€n + Crm€i€n — Cxn€i€n

Zy
Q| &,
dpl(A)x = (—— —)
a; | Ay
16
where «,, - --,«, are given as follows.
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(5.38)

where

24,
24,
24,
24,
24,
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Al —cp| —c| —cy
bi| Ayl | ay
biy| @yn| Ayl Gy
@ = bu| | ay A,
bis| Q| Q| Qg
by | —y |  Qy
by | —ay Ay
by | — a5
—Cy| —Cy| —Cy
—Cy
— Oy | — Oy Cas
o, = Ay, — Q5| —Cy3
Q| @y
—Qyy | — 0y —Cy
Qy3 —Uy|  Cy
Qpz| Oy
b34 —Qy 5
by — Qg
by — 05
@, = by | —bus| by
bys | —bus
by — by
bis | —bys
Ayl G| =0y | —
Q| Ayp| g
—Q5| Q| Ay
@, = b, A,
by, s
biy | —
b15 ’—bu b13 2273
by | —bas| Doy | —ay
=0 — A — Q3 — @ — Oy,
O — Q + O3 — 0 — Q5 ,
O — Oy — O3 — Gy + 0y,
-0+ 0 — 0+ QO — O,
-0y, — a, + Q;+ a, — O,

—Cys

24,
24,
24,
24,
24,,

— Cy3
—0y3
Q2

—Cy
- al4

Q2

- 045

—Cyy

— Qg
_b13

— Cys
— 0y

=a + a, —a, —

=0, — 0 — 0 +
= —0, + Q + a4

=—0; + a, — a,

=—0, —Q,+ q;

Ay — Oy,
Qy — 5,
_a4"d5,
—a4+a5’
— 0y + a5,
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24, = —a, —a, —a; + a, + a5, 24, =a, +a, + a; + a, — a;,

2A, =0, + 0, + a3 — a, + a4, 2Ay =0, + a, — a3 + a, + a5,

2A, =a, —a, + a; + a, + a5, 24 = —a; + a, + a; + a, + a;,
and

T =2+ X168 + Xie16; + 2,616 + 56,65 + Xelr€; + X1€58, + L3656
T Zg€38, + X10€385 + 1116485 + X12616,€:6, + X136,€,€5€;
+ 214€,€,€,65 + X,56,€:€,65 + X156,€:€,6; .

We identify V(16) with C' by an isomorphisms x — (x,, - - -, &) € C*°.

I) The case of d = 1.

Put X, =1+ eeee, = (10 --- 010000) ¢ V(16). We shall calculate
the isotropy subalgebra gy, of g = gl(1) @ 0(10,C) at X,. From (5.38),
we have aX, + dp,(A)X, = “(a + A, by, — Cyy biz + Coyy b1y — Cy5, by Doy — Cuys
baoy 4 Cigy Oy b3y — Ciay by Dysy @ + Ay, Gy, — g, Gy — ) € V(16) Where (a, A)
€ gl(1) ®0(10). Hence the isotropy subalgebra gx, = {(a, 4)|aX, + dp,(A)X,
= 0} is given as follows.

a, Ay, Qy3 Ay Qg5 0 41 49 44 0
sy y 128 Oy Obgs | — 0 0 B B 0
3 U3, Qs O3y Oy | —0; —f 0 Bs 0
Oy Oy Qg Oy Oy —a3 —f, —f 0 0
@@ 0 0 0 0 2a 0 0 0 0 0
(5.39) oz, = {0 0 B —pB B G| =0 —y —ay —0y 0
- 483 0 A3 —Qy  Cy| —Qp — Wy —Ogp —Qyy 0
B: —a 0 O Cy| —Oyy — Oy —Qy —0y O
—B 0 —a 0 cy|—0y —ay —ay, —a, 0
—Cyy —Cy —Cy —Cy 0 | —Cy —@y —ay —a,; —20

Ia'1+az+a'3+a4:0}

Since dim gy, = 30 = dim (GL(1) X Spin (10)) — dim V(16), this triplet
is a P.V. Since gy, & 3(V), there is no relative invariant by Proposition
20 in §4. From (5.39) we have gy, = (gl(1) @ o(7)) ® V(8) where V(8) is
the Lie algebra of the vector group of dimension eight. This space was
investigated by J. Igusa (See [2]).

PROPOSITION 31. A triplet (GL(1) X Spin (10), O & half-spin rep.,
V1) ® V(16)) is a P.V. and its generic isotropy subgroup is locally iso-
morphic to (GLQ) X Spin (7))-(G,):. There is no relative invariont and
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hence it is not regular.

) The case of d = 2.

We identify V = V(16) ® V(2) with 16 X 2 matrices M(16,2). Then
the action dp of g = 0(10) ® gl(2) is given by dp(A, D)X = dp,(A)X + X‘D
for XeV, (4,D)eg. Put

t LR
Xo= 1 + eeeqe, ee; + eeee) = (10 010000) eV.

000010 --- 01

Then from (5.38), we have

do(A, D)X, = t<dn + Ay | by — €3y | big + Coy | by — o3| Ay + bi| by — €4y
dp; — ¢ QA5 Q35 Qg5 dy + Ay| —cy
by + €1 bas by — ¢y by by
Css O — Cayu| —Cy  |Og + Coy|Qy — Co
dy + Ap sy — Q3 sy dy — am)
iy — Qg | Dy + @y | by — @y | by + @y | dyy + Ay

and hence the isotropy subalgebra gy, = {(4, D)|dp(A, D)X, = 0} is given

as follows.

0 ay 0y dy 0 Uy Ay Qg —dy

(5.40) Ay Oy Uy Gy O |—a;, 0 —ay ay 0

Ay Qg Qg y 0 |—ay a, 0 —ayp 0

Gy Gy Gy @ 0 |—ay —a; a, 0 0

dy, O 0 0 2d, dy O 0 0 0
80 0 —ay, —a; —a, dy 0 —ay —ay —ay —dy

a, 0 @y —Qy 0 | —a, —a, —ay —ay 0

a; —ay 0 Uy 0 | =0y —ay —a; —0y 0

Uy Gy —0y 0 0 |—ay, —a, —ay, —a, 0
—d, 0 0 0 0 |—d, O 0 0 —2d,

d d
@(“ ”)} with a, + a; + @, = 0 .
le —dll

Since dim gy, = 17 = dim Spin (10) X GL(2) — dim V(16) ® V(2), it is a

P.V. Let A be the 10 X 10 matrix in (5.40) and put S in GL(10) as
follows.
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'd 1 l X
BE e
NREE &
G4 St=|—A—7~F—— R S=1{1
-1 1 S I
— 1 1
L 1 2 I
L I3 J L *
where I, is the identity matrix of size three. Then by simple calculation,
we have
2d,, 0 2d,,
0 —“2d11 —2d12 0
dlZ —"d21 0
(5.42) 0 | —20,, —2a,,|—20,| —20,| — 20, — 20,
S-14AS = —Qy | A Q3 oy 0 |—ay g
— 0y | Ay Q3 A3g | Oy 0 |—a,
0 _—a’41 a42 a’43 a4 —a/13 alZ ) 0
—u| 0 | ay |—0y |—0Q |—Op |—0y
— Oy | — Oy 0 gy |— 0Oz |— O3 |— Oy
”_al'i a’31 -_a21 O —a24 ——a’34 _—a’4

with a, + a, + a, = 0.
Therefore we have gy, = (g,) ®3l(2) (See (1.8) in §1), and hence this
triplet is regular by Proposition 25 in §4. Put

¢
Xo = (1 + eeeey €0, + e,000.8) = (10 - 010000) eV.

Then from (5.38), we have

by — €y + dyy
A, 4 dy

by + €y

Cys — Uy

bis + €y
U3y

b1y — Cy3| by

0/52

by

— Cy3
dy — ay )
s + Ay

and hence the isotropy subalgebra gx; at X{ is given as follows.

A d
dmmm+mm=(‘+“

dy — ¢y

L2
by

— O — Cyy

byy — 15| bgs

— 03 — Cy Cay
A, +dy

by — a5 + dy

l b23 — Cy

—Cys
Q54
bys + @y

- u’bS (2D

by — Q3| @y
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d,+d,l 0 0 0 [2¢,| 0 2¢,, 0 0 0
Ay —2dy 0y Gy | Qs |—2C54 0 Ciy (—C13 0
(5.43) —Cy 0 Q3 Qg | Qs 0 —Cyy 0 Ci2 0
Cas 0 Qg3 Ay | Qg 0 Ci3 |—Cr2 0 0
{ —Cyy 0 0 0 |2d,| O 0 0 0 0
Ox; =
0 Cyz Ci3 Ciy | Cy |—dy — dyy|—0y Cys |—Csp C3y
— € 0 0 0 0 0 2d,, 0 0 0
—Cy3 0 0 C3y | C3; 0 — 3 |— Q3 |—0yg 0
—Cy 0 |—cy 0 Cy5 0 — Oy |—0Q3q |— 0Oy 0
—Cy5 0 |—cg |—Cy | O ;—2612 |— Qs | — Qs |—Oys —2d,,
@ (du “’34)} With a; + a, = dp — dy
Ci2 22

Since dimg — dim gy; = 49 — 18 = 31, the orbit of X} is of codimen-
sion one. For (4,D)e gy, the trace tr, (4,D) in V is 16(d,; + d,) and
the trace tradgyA of the adjoint representation is by simple calculation
—14(d,, + d,) and hence

16(d,, + dy) — 14(dyy + dyy)

X 32 =4
16(d,, + dy)

deg f =

by Proposition 15 in §4. The explicit form of this irreducible relative
invariant f(x) of degree 4 is given by Kawahara (See [13]).

PROPOSITION 32. A triplet (Spin (10) X GL(2), half-spin rep. & 4,
VA6)® V(2) is a regular P.V. and its generic isotropy subgroup 1is
locally isomorphic to (G,) X SL(2). The relative invariant is a quartic
form.

IIT) The case of d = 3.

We identify V = V(16) ® V(3) with 16 x 3 matrices M(16,3). Then the
action dp of g = 0(10) @ gl(3) is given by dp(4, D)X = dp,(A)X + X'D for
(A,D)eg, XeM(6,3).

