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Abstract. Let (�, �, �) be a nonatomic probability space and let F = (Fn)n∈�+
be a filtration. If f = ( fn)n∈�+ is a uniformly integrable F-martingale, let AF f =
(AF fn)n∈�+ denote the martingale defined by AF fn = �[| f∞||Fn] (n ∈ �+), where f∞ =
limn fn a.s. Let X be a Banach function space over �. We give a necessary and sufficient
condition for X to have the property that S( f ) ∈ X if and only if S(AF f ) ∈ X , where
S( f ) stands for the square function of f = ( fn).

2000 Mathematical Subject Classification. 46E30, 60G42.

1. Introduction. Let (�, �, �) be a nonatomic probability space and let F =
(Fn)n∈�+ be a filtration; i.e., an increasing sequence of sub-σ -algebras of �. If f =
( fn)n∈�+ is a uniformly integrableF-martingale, we letA f ≡ AF f = (AF fn)n∈�+ denote
the F-martingale defined by

A fn ≡ AF fn = �[| f∞||Fn] (n ∈ �+),

where f∞ = limn→∞ fn almost surely (a.s.) on �. If f = ( fn)n∈�+ is a martingale, we
denote by S( f ) the square function of f . Let us recall Burkholder’s inequality: if
1 < p <∞, then there are positive constants cp and Cp such that

cp ‖ f∞‖p ≤ ‖S( f )‖p ≤ Cp ‖ f∞‖p

for all uniformly integrable martingales f = ( fn) (with the convention that ‖x‖p = ∞
unless x ∈ Lp). It then follows that S( f ) ∈ Lp if and only if S(A f ) ∈ Lp. There are similar
results for other function spaces. For example, let L� be the Orlicz space generated
by an N-function � satisfying the �2- and ∇2-conditions. (See e.g. [13, p. 22].) Then
S( f ) ∈ L� if and only if S(A f ) ∈ L�. This follows from the Burkholder-Davis-Gundy
inequality and the Doob inequality in L� ([9, p. 89, p. 96]).

Now let X be a Banach function space over �. (See Definition 1 below.) Our aim
is to find a necessary and sufficient condition for X to have the property that S( f ) ∈ X
if and only if S(A f ) ∈ X . (See Theorem 1.)

Such a problem concerning the maximal function M( f ) = supn | fn| of f has been
studied. As in [7], we can prove that the following statements are equivalent.

(i) M( f ) ∈ X if and only if M(A f ) ∈ X .
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(ii) X is rearrangement-invariant and can be renormed with a rearrangement-
invariant norm for which the upper Boyd index is less than 1.

2. Preliminaries. We shall deal with martingales on a (fixed) nonatomic
probability space (�, �, �). Let I denote the interval (0, 1] and let µ be Lebesgue
measure on the σ -algebra M of measurable subsets of I . In order to deal with the two
probability spaces (�, �, �) and (I, M, µ) at the same time, we shall work with an
arbitrary nonatomic probability space (R, R, λ) throughout this section.

Let X and Y be Banach spaces of (equivalence classes of) random variables on
R. We write X ↪→ Y to mean that X is continuously embedded in Y ; i.e., X ⊂ Y and
‖x‖Y ≤ c ‖x‖X , for all x ∈ X and some positive constant c.

DEFINITION 1. A real Banach space (X, ‖ · ‖X ) of random variables on R is called
a Banach function space if it has the following properties:

(B1) L∞ ↪→ X ↪→ L1;
(B2) x ∈ X, |y| ≤ |x| a.s. =⇒ y ∈ X, ‖y‖X ≤ ‖x‖X ;
(B3) xn ∈ X, 0 ≤ xn ↑ x a.s., supn ‖xn‖X < ∞

=⇒ x ∈ X, ‖x‖X = supn ‖xn‖X .

From (B2) it follows that x ∈ X if and only if |x| ∈ X , and also that ‖x‖X = ‖|x|‖X
for all x ∈ X .