Put

Xy = (1 + eeee, ee; + eee.e;,e.e, + ee.6)

£/10 - - - 010000
= (000010 --- 01| e M(16,3) .
010 ---.- 010

We shall calculate the isotropy subalgebra gy, at X,. By (5.38) we have
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do(A, D)X, = dp,(A)X, + XD

PIA) + dy [ Dy — € F dig | by + Cou| by — Cs bis + dy
= |dy — ¢y Qys + dyy Qg5 Ay A, + dy
dy — Cy| Ay + dy Oy — Cyp | Qyy + Ca5| Uy — Ca +
by — Cig| by + Ci Dy by — €12 b bys
—Cys Css Qyy — Cyy| —Cpy | Oy + Cpy| Qg — C3
— Q3 —0Qy — Uy —Cys Ciy —C3
A, + dy gy — Qg3 dys + a5 dy, — ay
sy — Oy Doy + @iy | Dy — Qg | Dgy + Gy + dog | Asg+
bay + Qos A+ gy | by — Gy | by + g A+ dy dyy + @y

and hence the isotropy subalgebra gy, = {(4, D)|dp(A, D)X, = 0} is given
as follows.

-—3012 ‘ 3034
C3y d, —2¢;| —3¢y
(5.4d) Uy Qay Ci2
Qg3 | — Qs —Cpp
{ 2¢,, 2d,,
8x, =
Ciz —C3y
—Cy2 3012 - dn
Csy 0y | — Oy
—Cy —O3 ) Ay
—2d,,
dy —2¢
@ [ —dy 2012] }
Ciz| —Cay
4+ du/2 o« u 2w
= ( o F Z ) o —di 2|l =@ .
O3 —a; — /2 €, —Cy O

Since dim gy, = 6 = dim Spin(10) X GL(B) — dim V(16) ® V(3), it is a P.V.
and by Proposition 25 in §4, it is regular. Put

Xo = (1 + eeee, ee; + ee.e.;,ee + ee + eeee)

IO e 010000
= (000010 --.... 01|eM(16,3) .
010 . - - 01000100

By (5.38), we have
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do(A, D)X} = dp(A)X; + XD

t( A+ dy Dy — €gy + dig | Dys + €y
Q35

O3y — Qg

by — €y
Qyy
Qyy + Cos
by + ¢y
Cas Oz — Cyy
0Oy — Ci5|Qyy + Cy — Uy
A, + dy
d21 — Oy
by + dayy — gy
di, —
Ay + dy

gy — by — 0y

= dy — ¢y Uy + i
dy — Cp — Cy5 | Ay — €45 + dyy

b23 - 014

by + dy,
A5 + dZZ
Uy + Gy — Cyy + dyy
by + dis
O + Co + dys
Ay + dy
iy — G5
Doy — Gy + dyy
by + Ay + dy

bys
—Cyy

— Oy — Oy
by

Gy — Cp

g3 — Cyp

by — €y
—Cys
Qs

Q54
by + ayy
bys + by, + a5,

Q52
Oy, + by,
gy — by

and hence the isotropy subalgebra gy; = {(4, D)|dp(A, D)X] = 0} is given

as follows.
0 0| —a, —a, 0| O B |—a 0 |—a
B+ Bl2d| ay — | B |—as|—fs 0 a, |—2a,| 0
G4 | lol 0 p—pl 0| @ —a | 0 | 0 —p
0 0 0 —2d 0 0 20, 0 0 0
o [0 B 0 2d «| 0 B | o] o
=N 10 2w | a | O 0= pl—a | 0 |—a
0 0 0 —20, | O O —2d 0 0 0
—2a, | 0 0 Bi+ B 0| alay—ea | O 0 =4
—a, 2o3—B — B O 0 a —ps B.— Pl 24| O
0 0 0 0 0} 0 A 0 0 |—2d

adl o] B
@10| —d a,
0| —a,| —d

Since dim Spin(10) X GL(3) — dimgy, = 54 — 7 = 47, the orbit of X is of
codimension one, and the trace try (A,D) on V is 16(d — d — d) = —16d
and the trace adgyi(4,D) of the adjoint representation is 12d. By
Proposition 15 in §4, the degree of the irreducible relative invariant
polynomial f(x) is given by deg f = ((—16d + 12d)/ —16d) X 48 =12. The
orbital decomposition of this space is completed by Kawahara (See [13D).

PROPOSITION 33. A triplet (Spin(10) X GL(3), half-spin rep. ® 4,,
V(16) ® V(3)) is a regular P.V. and its generic isotropy subgroup is locally
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isomorphic to SL(2) x O8). The relative invariant is of degree 12.
(26) (Spin(10) x GL(2), half-spin rep. ® 24,, V(16) ® V(3)) .

Assume that this triplet is a P.V. and let H be its generic isotropy sub-
group. Then we have dim H = dim Spin(10) X GL(2) — dim V(16) ® V(3)
=1. Since we may consider that this triplet is contained in (Spin (10) X
GL(3), half-spin rep. ® 4,, V(16)® V(3)), we have H D Spin(10) X GL(2)
NSLE2) x SOB) D SL2) by (5.44) and hence dim H = dim SL(2) = 3, i.e.,
a contradiction. Thus we obtain the following proposition.

ProroOSITION 34. A triplet (Spin(10) X GL(2), half-spin rep. Q 24,
V(16) ® V(8)) is not a P.V.

@7 (Spin(9) X GI(d), spinrep.® 4, VAO)Q V() (A<d<2)

Put v, = ¢, — f; = £(000010000-1). Then 0o(9,C) = {4 ¢ 0(10,C)| Av, = 0}.
We may assume that an element A of 0(10,C) is of the form (5.28).
Then A is in 0(9,C) if and only if Av, = Ya, + by, Gu + bay Qg5 - Dy,
Qs + busy @5y €5 — Gy Cop — Gpy Ca5 — gy Ciy — Uy — &) = 0 1. @y = — Dy,
Uy = Cypy ;=0 (1 <7< 4).

I) The case of d = 1.

Put X, =1 + eeee, = (10 --- 010000) ¢ V(16). Then by (5.38) we
have aX, + do,(A)X, = Ya — (@, + a, + a; + @,)/2, by, — Cg, b1z + Coyy by —
Cass blf)’ bzs — Cups b24 + Ci3 bzs’ 634 — Cipy bss, b45, a + (al + a, + a5 + a'4)/2’
Uy — sy Ay, — ) With a; =0, a5 = —by, @ = ¢; 1 <1< 4) and (a, 4)
egl(1) @ 0(9). Hence the isotropy subalgebra gy, = {(a, 4)|aX, + dp,(4)X,
= 0} is given as follows.

a; gz O3 a0 0 b, by b, |0
Qo ) U3 0y |0 —by, 0 by 0|0
A4

(5.46) Ay A3 a3 Gy |0 —byy| — by 0 s | 0
Oy gz Qg3 @, |0 =Dy | —by| —byy 010
0 0|0 0 0 0 0|0

gx, = {(0) D
b34 _ b24 bzs 0| — Uy | — Oy | — 0y | — Ay 0
—by, 0 bi| =013 | 0 —ay,| —y | —Qg| —a,, |0
by | —bus 0 by |0 —Qys| — Q5| — @3 | — 03| O
—byy by | — by, 0 10| —ay| —ay| —ay| —a, |0
0 0 0 010 0 0 0 010

with @, + @, + a3 + a, = 0} = o(7,C) .
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Since dim gy, = 21 = dim GL(1) X Spin(9) — dim V(1) ® V(16), it is a
P.V. and by Proposition 25 in §4, it is regular. This space was investi-
gated by J. Igusa (See [2]).

The relative invariant is a quadratic form ¢(x), and the explicit form
which is due to J. Igusa, is given as follows.

(5.47) Q@) = 2y, + Pf(x;;) + ; Z:Y;

where

r=x)+ 2 D€l T Yiersese, + (Z xe; + 2] yief)es
7 K]

1<j<
and
e;ef = ee.e.e.6, 1i<d.

PRrOPOSITION 35. A triplet (GL(1) X Spin(9), O ® spin rep., V) ®
V(16)) is a regular P.V. and its generic isotropy subgroup is locally iso-
morphic to Spin(7). The relative invariant is a quadratic form.

II) The case of d = 2.

Assume that this triplet is a P.V. and let H be its generic isotropy
subgroup. Then we have dim H = dim Spin(9) X GL(2) — dim V(16) ® V(2)
= 8. This implies that for a suitable x, in V(10), the isotropy subalgebra
8z, = {A eg C 0(10)| Az, = 0} of g=(g,) @ 3l(2) which consists of 10 x 10
matrices A in (5.40), is of dimension eight. Therefore there exists a 9-
dimensional orbit of ¢ which consists of 10 x 10 matrices in (5.42),
since dimg’ — 8 = 9. However, it is impossible since there exist algebrai-
cally independent two quadratic forms f,(x) and f,(x) where f,(x) = fi(x,,
2, ;) is absolutely invariant under the action of 3[(2) and f,(x) = fy(z,
.+, ) is absolutely invariant under the action of (g,) (See Proposition
25 or (32)). Hence it is not a P.V.

PROPOSITION 36. A triplet (Spin(9) X GL(2), spinrep. ® 4,, V(16) ®
V(@) is not o P.V.

28) (Spin(12) X GL(d), half-spinrep. ® 4,, VB2)X® V(d)) (A1 <d<L2)

I) The case of d = 1.
The representation space V = V(1)® V(32) is spanned by 1, ee;,
€4,68mCns €16:8:068, 1<1<7<6, 1<k</i<m<n<L6). Put X;=1
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+ eeee.66,, We shall calculate the isotropy subalgebra gy, of g = gl(1)
®0(12) at X,, We may assume that an element A of 0(12) is of the form

(5.28)..
Then by (5.29), we have dp,(A)-1 = —4(a, + -+ + @) + D ic; byeie;
and dp,(A)e,e.e6.656, = (A + -+« + Q) 6,056,855 + D i Ci0,:07;€,€,€5€,€5€,

and hence aX, + dPl(A)Xo =(@—3%a, + - +ap) + Zi<j bije'i,ej + Zi<j Cij
07,07,€1€:05e,656 + (@ + 3(a, + -+ + ap))eeeee,6, for (a, A)egl(Do
(12). Hence the isotropy subalgebra gy, = {(a, 4)|aX, + dp,(A)X, = 0} is

given by
= 0D i
gXo - {( ) [ 0 l

Since dim gy, = 35 = dim GL(1) x Spin(12) — dim V1) ® V(32), it isa P.V.
and by Proposition 25 in §4, it is regular. This space was investigated
by J. Igusa and the explicit form of the relative invariant quartic
form f(x) is given as follows (See [2)).

S @) = 2Plf((Y:9)) + voPlf((2:)) + KZJ] Pif(X;)Pff(Y ;)

2
- %(xoyo - Z xiﬂ/ij)
i<y

i ]‘A e 9[(6)} = 3(6) .

(5.48)

for © = o, + 2ic; ®ije8; + D Vi€l + Yoerese5e.856, in which, e.g., (x;))
is the alternating matrix determined by «;; and X,, the alternating
matrix obtained from (x;;) by crossing out its ¢-th and j-th lines and
columns, and ef; = (—1)1*97le, «+ . €; 1€, +* €;_1€5,1 *** €

PROPOSITION 37. A triplet (GL(1) x Spin(12), O half-spin rep.,
V() QV(32)) is a regular P.V. and its generic isotropy subgroup is locally
1wsomorphic to SL(6). The relative invariant is a quartic form.

II) The case of d = 2.

We identify V = V(32) ® V(2) with V(32) @ V(32). Assume that this
triplet is a P.V. and let X, = (x),2)) is a generic point. Then the
isotropy subgroup H at X, is of dimension 6 (= dim Spin(12) X GL(2) —
dim V(82) ® V(2)). From ths case of d =1, we may assume that z; =1
+ eeee.6,, As a representation space of the isotropy subgroup SL(6)
at «;, V(32) decomposes into V(32) = V)P V,1) P V,(15) @ V,(15) i.e.
1®1®4,® 4, since the weights {(+a, + a, --- +a,) of 3l(6) where a, +
«v+ + a; = 0 and the number of the signature 4 is even, decomposes to
Otu{lU{a;, +a;]1 <t <j<6}U{—a; —a;|1 <i<j<6}. Notethat 4,
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is the contragredient representation of 4,, We may assume that z,¢ V,(1)
and xz; = x5 + x5 + 1 with 25 e V,(1), a1 e V,(15), ;e V,(15). Then together
with scalar multiplications, SL(2) acts on V,(15) prehomogeneously and
we may assume that x} is its generic point. Then the isotropy subgroup
at x5 is Sp(8) by Proposition 4. As a representation space of Sp(3),
V(15) decomposes to V,(15) = V,1) D V,(14) i.e. 1D 4,, since {—a; — a;|1
<i<j<6} with a, = —a,, a; = —a,, a, = —a,; decomposes to {0} U {0, 0,
+a; +0; 1<j=1,2,3}. An element of V,(14) is generically transferred
to the form Au, A u, + Au, A Uy + A0, A\ ug with 2, + 2, + 4, = 0, under the
action of Sp(3), and the isotropy subgroup at this point contains SL(2) x
SL(2) X SL(2). This implies that the generic isotropy subgroup H at X,
= (x5, 2;) contains SL(2) x SL(2) x SL(2) and hence 6 = dim H = dim SL(2)
X SL2) X SL(2) = 9, i.e., a contradiction. Therefore it is not a P.V.

PROPOSITION 38. A triplet (Spin(12) X GL(2), half-spin rep. Q A,
V(32)® V(2)) is not a P.V.

(29) (GLQ) x Spin(11), O spinrep., V(1) V(32)) .

Put v, = ¢; — f; = 400000100000 — 1) ¢ V(12). Then we have o(11, C)
= {4 e0(12, C)|Av, = 0} and hence an element A of the form (5.28) is in
o(11, ©) if and only if @y = 0, a; = b;; and ay; = —c for 1 <7< 5. There-
fore the isotropy subalgebra gy, of g = gl(1) @ o(11) at X, = 1 + e,e.65e,646;

is given by
, A’
YT A’ esl6); = {[—

by Proposition 37. Since dim gy, = 24 = dim GL(1) X Spin(1l) — dim V(1)
® V(32), this triplet is a P.V. and it is regular by Proposition 25 in §4.
The relative invariant is the quartic form in (5.48). This space was in-
vestigated by J. Igusa (See [2]).

Al
gx, = 0(11) N {(—

> ’A’ € §I(5)} = 3(5)

A

PROPOSITION 39. A triplet (GL(1) x Spin(1l), O ® spin rep., V(1) ®
V(32)) is a regular P.V. and its generic isotropy subgroup is locally iso-
morphic to SL(5). The relative invariant is the same quartic form as in
Proposition 37.

(30) (GLQ1) x Spin(14), O half-spin rep., V(1) Q V(64))

The representation space V = V(1) ® V(64) is spanned by 1, e;e; (1 <
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1<J<D, eejee, A<1<g<k<4<LT) and eejeieee, A<i<j<k
<L<m<n<T). Put X, =1+ eeee, + eeee + eeeeee. We shall
calculate the isotropy subalgebra gy, of g = gl(1) ®0(14) at X,, We may
assume that an element A of 0(14,C) is of the form (5.28). Let dp, be
the half-spin representation of o(14,C). Then by (5.29) we have

dP1(A)1 = _'é‘(ch + -0+ (L7) + Z bz‘jeiej ’
1<
6 6 6 6
dP1(A)e1eze3e7 =2 010,886, — D, 0;,6,6,6,6; + Z; 013€1€,€,67 + D (17€,€,65;
=1 izt iz =
+ 3o, + a, + a5 — ay — ay — a5 + a)eeee
+ 2> €1€,€36,€,6; — C116:€; -+ C316,6; — C3;6:€,
4<i<j<6

— (Cue; — Cpe; + Cieye;

and

6
do(A)ee, - -+ e, = Z; (=D a8 - €5 15,0 -+ €
=

+ 3+ - o — adee, - g
+ 20 (=D e vl il v €8y €
1<j<6

By changing indices from (1, ---,7) to (4,5,6,1,2,3,7), we obtain dg,(A)
eese.6; from dp,(A)e.e.e,e,. Hence the isotropy subalgebra gy, = {(a,4) e
gl(1) @ 0o(14) | aX, + dp,(A4)X, = 0} is given by

~ oo (22
8x0 = { (As ‘—LA1
= {(A) D (4| A, A, are of the form (5.49)} = (g,) D (g)

)e al(l) ®o(14)| A, A,y A, are of the form (5.49)}

(See (1.8) in §1).

a)
X 0 |b
C
A = d with X, Y e 8l(3) .
0 Y |e
J
uvw| 2 p v 0)J
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(0 w —v —a
—w 0 U 0 —b
v o—u 0 —c
A, = 0 —v 7 d |
0 v 0 —2 e
—¢ 2 0] f
L a b ¢c|l—d —e —f 0 J
—c b u
c 0 —a 0 v
—b a 0 w
(5.49) A, = 0 f —e !l —2 ,
0 —f 0 d| —p
e —d 0| —v
—U = —wi A 7 Y 0 J
0 2u 20 Zw‘ 20 2b  2¢ )
a 0 w —v
b X —Ww 0 u
A, = ¢ v o—U 0 ,
U 0 —e¢ b ’
v ¢ 0 —a —tX
L w |—b a 0 { y
0 ‘ 22 2 2 2d  2e 2f)
d 0 v —pu
e Y —y 0 2
Ay = I po =2 0
2 0 —f e
u J 0 —d —ty
Y —e d 0 )

Since dim gy, = 28 = dim GL(1) X Spin((14) — dim V(1) ® V(64), this triplet
is a P.V. and it is regular by Proposition 25 in §4. The prehomogeneity
of this space was proved by T. Shintani (1970) and the orbital decom-
position was completed by I. Ozeki and the second author (1973) (See [12]).
Put X) =1 + eee.e, + eeee + eeee, + ee.e.e.e6. Then by the similar
calculation, the isotropy subalgebra gy, at X; is given by

A1 4
_ (e g [A1] A
8z {< 5)® [A; —‘A;]

Al, A}, A} are given in (5.50)}
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(@, | | @ |an] ay] g cas} with
Ay | Qp | Qo3 |y | Qgs)  Cog Csp a, = —(a, + a, + ay)
10 0 a; |0 Oy | Qa5 |— Cyp = a, + a, + a,
Al = Oy |—0y| ay |a, Qs | Oy Css
0| 0 |—ay [0 | a|—ay | cg O o+ Oy = Gy Oy
0| 0| a, 0 |—a,| a Cas Uy + O3 = Oy + Oy
0 0 |[—2¢,|0 Cy|—2¢0y| a; J Qg3 = Qg5 — Qg
[0 Cyp |—Cu| Cq |—Cy| O 20y
— Cyy 0 Cir| Car 0 | —cy|—2¢;,
Cy |—Cop 0 0 0 0 0
(5.50) A; = | —=Csr |—Co 0 0 Ciy Cor | —20C45]
Cy 0 0 |—ecy 0 0 0
0 Cy 0 |—e¢y 0 0 0
|—2¢5| 2¢45| 0 2¢O 0 0
(0] O ¢, 0 ¢ 0 ey
0 0 Cyu! O 0 Cis | Coy
—Cy|—Cyu| O 0 Cs| Csp| Car
A = 0 0 0 0 Cos |— Ci3 | Cy
—C5| O |—Cyl—0Cy| O Cs6 | Cor
0 ~—Ci5 |~ Cyq Ci3 | —Cxs 0 Cer
—Ci |~ Co1 |—Cy7 |~ Cyg | — Ci7 | Cgr | 0]

.

Since dim gy, = 29, the orbit of X; is of codimension one. Since the
trace try A of an element A of gy, on V is 64 X (a,/2) = 32a, and the
adjoint representation on gy, is —28a,, the degree of the irreducible
relative invariant polynomial f(x) is given by degf = (82a, — 28a,)/32a,
X 64 = 8.

PROPOSITION 40. A triplet (GL(1) X Spin(14), O & half-spin rep., V(1)
R V(64)) is a regular P.V. and its generic isotropy subgroup is locally
isomorphic to (G, X (G,). The relative invariant is of degree 8.

(31) (GLQ) x Spin(13), I ® spinrep., V(1) @ V(64)) .

This space was investigated by T. Shintani (1971). We shall prove
the non-prehomogeneity of this triplet after T. Shintani.

Assume that this triplet is a P.V. Let § be the generic isotropy
subalgebra of the regular P.V. in Proposition 40. Then there exists a
14-dimensional vector x, such that HN (A D{Aco(14)|Ax, = 0}) =
{Aeph|Ax, = 0} is of dimension 15 (= dim GL(1) X Spin(13) — dim V(1) ®
V(64)). By Proposition 40, § = (g,) @ (g,) and b is contained in o(14) as
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the direct sum of 7-dimensional representations, this implies that the
(non-irreducible) triplet (GL(1) X (Gy) X (G, OQ (U1 + 1R 4,), V()
@V ()@ V,(7) is a P.V. By Proposition 25, there exists a quadratic
invariant ¢;(x) on V(1) ® V,(7) (¢ = 1,2) and the quotient ¢(x) = q,(%)/q,(x)
is a non-constant absolute invariant of this triplet. By Proposition 3 in
§2, it is not a P.V. and hence our triplet is not a P.V.