Let x be a random variable on R. The nonincreasing rearrangement of x is the
function x∗(t) on I = (0, 1] defined by

x∗(t) = inf{s > 0 | λ(|x| > s) ≤ t} (t ∈ I).

Notice that x∗ is a unique right-continuous nonincreasing function on I that has the
same distribution (with respect to µ) as |x|.

Let x and y be random variables on R. The inequality∫
R

|xy| dλ ≤
∫ 1

0
x∗(s)y∗(s) ds (1)

is fundamental and called the Hardy-Littlewood inequality. (See, for example, [2, p. 44].)
In particular, if A ∈ R, then ∫

A
|x| dλ ≤

∫ λ(A)

0
x∗(s) ds. (2)

Again let x and y be random variables on R. We write y ≺ x to mean that∫ t

0
y∗(s) ds ≤

∫ t

0
x∗(s) ds for all t ∈ I.

Note that if y ≺ x and x ≺ y, then x∗ = y∗ on I : in this case, we write x �d y. Thus
x �d y if and only if x and y are identically distributed.

DEFINITION 2. Let X be a Banach function space equipped with the norm ‖ · ‖X .
We say that X is rearrangement-invariant (r.i.) if

(R1) x ∈ X, x �d y =⇒ y ∈ X.
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We say that X is equipped with a rearrangement-invariant norm (or an r.i. norm) if

(R2) x, y ∈ X, x �d y =⇒ ‖x‖X = ‖y‖X .

Using (B2), (B3), and (R2), we can easily verify that if X is equipped with an r.i.
norm, then the space X is r.i. The converse is false in general. However, if X is r.i.,
then there exists an r.i. norm ||| · |||X on X such that ‖ · ‖X ≈ ||| · |||X (i.e., these norms
are equivalent). See [10, p. 138] for details.

Since the underlying probability space � is nonatomic, we can replace (R1) by

(R1′) x ∈ X, y ≺ x =⇒ y ∈ X,

and (R2) by

(R2′) x, y ∈ X, y ≺ x =⇒‖y‖X ≤ ‖x‖X .

For details, see [10, Section 11].
Now let us recall the Luxemburg representation theorem. If X is an r.i. space

equipped with an r.i. norm ‖ · ‖X , then there exists a unique r.i. space (X̂, ‖ · ‖X̂ ) over
I equipped with an r.i. norm such that

(i) x ∈ X ⇐⇒ x∗ ∈ X̂ ,
(ii) ‖x‖X = ‖x∗‖X̂ for all x ∈ X .

We call X̂ the Luxemburg representation of X . See [2, pp. 62–64].
Now we recall the definition of Boyd indices. For each positive number s, the

dilation operator Ds, acting on the space of measurable functions on I , is defined as
follows: if t ∈ I , then

(Dsϕ)(t) =
{
ϕ(st) if st ∈ I,
0 otherwise.

If Y is an r.i. space over I equipped with an r.i. norm, then each Ds is a bounded linear
operator from Y into Y and ‖Ds‖B(Y ) ≤ 1 ∨ s−1, where ‖Ds‖B(Y ) denotes the operator
norm of Ds: Y → Y . The lower and upper Boyd indices are defined by

αY = sup
0 < s < 1

log ‖Ds−1‖B(Y )

log s
= lim

s→0+
log ‖Ds−1‖B(Y )

log s

and

βY = inf
1 < s <∞

log ‖Ds−1‖B(Y )

log s
= lim

s→∞
log ‖Ds−1‖B(Y )

log s
,

respectively. If X is an r.i. space over � equipped with an r.i. norm, then the Boyd
indices of X are defined as αX = αX̂ and βX = βX̂ . Moreover, if X is an arbitrary r.i.
space over �, then the Boyd indices of X are defined to be those of (X, ||| · |||X ), where
||| · |||X is an r.i. norm such that ‖ · ‖ ≈ ||| · |||X .