PROPOSITION 41. A triplet (GL(1) x Spin(13), O ® spin rep., V) @

V(64)) is not a P.V.

(32)

I) The case of d = 1.
Let g be the Lie algebra of GL(1) x (G,).

§1, we have

(5.51)

(G X GL(d), 4,®4,, V(T)® V(d))

1<d<3)

Then by Example 30 in

(& 2d 2e 2f 2a 2b 2¢ )
a E + 21 212 213 0 f —e
bl 2 &+ 2 | —f 0 d
g=AA=|c| 2 Ay &+ e —d 0 |[|&+ A+ 24=0}
d 0 —c b |E€—24 —2y —23
e C 0 —a —Ay & — 2 —1y
L f| =D a 0 — A3 —Ay & — A3)

Put X, =1,0,0,0,0,0,0). Then AX, = ¥¢&,a,b,c,d,e, f). Therefore the
isotropy subalgebra gy, at X, is given by

gr, = {AeglAX, =0} ={Acglé=a=bb=c=d=e= f =0}

(4

‘4

)l 4 e 38l(3, C)} = 3(3,0) .

Since dim gy, =8 = dimg — dimV and gy, is reductive, it is a regular

P.V. by Proposition 25 in §4.

a relative invariant quadratic form, i.e., (G, < SO(7).

We shall determine the relative invariant f(x) = X,cic;<r 6522
A be a diagonal matrix in (5.51).

{Az, grad f(x)) = Zj; Ex,’ of

0x

Then

+i@+M%
J=1 o

+ Z:; & — 2, aaf
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and hence f(x) = ¢,&2 + Cyy 4 Coels®y + k. Let A, (resp. 4,) be the
matrix with ¢ =1 (resp. b = 1), all remaining entries zero in (5.51).
Then {4z, grad f(x)> = (dcy + )25 + (¢ — Ci0)%:2, = 0 and hence f(x) =
cn(@] — 4w,xs) + c(wss + x,2,). Since (A,x, grad f(x)) = c(4x,2 — 42,2,)
+ c(x, 2y — x,2) = 0, we have f(x) = ¢, (2} — dx,x;, — dawg — 4z,2,).

PROPOSITION 42. A triplet (GL(1) X (G, O®R 4,, VAR V(D) is a
regular P.V. and its generic isotropy subgroup is locally isomorphic to
SL3). The relative invariant is a quadratic form.

II) The case of d = 2.

If we identify V(7)) ® V(2) with 7 x 2 matrices M(7,2), the action
dp of the Lie algebra g = (g,) @ gl(2) of (G)) X GL(2) is given by dp(A)X
= BX + X‘C where Xe M(7,2), A = (B,0)ecg=(g)Pgl(2). Put

:‘<0100000>
* 7 0000100/
Then
(l 2d 2¢ 2f[ 20 2b 2¢ [ | )1 | ‘(ar)
al A Ay A, 0 f —e |l1 1 Bao
b 221 22 223 '—f 0 d
do(A)X = | ¢ | Ay Ap 4 e —d 0 4+
dl 0 —c b |—2 —2; —a3 1 1
e ¢ 0 —a [—A, —4, —2
(5.52) LSf]=b a 0 |—2; —24; —2 | L ]
[ 2d 20 )
At a 7
221 '—f
= s e
B —A + 6
4 '—212
—b "213

J

Hence the isotropy subalgebra gy, at X, is by definition gz, = {4 € g| dp(4)X,
= 0} and hence we have
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(5.53)
0o 0 0 )
A 0 0
010 2, 4y 0
6 =1| |0 Zu 4 © (T8 )| atati=0=g@.
—4 0 0 '
0o, 0 0 —2 —2
0 —2; — 2 |

Since dimgy, =4 = dimg — dimV, it is a regular P.V. by Proposition
25in §4. Since (G,) X GL(2) C SO(7) x GL(2), there exists an irreducible
relative invariant polynomial of degree 4 (See (20)).

PROPOSITION 43. A triplet (G X GL2), 4,®4,, V(NP V?)) is a
regular P.V. and its generic isotropy subgroup is locally isomorphic to
GL®2). The relative invariant is a quartic form.

IIT) The case of d = 3.

Identify V(7) ® V(8) with 7 x 8 matrices M(7,3). Since (G,) X GL(3)
C SO(7T) x GL(3), there exists an irreducible relative invariant polynomial
fi(x) of degree 6 (See (20)). On the other hand, (G,) is the isotropy sub-
group at X, = u, A\ u;/\ Uy + Uy A\ Ug A\ Uy + Uy A Uy A\ Uy + Uy A U + Uy A U
(See (8)), and hence the group (G,) X SL(8) leaves the following polynomial
fx) invariant.

(5.54)
(wz Y. zz) (905 Ys 25) («% Y 21) (xl Y 31)
JoAX) = det|wy y; 25| + det [xs ys 2| + det (@, v, 2| + det | x; y; 2
Ty Yy 24 Ty Yo %1 Ty Ys %5 L5 Ys %
(xl Y &) I
4 det | x, v, z4) where X = (yl y7) eVMR®V@A) .
L7 Yo % Ry - %y

Since the quotient f,(x)/f.(x)? is a non-constant absolute invariant, it is
not a P.V. by Proposition 3 in §2 (or Proposition 12 in §4).

PROPOSITION 44. A triplet (G, X GL(3), 4,Q A,, V(T)® V(3)) is not
a P.V. There exist two irreducible relative itnvariant of degree 3 and
degree 6.

(33) Fi X GL(), 4,0 4, V(26)® V(d) (1<d<L2)
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I) The case of d = 1.

By Proposition 39 in §1, fi(X) = TrXoX and f,(X) = TrXoXoX
(x € 7, is a relative invariant of GL(1) x F,, and hence f(x) = f,(x)*- f,(x)3
is an absolute invariant. Since

R S

J(x) is not constant, and hence it is not a P.V. by Proposition 3 in §2.

PROPOSITION 45. A triplet (GL(1) X F,, (1® 4,, V1) ® V(26)) is not
o P.V. There exist two trreducible relative invariants of degree 2 and
degree 3.

II) The case of d = 2.

Identify V(26)® V(2) with #,® £, and put fi(X) = Tr XX, fi(X)
=TrXoXoX for Xe #,, For X=(X,X)e £,P ¢, the polynomial
fiuX, + vX,) is a binary quadratic form which is invariant under the
action of F,. Therefore, its discriminant ¢,(X) is a relative invariant of
F, x GL(2) (See (3)). Similarly the discriminant ¢,(X) of the binary cubic
form f,(uX, + vX,) is also a relative invariant of F, x GL(2) (See (6)).
As degg, =4 and degg, =12, f(x) = ¢g,(x)9,(x)"* for xe 7,D £, is an
absolute invariant of F, X GL(2). Since

TR R O

f(x) is not constant, and hence it is not a P.V. by Proposition 3 in § 2.

PROPOSITION 46. A triplet (F, x GL(2), 4,& 4,, V(26) ® V(2)) is not
a P.V.

(349 (B X GL(@D), 4,@ 4, VEHR@ V@) (1<d<3)

I) The case of d = 1.

Identify V(1) ® V(27) with the exceptional simple Jordan algebra ¢#.
The Lie algebra g of B¢ X GL(1) is g={A =D + Ry +a|Dec 9, Ye ¢,
aeC} (See Example 39 in §1). Hence an element A =D + Ry + « of

g is contained in the isotropy subalgebra gy, at X, = (1 1 1) e ¢ if and
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only if AX,=Y + (a o a) = 0. Since TrY = 0, this implies that Y =

0 and @ = 0. Therefore the isotropy subalgebra gy, is the exceptional
simple algeiora 9 = F, Since dim F; x GLQ) — dim F, = 27 = dim ¢,
it is a regular P.V. by Proposition 25 in §4. The relative invariant is
the determinant N(X) = det X (X ¢ _#) (See Example 39 in §1).

PROPOSITION 47. A triplet (GLQ) X E,, O® 4,, VA) Q® V(2T7)) is «a
regular P.V. and its generic isotropy subgroup is locally isomorphic to
F,. The relative invariant is the determinant of the exceptional simple
Jordan algebra Z(= V(Q) ® V(27)).

II) The case of d = 2.

Identify V@27)® V(2) with # @ #. Let gy, be the isotropy sub-
algebra of E,® gl(2) at X, = ((1 1 1),(1 0 _1>). Then it is obvious
that 2, C gx, (See Definition 34 in §1). We shall show that 2, D gy,
Let 2 =X + (g 3) be an element of gy, where X =D + (a); + (B); +
0+ Ry De2,, TrY =0, See Definition 36 in §1). Then

a+ b 1 ¢+ d
2-X, = Y+( a ),X 0 )+( c =0
a—2>b —1 c—d

implies that Y + (a + 0 e . b) =0. Since TrY =0, we obtain

that Y = (b 0 ——b) and a = 0. Sihce D(l 0 _1) =0 for Decg, we
obtain that

0 b) and ¢ = 0, we have z = D¢ 9, Therefore
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we obtain that gy, = 2, = 0(8,C) (See Proposition 35 in §1). Since
dim gy, = 28 = dim E;, X GL(1) — dim # @ #, it is a regular P.V. by
Proposition 25 in §4. For X = (X, X)) e # D ¢, the discriminant f(X)
of the binary cubic form NuX, + vX,) is a relative invariant of degree
12. This is irreducible since the restriction of f(X) to {X,,X)e £ D

Z1X, X, e M3, 0), ‘X, = X, ‘X, = X,} is irreducible (See (10)).

PROPOSITION 48. A triplet (F; X GL(2), 4, @ 4,, V2T ®V(2) is a
regular P.V. and its generic isotropy subgroup is locally isomorphic to
the orthogonal group O@,C). The relative invariant is of degree 12.

Remark 49. The following four P.V.’s correspond to R, C, H,&
respectively.

1) (SL3) X GL(2), 24,® 4,, V(6) ® V(2));

2) (SL(3) X SL(3) X GL(2), 4,® 4, ® 4;, VB)®V(3) ® V(2));

3) (SL(6) X GL(2), 4,® 4,, V(15) ® V(2));

4) (E; X GL(2), 4,® 4,, V(2T) Q V(2)).

Their representation spaces can be regarded as the pair of 3 X 3
hermitian matrices over some algebra A, where A = C(= R®;C), CHC
(=CRRC), M)(C) (= H®;C) and € respectively. The rank m of A is
m=2* (k=0,1,2,3), and the dimension of a generic isotropy group is
given by ¢ +1) (m —1) (k=0,1,2,3). The degree of the irreducible
relative invariant is 12,

III) The case of d = 3.

We may identify V = V(@7) ® V(3) with # ® ¢ ® ¢ where ¢ is the
exceptional simple Jordan algebra.

Let N(X)) be the determinant of X; in # (See Example 39 in §1).
For each X = (X,, X;, X)) eV, we can define the ternary cubic form ¢(X)
= NuX, + vX, + wX,) which is invariant under the action of E,. This
¢ is an equivariant map from # ® # @ # to the space of ternary cubic
forms. Since a triplet (E;, X GL(3), 1® 34,, V(10)) = (GL(3), 34,, V(10))
is clearly not a P.V., if ¢ is generically surjective, a triplet (E, X GL(3),
4,®4,, V7)) ®V(@3)) is not a P.V. by Lemma 5 in §2. For teC, put

S RREICRE

Then (X)) = uv(u + v — w) — yw® where y =28 — *. For A = (a;;)
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e gl(3), ASD(X(t)) = 02 + 0,0° — Byaw + (2ay, + 20, + Gy — @)UV + (ay
— @ )UW +_ (205 + 205 + 0 — @) VU + (@3 — C) VW — (@5, + Sy ) wWu —
(ay + 3a )wv + 2oy + 20, — @, — @y — 0)uvw and hence the isotropy
subalgebra at X, is {4 e gl(3)|Ap(X(¥)) =0} =0 if y 0. This implies
that if y # 0, the GL(3)-orbit of ¢(X(?)) is of dimension 9. On the other
hand, ¢(X(¢)) = 0 is an elliptic curve for y 0, —3%, and its modular
—27r(1 + &)°

7,3 + 277,4 :
action of GL(3), the dimension of the union of GL(3)-orbits of ¢(X(t))
is 10. This implies that ¢ is generically surjective, and hence a triplet
(B, x GL(3), 4,® 4,, V(27) ® V(3)) is not a P.V.

PROPOSITION 50. A triplet (E; X GL(3), 4, Q 4,, V(27) ® V(3)) is not
a P.V.

(35) By X GL(2), 4,®24;,, VTR V(3)) .

Since (E, X GL(2), 4,® 24)) C (E; x GL(3), 4, ® 4,), it is clearly not
a P.V. by Proposition 50.

PROPOSITION 51. A triplet (B, X GL(3), 4, ® 24,, V(27) ® V(3)) 1is
not o P.V.

(36) (B X GL(d), 4,®@ 4, VGO V(@) (1<d<2).

invariant is given by J = Since J is invariant under the

I) The case of d =1.

We may identify V(56) Q V(1) with M =CHCP £ P ¢ (See Exam-
ple 40 in §1). Let gy, be the isotropy subalgebra of E,® gl(1) at X, =
(1,1,0,0) in M. For A=aDbD2mR, ®PLD ke E,®gl(l) where a,b
e, mkeC, and LeFE,, by (1.14) we have [a,X,] = (0,0,a,0), [b, X,]
= (0,0,0, —b), 2mR;, X,] = (8m, —3m, 0, 0), [k, X,] = (k, k,0,0) and [L, X,]
= (0,0,0,0), and hence [4,X,] = Bm + k, —3m + k,a, —b). Therefore
we have gy, = {A e E,®gl(1)|[A,X,] =0} = {LeE;} = E,. Since dim gy,
= T8 = dim E, X GL(1) (= 134) — dim V (= 56), it is a regular P.V. by
Proposition 25 in §4. The relative invariant is a quartic form ¢(X) in
(1.16).

The orbital decomposition is completed by S. J. Harris (See [7]).

PRrOPOSITION 52. A triplet (GL(1) X E,, O® 4, V(1) ® V(66)) is a
regular P.V. and its generic isotropy subgroup is locally isomorphic to
E;. The relative invariant is a quartic form q(X) given in (1.16).
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II) The case of d = 2.

We may identify V = V(56) ® V(2) with I ® M. Put fi(X) = {X,, X}}
= "31772 - 52771 A+ T(xy,) — T(xy) for X = (X, Xz) = ((§,, N1y L1y AR S N2y Lo
Y¥,)) € V. Then this is a relative invariant of E, X GL(2) i.e. E, C Sp(28)
(See Example 40 in §1). Let ¢(X) be the invariant quartic form of E,,
ie., ¢X) =T@* ¥ — EN(2) — yN(y) — HT(x,y) — &p)* for X = (§,9, 2, ¥)
e IR, where af = a’ — Tr(a)-a + 3{(Tra)* — Tr(a»}-1 (See Example 40
in §1). For each X =(X,X,)cM DI, we have a binary quartic
form o(X) = q(uX, + vX,). In general for a binary quartic form % =

t.o X%t one can easily check that the polynomial A(Z%) = 22 — 3x,2;,
+ 12z, is relatively invariant under the action of GL(2). Since ¢ is an
equivariant map, the polynomial f,(X) = h(p(X)) is a relative invariant of
E, x GL(2). Since deg f,(X) = 2 and deg f,(X) = 8, the quotient f(X) =
F1XD* f(X)! is an absolute invariant. For X = ({,0,0,0), (0,1,0,0))
eMDM, f1(X) =1 and q((u,?,0,0)) = —iu*?ie., f(X) = %, and hence
f(X) # 0. On the other hand, for

ol . Jpe

we have f,(X) =0,

oo = 3O )

i.e. f,(X) =1, and hence f(X)=0. This implies that f(X) is a non-
constant absolute invariant, and hence this triplet is not a P.V. by
Proposition 3 in §2.

ProPosITION 53. A triplet (B, X GL(2), 4,® 4,, V(56) ® V(2)) is not
a P.V.

THEOREM 54. Let (G‘,p, V) be a reduced P.V. and let d be the Lie
algebra of ﬁ(@). Assume that the center of §is one-dimensional. Then
it 1s equivalent to one of the following P.V.’s.

I) A regular P.V.
(1) (G x GL(m), p® 4;, V(m) ® V(m)) where p:G@— GL(V(m)) is
an m-dimensional irreducible representation of a semi-simple algebraic
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group G.
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
1D
(12)
13)
(14)
(15)
(16)
amn
(18)
(19)
(20)
(21
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
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(GL(n), 24,, VEn(n + 1)) (n=2)

(GL(@2m), 4,, V(m@2m — 1))) (m = 8)

(GL(2), 34,, V()

(GL(6), 4; V(20))

(GL(7), 4,, V(35))

(GL(®), 4,, V(56))

(SLB) x GL(2), 24,® 4,, V(6) ® V(2))

(SL(®) x GL(2), 4,& 4,, V(15) ® V(2))

(SL(B) x GL3), 4, 4,, V(10) ® V(3))

(SL(5) X GL4), 4,® 4,, V(10) ® V(4))

(SL(3) x SLB) X GL(2), 4,04, 4,, VB QR VEB) R V(2)
Sp(n) X GL2m), 4, 4,, V(2n) Q V(2m)) n=2mz=2)
(GL() x Sp(3), O® 4, VA) ® V(14))

(SO(m) x GL(m), 4, ® 4, V)@ V(m)) (m=3,n/2=m=1)
(GLQ) x Spin (7), O spin rep., V(1) Q V(8))

(Spin (7) X GL(2), spinrep. @ 4,, V(8) & V(2))

(Spin (7) X GL(3), spinrep. @ 4,, V(8) ® V(3))

(GL@Q) x Spin (9), O ® spinrep., V(1) ® V(16))

(Spin (10) x GL(2), half-spin rep. @ 4,, V(16) ® V(2))
(Spin (10) x GL(8), half-spin rep. ® 4,, V(16) ® V(3))
(GL(1) x Spin (11), (O ® spinrep., V(1) ® V(32))

(GL(1) x Spin (12), O ® half-spin rep., V(1) ® V(32))
(GL(1) x Spin (14), O ® half-spin rep., V(1) ® V(64))
(GLQ) X (Gp, O® 4, V(1) ® V(7))

(G) X GL(2), 4,8 4,, V(1) V(2))

(GL() X E,, O® 4, V) ® V(27)

(Es X GL(2), 4,® 4,, V(27) ® V(2)

(GL(1) x E;,, O® 4, V(1) ® V(56))

II) A nown-regular P.V. with relative invariants.

(Sp(n) X GL2), 4,® 24;, V(2n) ® V(3))

~

(GLQ) x Sp(m) x SO®), OR 4, ® 4, V(1) ® V(2n) ® V(3))

IIT) A non-regular P.V. without relative invarionts.

@) (G X GL(m), p® 4,, V(n) ® V(m)) where p: G— GL(V(n)) is an
n-dimensional irreducible representation of a semi-simple algebmic group
G(# SL(n)) with m > n = 3.
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(2 (SL(n) X GL(m), 4,® 4;, V) ®V(m)) (m/2=n=1)

3 (GL2m + 1), 4,, V(m@m + 1)) (m = 2)

4) (SL@Zm + 1) X GL2), 4,® 4,, V(m@2m + 1)) ® V(2)) (m = 2)

(6) (Sp(n) X GL2m + 1), 4,® 4,, V(2n) ® V(2m + 1))
m>2m4+1=1)

(6) (GL(1) x Spin (10), O ® half-spin rep., 1 V(16))

Proof. By Theorem 24 in §3 and Proposition 1 ~ Proposition 53,
we obtain our assertion. Q.E.D.

§6. Semi-simple case

Let (G,p, V) be an irreducible P.V. Then the Lie algebra g of po(@)
is reductive with center at most one-dimensional by Theorem 1 in §1.
In the previous sections, we have considered the case when the center
of g is of one dimension. In this section, we shall consider the case
when the center of g is of zero dimension. Then g is semi-simple and
hence g < 3l(V). Therefore, there is no relative invariant by Proposition
20 in §4. Then a triplet (GLQ) X G, O® p, V(1) ® V) is a P.V. without
relative invariant and hence by Theorem 54 in § 5, it belongs to the same
castling class as one of the following reduced P.V.’s.

1) (G X GL(m), p® 4,, V(n) ® V(m)) where p is any n-dimensional
irreducible representation of a connected semi-simple algebraic group G
(s SL(n)) with m > n > 3.

(@) (SL(n) x GL(m), 4, 4,, V(n) ® V(m)) with m/2 > n > 1.

3 (GL2m + 1), 4,, V(m@2m + 1))).

@ SL@Cm + 1) X GL(2), 4,® 4,, V(m@2m + 1)) ® V(2)).

B) Spn) x GL@2m + 1), 4,® 4, V2n) ® V@m + 1)) with n > 2m
+1>1.