For any r.i. space X , we have 0 ≤ αX ≤ βX ≤ 1. See [3] or [2, p. 149]. For example,
αL∞= βL∞= 0, and αLp

= βLp
= 1/p whenever 1 ≤ p < ∞.
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Let F = (Fn)n∈�+ be a filtration. If f = ( fn)n∈�+ is an F-martingale, we let

�0f = f0, �nf = fn − fn−1 (n = 1, 2, . . .), and S( f ) =
{ ∞∑

n=0

(�nf )2

}1/2

.

Given a Banach function space X over �, we denote by HF (X) the vector space
consisting of all F-martingales f = ( fn) such that S( f ) ∈ X . Since X ↪→ L1, every
martingale in HF (X) is uniformly integrable. If we set ‖ f ‖HF (X) = ‖S( f )‖X for
f ∈HF (X), then HF (X) forms a Banach space with this norm; see [12].

3. Main results. From now on we shall consider a fixed Banach function space
(X, ‖ · ‖X ) over �, and adopt the convention that ‖x‖X = ∞ unless x ∈ X . We denote
by � the collection of all filtrations F = (Fn)n∈�+ such that � = σ (

⋃∞
n=0 Fn).

THEOREM 1. The following are equivalent.
(i) For any F = (Fn) ∈ �,

f = ( fn) ∈HF (X) ⇐⇒ AF f = (AF fn) ∈HF (X).

(ii) There are positive constants c and C, depending only on X, such that

c ‖ f∞‖X ≤ ‖S( f )‖X ≤ C ‖ f∞‖X , (3)

for all uniformly integrable martingales f .
(iii) X is rearrangement-invariant and can be renormed with a rearrangement-

invariant norm for which 0 < αX ≤ βX < 1.

It was shown by Antipa [1] that (iii) implies (ii). See also [5], [6] and [11].
Furthermore we see from our convention that (ii) implies (i). Indeed if (ii) holds,
then

S( f ) ∈ X ⇐⇒ f∞ ∈ X ⇐⇒ | f∞| ∈ X ⇐⇒ S(AF f ) ∈ X.

Thus, to prove Theorem 1, it suffices to show that (i) implies (iii). To this end, we shall
prove Propositions 1, 2, and 3 below. Incidentally, we can prove directly that (ii) implies
(iii), as in [8].

PROPOSITION 1. If X satisfies the condition that

f ∈HF (X) =⇒AF f ∈HF (X), (4)

for any F = (Fn) ∈ �, then X is rearrangement-invariant.

PROPOSITION 2. Suppose that X is rearrangement-invariant. If X satisfies (4) for any
F = (Fn) ∈ �, then βX < 1.

PROPOSITION 3. Suppose that X is rearrangement-invariant. If βX < 1 and if X
satisfies the condition that

AF f ∈HF (X) =⇒ f ∈HF (X),

for any F = (Fn) ∈ �, then αX > 0.
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4. Proof of Proposition 1. We begin with a lemma.

LEMMA 1. The following are equivalent.
(i) X is rearrangement-invariant.

(ii) Let x and y be nonnegative integer-valued random variables such that x �d y
and x ∧ y = 0 a.s. If x ∈ X, then y ∈ X.

Proof. It suffices to show that (ii) implies (R1) of Definition 2. Suppose that
x �d y and x ∈ X . We must show that y ∈ X . If x ∈ L∞, then y ∈ L∞ ⊂ X . Hence we
deal with the case in which x /∈ L∞. Choose an integer n so large that �(x ≥ n) ≤ 1/3.
If we set

x′ =
∞∑

j=n

j1{j≤x < j+1} and y′ =
∞∑

j=n

j1{j≤y < j+1},

then x′ ≤ x ∈ X and x′ �d y′. Since �(x′ = 0, y′ = 0) = �(x < n, y < n) ≥ 1/3 and
the set {x′ = 0, y′ = 0} contains no atom, we can find a random variable z such that
z �d x′ and {z > 0} ⊂ {x′ = 0, y′ = 0}. (See [4, p. 44].) From (ii) we see first that z ∈ X
and then that y′ ∈ X . Since y ≤ n + 1 + y′ ∈ X , we conclude that y ∈ X , completing the
proof. �

Proof of Proposition 1. It suffices to show that (ii) of Lemma 1 holds. Let {cj}∞j=1 be
a sequence of integers such that 0 < c1 < c2 < · · · ; let {Aj}∞j=1 and {Bj}∞j=1 be pairwise
disjoint sequences of sets in � such that(⋃∞

j=1 Aj
) ∩ (⋃∞

j=1 Bj
) = ∅ and �(Aj) = �(Bj) for all j = 1, 2, . . .

We must show that if x := ∑∞
j=1 cj1Aj ∈ X , then y := ∑∞

j=1 cj1Bj ∈ X . Setting �0 = �

and �n = ⋃∞
j=n(Aj ∪ Bj) for n ≥ 1, we define F = (Fn) ∈ � by

Fn = σ {� \ �n | �∈ �} (n ∈ �+). (5)

For each j ∈ �+ we divide Aj into two parts with the same measure; that is, let Aj1 and
Aj2 be measurable subsets of Aj such that

Aj = Aj1 ∪ Aj2, Aj1 ∩ Aj2 = ∅, and �(Aj1) = �(Aj2).

Let xk = ∑∞
j=1 cj1Ajk (k = 1, 2), let f∞ = x1 − x2, and let f = ( fn)n∈�+ be the martingale

defined by

fn = �[ f∞ |Fn] = f∞1�\�n (n ∈ �+). (6)

Then, since �0f = f0 ≡ 0 and �nf = f∞1�n−1\�n (n ≥ 1), we see that S( f ) = | f∞| =
x ∈ X ; that is, f ∈HF (X). Hence A f = AF f ∈HF (X) or equivalently S(AF f ) ∈ X , by
hypothesis. Observe that

A fn = �[x |Fn] = 1�n

�(�n)

∫
�n

x d � + x1�\�n (n ∈ �+).

Then we have

�n+1A f =
{

1
�(�n+1)

∫
�n+1

x d � − 1
�(�n)

∫
�n

x d �

}
1�n+1

+
{

x − 1
�(�n)

∫
�n

x d �

}
1�n\�n+1 (n ∈ �+).
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Since Bn ⊂ �n \ �n+1 and x = 0 on Bn, we can deduce that

|�n+1A f | 1Bn = 1Bn

�(�n)

∣∣∣∣∫
�n

x d �

∣∣∣∣ = 1Bn

�(�n)

∞∑
j=n

cj �(Aj)

≥ cn 1Bn

�(�n)

∞∑
j=n

�(Aj) = cn

2
1Bn (n = 1, 2, . . .).

Consequently,

y =
∞∑

n=1

cn1Bn ≤ 2
∞∑

n=1

|�n+1A f |1Bn = 2

{ ∞∑
n=1

(�n+1A f )21Bn

}1/2

≤ 2S(A f ).

Since S(AF f ) ∈ X , we conclude that y ∈ X as desired. �

5. Proofs of Propositions 2 and 3. Let P and Q be the linear operators on L1(I)
defined respectively by

(Pϕ)(t) = 1
t

∫ t

0
ϕ(s) ds and (Qϕ)(t) =

∫ 1

t

ϕ(s)
s

ds (t ∈ I).

It is easy to verify that

PQϕ = Pϕ + Qϕ (7a)

and

QPϕ = Pϕ + Qϕ −
∫ 1

0
ϕ(s) ds, (7b)

for all ϕ ∈ L1(I). Let us recall Shimogaki’s Theorem. In terms of Boyd indices, it can
be expressed as follows.

SHIMOGAKI’S THEOREM ([14]; cf. [3]). Let Y be a rearrangement-invariant space
over I. Then

(i) βY < 1 if and only if P is a bounded linear operator from Y into Y;
(ii) αY > 0 if and only if Q is a bounded linear operator from Y into Y.