6) (GLQQ) x Spin (10), [ ® half-spin rep., V(1) ® V(16)).

As we have seen in §5, the generic isotropy subalgebras § of these
P.V.’s are not contained in 3((V), and hence these are P.V. even if
without the action of scalar multiplications. Therefore, we obtain the
following proposition.

PROPOSITION 1. Let (C;', A V) be o reduced P.V. where G is a
connected semi-simple algebraic group. Then it s equivalent to one of
the following reduced P.V.’s.

1) (G X SL(m), p® 4,, V(n) ® V(m)) where p is any n-dimensional
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irreducible representation of a connected semi-simple algebraic group G
(#£ SL(n)) with m > n = 3.

@) (SL(n) x SL(m), 4, 4,, V() ® V(m)) with m/2 > n > 1.

3) (SL@m + 1), 4,, V(m@m + 1))).

4) (SL@m + 1) X SL@2), 4,® 4,, V(m@2m + 1)) ® V(2)).

B) Spm) x SL2m + 1), 4, 4,, V@2n) ® V@m + 1)) with n > 2m
+1>1.

©6) (Spin (10), half-spin rep., V(16)).

§7. Table of irreducible reduced prehomogeneous vector spaces

In general, we denote by H a generic isotropy subgroup of a reduced
P.V. If two groups H, and H, are isomorphic (resp. locally isomorphic)
to each other, we denote this relation by H, ~ H, (resp. H, ~ H,). The
degree of the irreducible relative invariant polynomial f(x) will be
denoted by deg f. Then from §1 ~ §6, we obtain the following table.

I) A Regular Prehomogeneous Vector Space.

(1) (G X GL(m), p®@ 4,, V(m)® V(m)) where p: G — GL(V(m)) is an
m-dimensional irreducible representation of a connected semi-
simple algebraic group G (or G = {1} and m = 1).

() H=G, (i) degf =m, (i) f(x) = detx for x e M(m) ~ V(m)
® V(m) (see Proposition 1 in §5).

(2) (GLm), 24;,, VEn(n +1)))  (n > 2).

() H ~ O(n), (ii) deg f =n, ({ii) f(x) =detx for ze{reMm)|‘x
= 2} =~ V(En(n + 1)) (see Proposition 3 in §5).

(3) (GL@2m), 4,, V(m@2m — 1)) (m > 3).

(i) H =~ Sp(m), (ii) deg f =m, (i) f(x) =Pff(x) for xze{xre
M@2m)|tx = —zx} =~ V(m(@2m — 1)) (see Proposition 4 in §5).

(4) (GL(®), 34,, V(4)).

() H ~ {1}, $H =18, (ii) deg f =4, (il f(x) = x3x} + 18».x,2.2,
— 4,23 — duxdx, — 27232 for v = xu® + xu’v + X uv? + 2% i.e., the
discriminant of a binary cubic form z (see Proposition 6 in §5).

(5) (GL(6), 4,, V(20)).

(i) H = (SL(3) x SL@3))-{+1}, (i) degf =4, (i) f(@ = (xy, —
tr XY)* + 4x,det Y + 4y, det X — 437, ; det (X;;)-det (Y;,) (see after
Proposition 7 in §5).

(6) (GL(T), 4,, V(35)).
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(i) H = (G) X {wl;|0* =1}, (ii) deg f = T (see Proposition 8 in § 5).
(GL(8), 4,, V(56)).

(i) H ~ SL(3), (ii) deg f = 16 (see Proposition 10 in §5).

(SL(3) x GL(2), 24, ® 4,, V(6) ® V(2)).

(i) H~ {1}, $H = 144, (i) deg f =12, (iii) f(x) is given by the
discriminant of a binary cubic form det (uX + vY) for 2 = (X, Y)
e{X, X, YeM@B), ' X=X,'Y=Y}=V(6)®V(2) (see Propo-
gition 11 in §5).

(SL(6) X GL(2), 4,® 4,, V(15) ® V(2)).

(i) H ~ SL®2) x SL(2) x SL(2), (ii) deg f =12, (iii) f(x) is given
by the discriminant of a binary cubic form Pff(uX + vY) for
r=WX,Ve{X,NX,YeM®), ‘X=-X, ¥Y=-Y}=VA5)®
V(2) (see Proposition 12 in §5).

(SL(5) X GL(3), 4,® 4,, VA0) ® V(3)).

(i) H ~ SL(2), (ii) deg f = 15 (see Proposition 14 in §5).

(SL() x GLA4), 4,® 4,, V(10) ® V(4)).

(i) H ~ {1}, (i) degf =40, (ii) f(x) is given by the proof of
Proposition 16 in §4 (see Proposition 15 in §5).

(SLB) x SL(3) X GL(2), 4, ® 4, ® 4, V(3 ® V(3) ® V(2)).

(i) H ~ GL(1) x GLQ), (i) deg f =12, (iii) f(x) is given by the
discriminant of a binary cubic form det (uX + vY) for 2z = (X, Y)
eMB)YEMB) =TVTBRQVEB) X V(Q).

Sp(n) X GL2m), 4, 4,, V(2n) ® V(2m) n > 2m > 2).

(i) H ~ Sp(m) x Sp(n — m), (ii) deg f = 2m, (iii) f(x) = Pff(XJX)
for X e M(2n,2m) (see Proposition 17 in §5).

(GLQ1) X Sp3), O® 4;, V(1) ® V(14)).

(i) H ~ SL(3), (ii) degf =4, (ii) f(x) is given by the restriction
of the relative invariant of (GL(6), 4,, V(20)) (see Proposition 22
in §5).

(SO(m) X GL(m), 4, 4;, V(n) ® V(m)) n>3, n/2>m>1).
() H = (SO(m) x SO(n — m))-{x1}, (i) deg f =2m, (iii) f(X) =
det ' XKX for X e M(n,m) ~ V(n) ® V(m) (see Proposition 23 in §5).
(GL(1) X Spin (7), O® spinrep., V(1) ® V(8)).

() H ~ (G,), (i) deg f =2, (iii) By the spin representation, we
have Spin (7) = SO(8) and hence a relative invariant is that of
(GL(Q) x SO®), O® 4, V1) ® V(®)) (see (15), or Proposition 25
in §5).
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(18)

(19)

(20)

@D

(22)

(23)

(24)

(25)

(26)
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(Spin (7) X GL(2), spin rep. @ A,, V(8 ® V(2)).

(i) H ~ SLB3) x 02), (i) degf =4, (iii) By the spin represen-
tation,- we have Spin (7) = SO(8) and hence a relative invariant
is that of (SO®) X GL(2), 4,® 4,, V(8) ® V(2)) (see (15), or Propo-
gition 26 in §5).

(Spin (7) X GL(3), spin rep. ® 4,, V(8) ® V(3)).

(i) H ~ SL(2) x 0(3), (ii) deg f = 6, (iii) By the spin represen-
tation, we have Spin (7) = SO(8) and hence a relative invariant
is that of (SO(®) x GL(3), 4,® 4,, V(8) ® V(8)) (see (15), or Propo-
gition 27 in §5).

(GL(1) x Spin (9), O spin rep., V(1) ® V(16)).

(i) H ~ Spin (7), (ii) deg f = 2, (iii) f(x) = @Yo+ PSf (@) + 25 .Y
for & = o + 2 icjci @i + Yorsese, + (O T8 + 205 YieF)e; where
efe; = ee.e.e.e; for 1 <1 < 4 (see Proposition 35 in §5).

(Spin (10) X GL(2), half-spin rep. ® 4;, V(16) ® V(2)).

(i) H ~ (G, x SL(2), (ii) deg f = 4 (see Proposition 32).

(Spin (10) X GL(3), half-spin rep. ® 4,, V(16) ® V(3)).

(i) H ~ SL2) x 0(3), (ii) deg f = 12 (see Proposition 33 in §5).
(GL(1) x Spin (11), O® spin rep., V(1) ® V(32)).

() H ~SL(5), (i) degf =4, (i) f@) = @PS7(1:7) + % Pf7(x:))
+ 20 PIF(X) - PIFf(Yyy) — 5 @Yo — 2licy ®ag¥ep)® for = x, +
Dici i€y + Dlics Yisldi + Yeersee,66, Where efi = (—=1)" e ..
€i_1€i.1 " €5_1€5,, + + + € (see Proposition 39 in §5).

(GL(1) x Spin (12), O ® half-spin rep., V(1) Q V(32)).

(i) H ~ SL(6), (i) deg f =4, (i) f(x) is the same as (22) (see
Proposition 37 in §5).

(GL@Q) x Spin (14), O® half-spin rep., V(1) ® V(64)).

G H ~ (Gy X (G, (ii) deg f = 8 (see Proposition 40 in §5).
(GLQ) X (Gy, OR® 4, V) ® V().

() H ~ SL3), (ii) deg f =2, (ii) By 4,, we have (G,) = SO(7)
and hence a relative invariant is that of (GL(Q) x SO(7), O 4,,
V(@) ® V(7)) (see Proposition 42 in §5).

(G) xX GL(2), 4, 4,, V(T) ® V(2)).

() H ~ GL(2), (ii) deg f = 4, (iii) By 4,, we have (G,) = SO(7)
and hence a relative invariant is that of (SO(7) X GL(2), 4, ® 4,,
V(1) ® V(2)) (see (15), or Proposition 43 in §5).

https://doi.org/10.1017/50027763000017633 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000017633

PREHOMOGENEOUS VECTOR SPACES 147

@7 (GLQ) X E,, O® 4,, V1) ® V(2T7)).
(D H~PF, (i) degsf =38, (i) f(x) = detx = &&8, + tr za,x, —
&E2.T, — §,2,T;, — &,2,T, for

& % T,
=% & &

x, T, &

ef =V VE

(see Proposition 47 in §5).

28) (E; X GL(2), 4,® 4;, V(27) ® V(2)).
() H~ O0®), (i) degf =12, (ii) f(x) is given by the discrimi-
nant of a binary cubic form det (uX + vY) forzx = (X,Y)e # ® ¢
~ V(@27) ® V(2) (see Proposition 48 in §5).

29) (GLQ) X E,, O® 4, V(1) ® V(56)).
() H ~ E;, (i) deg f =4, (i) f(X) = T4,y — EN(@) — 9N ()
— 1(T(x,y) — &9)* (see (1.16), or Proposition 52 in §5).