The next lemma is a variant of Shimogaki’s result. Before stating it, we introduce
some notation.

NOTATION. Let Y be an r.i. space over I . We denote by DY the collection
of all nonnegative, nonincreasing, and right-continuous functions ϕ ∈ Y such that
µ(ϕ �= 0) ≤ 1/2.

LEMMA 2. Let Y be a rearrangement-invariant space over I. Then
(i) βY < 1 if and only if P(DY ) ⊂ Y,

(ii) αY > 0 if and only if Q(DY ) ⊂ Y.

Proof. (i) If P(Y ) ⊂ Y , then the graph {(ϕ, Pϕ) | ϕ ∈ Y} is closed in Y × Y , since
Y ↪→ L1. Hence P is a bounded linear operator if and only if P(Y ) ⊂ Y . Therefore, in
view of Shimogaki’s Theorem, it suffices to show that if P(DY ) ⊂ Y , then P(Y ) ⊂ Y .
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Suppose thatP(DY ) ⊂ Y . Given ψ ∈ Y , we choose λ > 0 so large that µ(|ψ | >λ) ≤
1/2, and let ϕ = ψ∗1{ψ∗ > λ}. Then ϕ ∈ DY and therefore Pϕ ∈ Y . On the other hand,
by the Hardy-Littlewood inequality (2), we have that

|(Pψ)(t)| ≤ 1
t

∫ t

0
|ψ(s)| ds ≤ 1

t

∫ t

0
ψ∗(s) ds

≤ 1
t

∫ t

0
{ϕ(s) + λ} ds = (Pϕ)(t) + λ (t ∈ I).

Since Pϕ + λ ∈ Y , we conclude that Pψ ∈ Y , as desired.
(ii) As in the proof of (i), we see that Q is a bounded linear operator from Y into Y

if and only if Q(Y ) ⊂ Y . Hence it suffices to show that if Q(DY ) ⊂ Y , then Q(Y ) ⊂ Y .
Suppose thatQ(DY ) ⊂ Y . Given ψ ∈ Y , we let ϕ1 = ψ∗ 1(0, 1/2) and ϕ2 = ψ∗ 1[1/2, 1].

Then ϕ1 ∈ DY and hence Qϕ1 ∈ Y . As for ϕ2, it is easy to see that Qϕ2 ≤ 2 ‖ψ‖1 on
I . Therefore Qϕ2 ∈ L∞(I) ⊂ Y . Thus Qψ∗ = Qϕ1 + Qϕ2 ∈ Y . On the other hand, by
the Hardy-Littlewood inequality (1), we have that∫ t

0
(Q|ψ |)(s) ds =

∫ 1

0

t ∧ s
s

|ψ(s)| ds ≤
∫ 1

0

t ∧ s
s

ψ∗(s) ds =
∫ t

0
(Qψ∗)(s) ds,

for all t ∈ I . This can be written as Q|ψ | ≺ Qψ∗. Since Qψ∗ ∈ Y , we conclude from
(R1′) that |Qψ | ≤ Q|ψ | ∈ Y . This completes the proof. �

In order to prove Propositions 2 and 3, we need one more lemma.

LEMMA 3. If x is a nonnegative integrable random variable on �, then there exists a
family {A(t) | t ∈ I} of sets in � satisfying the following conditions:

(i) A(s) ⊂ A(t) whenever 0 < s < t ≤ 1;
(ii) �(A(t)) = t for all t ∈ I;

(iii) {x > x∗(t)} ⊂ A(t) ⊂{x ≥ x∗(t)};
(iv)

∫
A(t) x d � = ∫ t

0 x∗(s) ds for all t ∈ I.

See [2, p. 46] for a proof.