II) A Non-regular Prehomogeneous Vector Space, with relative invari-
ants.
(GLQAQ) x Sp(n) x SOB), O® 4,® 4,, V(1) ® V(2n) ® V(3)).
(i) H ~ (Sp(n — 2) x SOQ@))-U@2n — 3), (ii) deg f =4, (i) f(X)
= tr (XJXK)* for XeM(@2n,3) = VA)QV(@2n)® V(3) (see Propo-
sition 19 in §5).

III) A Non-regular Prehomogeneous Vector Space, without relative in-
variant.

(1) (G X GL(m), p® 4;, V() ® V(m)).

(1) (G x SL(m), p® 4,, V(n) ® V(m)),
where p: G — GL(V(n)) is an m-dimensional irreducible represen-
tation of a semi-simple algebraic group G (# SL(n)) with m > n
> 3.

(2) (SLm) x GL(m), 4, 4,, V() ® V(m)) (m/2>n2>1).

(2)  (SL(n) x SL(m), 4, 4,, V(rn) ® V(m)).

(8) (GL@m + 1), 4,, V(m@m + 1)) (m > 2).

(3) (SL@2m + 1), 4, V(m@2m + 1))).

(4) (SL@m + 1) X GL2), 4,® 4,, V(m@2m + 1)) ® V(2)) (m > 2).

(4) (SLCm + 1) X SL2), 4, 4;,, V(m@2m + 1)) ® V(2)).

(5) (Spm) x GL@m + 1), 4,® 4;,, V(2n) ® V(2m + 1))
mn>2m+1>1).
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(5)  (Sp(m) X SL@2m + 1), 4, 4,, V(2n) ® V(2m + 1)).
(6) (GLQ) x Spin 10), O half-spin rep., V(1) ® V(16)).
(6") (Spin (10), half-spin rep., V(16)).

§8. Prehomogeneous vector spaces with finitely many orbits

In this section, we shall study some necessary conditions that a
number of orbits of a given irreducible triplet (G, p, V) is finite. Clearly,
such a triplet must be a P.V. from the dimension reasons. By Theorem
1 in §1, the Lie algebra g of p(G) is reductive with at most one-dimen-
sional center. First we shall consider the case when the center of g is
of one dimension. Then as we have seen in §3, we may assume that
G=CGLM) X G X XCp p=000®+ ®p,, V=VDOVUE)D - --
®V(d,) with d, > d,> --- > d, > 2, where each G; is a connected almost
simple algebraic group, p; is an irreducible representation of G, on the
d;-dimensional vector space V(d,) 1 <i¢< k), and [J is the standard
representation of GL(1) on the one-dimensional vector space V(1).

PROPOSITION 1. Let p: G/ — GL(V’) be an irreducible representation
of a semi-simple algebraic group G’ on V’'. Assume that a number of
orbits of a triplet (G’ X GL(n), p® 4,, V'Q V(n)) is finite. Then for
any k < n, a number of orbits of a triplet (G' X GL(k), p ® 4, V' ® V(k))
18 also finite.

Proof. Identify V =V’ ' ® V(n) with V'@ .-+ @ V' (n-copies) and for
any point v = (v,, ---,v,) of V, let ¢(v) be a subspace of V’ generated
by vy, ---,v,. Then ¢ is a surjective map from V to a set T =
Grass, (V) U .-+ U Grass, (V) where £ = min (dim V’,n) and Grass, (V')
denotes the Grassmann variety consisting of 7-dimensional subspaces of
V’. Since GL(n) acts homogeneously on each fibre of ¢, there is a one-
to-one correspondence between the orbits of a triplet (G’ X GL(n), p®
A4;, VV® V(n)) and the orbits of G’ on T. Therefore, by assumption, a
number of G-orbits on Grass, (V/) (0 < » < ¢) is finite. In particular,
for 4/ = min (dim V’, k), a number of G-orbits on 77 = Grass, (V) U --.
U Grass, (V') is finite, and hence we obtain our assertion. Q.E.D.

PROPOSITION 2. Let (G,p, V) be an irreducible P.V. with finitely
many orbits. Then we have 0 < k < 3.

Proof. Assume that k > 4. Then a triplet (SL(d,) X SL(d,) X SL(d,)
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X GL(d, -+ dy)y 4, Q4R A4,R4;, V(d)®V(d) ®V(d)®V(, --- dy) has
finitely many orbits. Therefore by Proposition 1, a triplet (SL(d) X
SL(d,) x SL(d;) X GL(2), 4, ® 4,® A4, 4, V(d)) ® V(d) ® V(dy) ® V(2)) has
also finitely many orbits. By repeating this procedure, a triplet (SL(2)
X SL(2) X SL(2) X GL(2), 4, ® 4, ® 4, ® 4, V(2) ® V(2) ® V(2) ® V(2)) has
finitely many orbits. This is a contradiction since dim SL(2) x SL(2) X
SL2) X GL2) =13 < dimV@)® V) ® V(2) Q V(2) = 16. Q.E.D.

Assume that a number of orbits of a triplet (G,p,V) is finite. If
k <1, then it is a reduced P.V. and hence by Theorem 54 in §5, we
obtain the following assertion.

PROPOSITION 3. If k<1, it is equivalent to one of the following
P.V.s.

I) A Regular P.V.

(1) (GL@, O, V@) (k= 0).

(2) (GL(m), 24,, V(n(rn + 1)) (n > 2).

(3) (GL@2m), 4,, V(m@2m — 1))) (m > 3).

(4) (GL®), 34,, V(4)).

(5) (GL(®), 4,, V(20)).

(6) (GL(D), 4,, V(35)).

(7)) (GL(), 4,, V(56)).

(8) (GL() X Sp(3), O® 4, V(1) ® V(14)).

(9) (GL(1) x SOm), O® 4,, V(1) ® V(n) (n > 3).

(10) (GLQ) x Spin (7), O spin rep., V(1) ® V(8)).

11) (GLQ) x Spin (9), O® spin rep., V(1) ® V(16)).

(12) (GLQ) x Spin (11), O® spin rep., V(1) ® V(32)).

13) (GLQ) x Spin (12), O® half-spin rep., V(1) ® V(32)).
14) (GLQ) x Spin (14), O half-spin rep., VA1) Q@ V(64)).
(15) (GLQ) x (Gy), O® 4, V() ® V(D).

(16) (GLQ1) xX E,, O® 45, V(1) ® V2D)).

a7 (GLQ) x E,, O® 4, V(1) ® V(56)).

II) A Nown-regular P.V. without Relative Invariants.

(1) (GLm), 4, V(n))  (n=>2).

(2) (GL@2m + 1), 4,, V(m@2m + 1)) (m > 2).

(8) (GLQ) X Sp(m), O 4, V(A) ® V(2n)) (n > 2).
(4) (GLQ) x Spin (10), O ® half-spin rep., V(1) ® V(16)).
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Now we shall consider the case of k¥ = 2. Then it is reduced or is
a castling transform of a reduced P.V. with k< 2. First we shall
consider a castling transform of a P.V. with k = 1.

PROPOSITION 4. The following mnon-reduced P.V.’s have infinitely
many orbits.

I) A Regular P.V.

(1) (SL(m) X GLGn(n + 1) — 1), 24,® 4;,, V({Enln + 1) @ V@Enn + 1)
— 1) (n > 3).

(2) (SL@m) x GL(m@2m — 1) — 1), 4, 4,, V(m@m — 1)) ® V(m@2m —
H—-1) (m=3).

(3) (SL(2) X GL(3), 34,&® 4,, V(4) ® V(3)).

(4) (SL(6) x GLQ19), 4,® 4,, V(20) ® V(19)).

(5) (SL(7) x GL(34), A4, A,, V(35)Q V(34)).

(6) (SL(®) x GL(55), 4, 4,, V(66) ® V(55)).

(7) Sp@) X GLA13), 4;,® 4,, V(14) ® V(13)).

(8) (Spin(7) X GL(7), spin rep. @ 4,, V(8)  V(N)).

(9) (Spin(9) x GL(15), spin rep. ® 4,, V(16) ® V(15)).

(10) (Spin (11) x GL(31), spin rep. Q 4,, V(382) ® V(31)).

(11) (Spin (12) X GL(31), half-spin rep. ® A,, V(382) Q V(31)).

(12) (Spin (14) X GL(63), half-spin rep. Q A,, V(64) Q V(63)).

(13)  ((Gy) X GL(6), 4, 4,, V(1) ® V(6)).

14) (E; x GL(26), 4,® 4,, V(27) & V(26)).

a5) (E, x GL(55), 4, 4,, V(56) Q V(55)).

II) A Non-regular P.V. without Relative Invariants.

(1) (SL@m + 1) X GLm@2m + 1) — 1), 4,® 4,, V(m@2m + 1))
®V(m2m +1) —1))  (m>2).

(2) (Spin (10) x GL(15), half-spin rep. ® 4,, V(16) ® V(15)).

Proof. Assume that (1) has finitely many orbits. Then by Propo-
sition 1, a triplet (SL(n) X GL(3), 24, ® 4,, V(in(r + 1)) ® V(3)) has also
finitely many orbits. Since dim SL(n) X GL(3) < dim V(n(z + 1)) ® V(3),
it is not a P.V. and hence it has infinitely many orbits, i.e., a contra-
diction. Similarly, we can prove that other P.V.’s in Proposition 4 have
infinitely many orbits. Q.E.D.

Next we shall consider a trivial P.V. (G X GL(m), p® 4,, V() ®
V(m)) with £k =2, m > n. If a number of orbits of this P.V. is finite,
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then by Proposition 1, a triplet (GLQQ) X G, O0®p, VA)® V(r)) and a
triplet (G X GL(n — 1), p® 4;, V(n) ® V(r — 1)) have also finitely many
orbits. Therefore, by Proposition 3 and Proposition 4, we have G =
SL(n), SO(m), or Sp(n') (n =2n' is even). Now we shall consider a
castling transform of a reduced P.V. with k = 2.

PROPOSITION 5. The following mnon-reduced P.V.’s have infinitely
many orbits.

I) A Regular P.V.

(1) (SLB) x GLM4), 24,® 4,, V(6) ® V(4)).

(2) (SL(6) x GL(13), 4, 4,, V(15) ® V(13)).

(8) (Spin (7) x GL(6), spin rep. ® 4,, V(8) ® V(6)).

(4) (Spin (7) X GL(5), spin rep. @ 4,, V(8) & V(5)).

(5) (Spin (10) X GL(4), half-spin rep. ® 4,, V(16) Q V(14)).
(6) (Spin (10) X GL(13), half-spin rep. & A,, V(16) ® V(13)).
(7)) Gy x GL(5), 4, 4,, V(T) ® V(5)).

(8) (E; x GL(25), 4,® 4,, V(27) ® V(25)).

II) A Nown-regular P.V.
(9) (SL@2m + 1) x GL(m@2m + 1) — 2), 4, 4,, V(m@2m + 1))
@ V(m@2m + 1) — 2)).

Proof. If (3) or (4) has finitely many orbits, then a triplet (Spin (7)
X GL(4), spin rep. ® 4,, V(8) ® V(4)) has also finitely many orbits by
Proposition 1. However, this triplet is not a P.V. by Proposition 28 in
§5, i.e., a contradiction and hence (3) and (4) has infinitely many orbits.
If (5) or (6) has finitely many orbits, a triplet (Spin (10) X GL(4), half-
spin rep. ® 4,, V16) ® V(4)) has also finitely many orbits. Since
dim Spin (10) X GL(4) = 61 < 64 = dim V(16) ® V(4), this triplet is not a
P.V., i.e., a contradiction. Similarly, we can prove our assertion for

@, @, M, ®. Q.E.D.

PROPOSITION 6. Let (G,p,V) be a triplet with finitely many orbits
and k =2. Then it is equivalent to one of the following triplets. (Note
that we have assumed that the center of p(G) is one-dimensional.)

I) A Regular P.V.
(1) (SL(m) X GL(n), 4,® 4,, V(n) ® V(n)) (n > 2).
(2) (SOm) x GL(m), 4,® 4;, V(n) ® V(m)) n>m>2).
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(3) (Sp(n) X GL@2m), 4,® 4, V2n) @ V(2m)) (=m >1).
(4) (SL3) X GL(Q2), 24,® 4,, V(6) ® V(2)).

(5) (SL®6) x GIL(2), 4,® 4,, V(15) ® V(2)).

(6) (SL(5) x GL(3), 4,® 4,, V(10) ® V(3)).

(7) (SL(5) X GL4), 4,® 4,, V(10) ® V(4)).

(8) (Spin (7)) x GL(2), spin rep. @ 4;,, V(8) ® V(2)).

(9) (Spin (7) X GL(3), spin rep. ® 4;, V(8) ® V(3)).

(10) (Spin (10) x GL(2), half-spin rep. @ 4,, V(16) ® V(2)).
(11) (Spin (10) x GL(3), half-spin rep. ® 4,, V(16) ® V(3)).
(12) Gy x GL(2), 4,8 4;, V(1) ® V(2)).

(13) (Fs X GL(2), 4,® 4,, V(27) &® V(2)).

II) A Non-regulor P.V. with Relative Invariants.
(GL() X Sp(n) x SOEB), O® 4, ® 4,, V1) ® V(2n) ® V(3)).

III) A Nown-regular P.V. without Relative Invariants.

(1) (SL(n) X GL(m), 4, 4,, V(n) ® V(m)) (n < m).

(2) (SO X GL(m), 4, 4,, V(n) ® V(m)) (n < m),

(3) Spn) X GL2m), 4, 4,, V(2n) ® V(2m)) (n < m).

(4) (Spn) x GL2m + 1), 4,® 4,, V(2n) ® V@2m + 1)).

(5) (SL@2m + 1) X GL(2), 4,& 4, V(m@2m + 1)) ® V(2)) (m > 2).

Proof. From Theorem 54 in §5, Propositions 4 and 5, we obtain
our assertion. Q.E.D.

Finally, we shall consider the case of k¥ = 3. Assume that a triplet
(GLA) X G, X G, X Gy, OR® 0, ® 0, ® o5, V(1) ® V(d) ® V(dy) ® V(dy)) has
finitely many orbits. Then clearly a triplet (SL(d,) X SL(d, x GL(d,),
4, @4, 4, V(d)® V(d,) ® V(d,)) has also finitely many orbits and hence
by Proposition 1, (SL(d,) X SL(d,) X GL(2), 4,® 4, & 4, V(d,) ® V(d,) ®
V(2)) has also finitely many orbits. By Proposition 16 in §5, it is not
a P.V. if d, >4, and hence we have 3 >d,>2. If d,=2, then our
triplet is equivalent to a triplet (GL(1) X G, x SO®4), O® p, ® 4,, V()
QXV()®V@). If G, + SL(d), then this is a reduced P.V., i.e., a con-
tradiction in view of Theorem 54 in §5. Therefore, G, = SL(d). As-
sume that d,=3. If d,=3, then a triplet (SL(3) x SL(3) x GL(3),
A, 4, R4, VB X V(B)® V(3)) has also finitely many orbits. This is
a contradiction since dim SL(3) X SLB3) X GL(8) =25 < 27 = dim V(8) ®
V() ® V(3), and hence we have d; = 2, G, = SL(2), p, = 4,. Since d, = 3,
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we have G, = SL(2), p, = 24, or G, = SL(3), p, = 4,. Assume that G, =
SL(2). Then this triplet is equivalent to (G, x SOB) X GL(2), p,® 4, ®
A, VAd) R VB)YR®VQ) (d, >3). If G, + SL(d), then it is a reduced
P.V., i.e.,, a contradiction in view of Theorem 54 in §5 and we have
(SL(d,)) X SOB) X GL(2), 4, 4,3 4,, V(d)® V()X V(2)). Since (d? — 1)
+ 3 +4>6d, we have d, > 5. Note that it is regular if 6 >d, > 5
and not regular if d, > 7. Assume that G, = SL(3). Then a triplet
(G, X GL(3), p, ® 4, V(d,) ® V(3)) has finitely many orbits by Proposition 1.
Therefore, by Proposition 6, G, = SL(d,), SO(d), Sp(d) (d, = 2d;: even),
SL(5) (d, = 10), Spin (7) (d, = 8) or Spin (10) (d, = 16). However, if G,
# SL(d), then (G, X SL(3) X GL(?2), p,® 4, X 4,, V(d) ® V() ® V(2)) is
a reduced P.V., i.e., a contradiction in view of Theorem 54 in §4.
Hence we have (SL(d,) X SL(3) X GL(2), 4,® 4, ® 4,, V(d)) ® V(8) ® V(2)).

PROPOSITION 7. If k = 3, then it is equivalent to one of the follow-
ing triplets.
(1) (SL(d) X SL(2) X GL(2), 4,® 4, ® 4,, V(d) ® V(2) ® V(2)) = (SO4)
X GL(d), 4,® 4;, VAR V()  (d = 2).
(2) (SL(d) X SOB) X GL(2), 4, 4, & 4,, V(d) ® V(3) ® V(2))
(d, > 5).
(8) (SL(d) X SL(3) X GL(2), 4, 4, 4;, V(d) ® V(3) ® V(2))
(d, > 3).

Now consider the case when G is semi-simple. Then (GLQ1) x G,
O0®p, V(1) ® V(d)) is a non-regular P.V. with finitely many orbits and
hence by Propositions 3, 6, and 7, it is equivalent to one of the following
P.V.’s.

(1) (SLMm), 4, V(n))  (n > 2).

(2) (SL@m + 1), 4,, V(m@m + 1))) (m > 2).

(3) (Spm), 4, V2n))  (n=>2).

(4) (Spin (10), half-spin rep., V(16)).

(5) (SL(n) x SL(m), 4, 4;, V(n) ® V(m)) n < m).

(6) (SOm) X GL(m), 4,@ 4, Vi) @ V(m))  (n < m).

(7)) (Spn) x SL@2m), 4, 4,, V(2n) ® V(2m)) (n < m).

(8) (Sp(n) x SL@2m + 1), 4,® 4, V(2n) ® V(2m + 1)).

(9) (SL@m + 1) X SLQ2), 4,® 4,, V(m2m + 1)) ® V(2)).

10) (SL(d,) X SO®B) X SL?2), 4, A4, ® A,, V(d,) ® V(3) ® V(2))
(d, >").
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(A1)  (SL(d) x SL(3) x SL(2), 4,® 4, ® 4,, V(d) ® V(3) ® V(2))
(d, > 17 or d, =5).
Therefore we obtain the following theorem.

THEOREM 8. (i) A trivial P.V. with finitely many orbits is equivalent
to one of the following P.V.’s.
(1) (SLm) X GL(m), 4,® 4;, Vi) @ V(m)) (A <n < m).
(2) SOm) X GL(m), 4, @ 4, V)@ V(m)) B <n<m).
(3) (Spm) X GL(m), 4,® 4;, V(2n) ® V(m)) @2n < m).
(4) (SOB) x SL2) X GL(d), 4, 4,® 4, V) ® V(2) ® V(d))
(d > 6).
(5) (SLB) X SL(2) X GL(d), 4,®@ 4, & 4;, V(3) ® V(2) ® V(d))
(d > 6).
(1) (SL(m) X SL(m), 4, 4, V)@ V(m)) (A <n<m).
(2) (SO(m) x SL(m), 4, 4;, Vi) ® V(m)) B <n < m).
(3)  (Spm) X SL(m), 4,® 4,, V(2n) ® V(m)) @2n < m).
(4) (SO@) X SL(2) X SL(d), 4, 4, &® 4,, V(3) ® V(2) ® V(d))
@="m.
(5)  (SL(3) X SL2) X SL(d), 4,9 4,&® 4;, VB ® V(2) ® V(d)
@=m.

(i) A non-trivial non-reduced P.V. with finitely many orbits is equivalent
to one of the following P.V.’s.
(1) (SOm) x GL(m), 4, @ 4;, V(n) ® V(m)) n>m > n/2).
(2) (Spn) X GL(m), 4, 4,, V(2r) ® V(m)) @2n > m > n).
(8) (SOB) x SL(2) x GL(5), 4,® 4, ® 4;, V(3) ® V(2) ® V(5)).
(4) (SL@) x SL(3) x GL(2), 4, 4,® 4;,, V1) @ V(3) ® V(2)).
(5) (SL(5) X SL(3) X GL(?2), 4, 4,® 4;, V(6) ® V(3) ® V(2)).
(1)  (Spm) x SL2m + 1), 4, 4;, V(2n) ® V(2m + 1))
@n > 2m + 1> n).
(2) (SL(5) x SL3) x SL(2), 4, @ 4, &® 4, V(B)® V(3) ® V(2)).

Remark 9. Theorem 8 says that a P.V. with finitely many orbits
is reduced with few exceptions. However, the orbital decomposition is
necessary to prove that such a P.V. has actually finitely many orbits.
The orbital decomposition of reduced P.V.’s is in almost all cases com-
pleted by the second author (see [12]), J. Igusa (see [2]), I. Ozeki (see
[20]), Kawahara (see [13]) and S. J. Harris (see [7]). These orbital struc-
tures have very close relations with the b-functions and Fourier trans-
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forms of the relative invariants.
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