Proof of Proposition 2. We may assume that X is equipped with an r.i. norm.
In view of Lemma 2, we show that Pϕ ∈ X̂ whenever ϕ ∈ DX̂ , where X̂ is the
Luxemburg representation of X . If ϕ ∈ L∞(I), then Pϕ ∈ L∞(I) ⊂ X̂ . Hence we may
assume ϕ �∈ L∞(I). Because � is nonatomic and µ(ϕ �= 0) ≤ 1/2, there are nonnegative
random variables x and y such that x ∧ y = 0 a.s. and x∗ = y∗ = ϕ on I . (See [4,
p. 44].) Then x, y ∈ X , since x∗ = y∗ ∈ X̂ . By Lemma 3, there are increasing families
{A(t) | 0 < t ≤ 1/2} and {B(t) | 0 < t ≤ 1/2} of sets in � such that

�(A(t)) = �(B(t)) = t (0 < t ≤ 1/2), (8a)

{x > x∗(t)} ⊂ A(t) ⊂{x ≥ x∗(t)} (0 < t ≤ 1/2), (8b)

{y > x∗(t)} ⊂ B(t) ⊂{y ≥ x∗(t)} (0 < t ≤ 1/2), (8c)

and ∫
A(t)

x d � =
∫

B(t)
y d � =

∫ t

0
x∗(s) ds (0 < t ≤ 1/2). (8d)

https://doi.org/10.1017/S0017089503001617 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089503001617


150 MASATO KIKUCHI

We define a sequence of numbers in the interval (0, 1/2] by setting

t0 = µ(ϕ �= 0) = sup{t ∈ I | x∗(t) > 0},
tn = sup{t ∈ I | (Px∗)(t) > 2(Px∗)(tn−1)} (n = 1, 2, . . .).

Then, since Px∗ is continuous and (Px∗)(t) → ∞ as t → 0 +,

(Px∗)(tn) = 2(Px∗)(tn−1) (n = 1, 2, . . .). (9)

This implies that tn ↓ 0. Note that A(t0) ∩ B(t0) = {x > 0} ∩ {y > 0} = ∅ a.s. Setting
�n = A(tn) ∪ B(tn) for each n ∈ �+, we defineF = (Fn) ∈ � again by (5). Let f∞ = x − y
and let f = ( fn) be the martingale defined by (6). Then, since �nf = f∞1�n−1\�n (n =
1, 2, . . .), we see that S( f ) = | f∞| = x + y ∈ X . Therefore S(A f ) ∈ X by hypothesis.
On the other hand, by (8d) we have that

A fn = 1�n

�(�n)

∫
�n

(x + y) d � + | f∞|1�\�n

= (Px∗)(tn)1�n + | f∞|1�\�n (n ∈ �+).

Hence by (9),

�nA f = (Px∗)(tn−1)1�n + {| f∞| − (Px∗)(tn−1)}1�n−1\�n (n ∈ �+).

As a result,

(Px∗)(tn+1)1�n = 4(Px∗)(tn−1)1�n ≤ 4 |�nA f | (n = 1, 2, . . .). (10)

We also have (Px∗)(t1)1�0 = 2(Px∗)(t0)1�0 = 2A f0. Thus (10) remains valid for n = 0.
Since (Px∗)(2tn+1) ≤ (Px∗)(tn+1), it follows from (10) that

∞∑
n=0

(Px∗)(2tn+1)1�n\�n+1 ≤
{ ∞∑

n=0

(Px∗)(tn+1)2 1�n

}1/2

≤ 4S(A f ) ∈ X. (11)

Observe that( ∞∑
n=0

(Px∗)(2tn+1)1�n\�n+1

)∗
(t) =

∞∑
n=0

(Px∗)(2tn+1)1[2tn+1, 2tn)(t),

for all t ∈ I . This, together with (11), implies that

(Pϕ)(t) = (Px∗)(t) ≤ (Px∗)(t ∧ (2t0))

≤
∞∑

n=0

(Px∗)(2tn+1)1[2tn+1, 2tn)(t) + (Px∗)(2t0)

≤ 4(S(A f ))∗(t) + 1
2t0

∫ 1

0
ϕ(s) ds,

for all t ∈ I . Since the function on the right-hand side belongs to X̂ , so is Pϕ. This
completes the proof. �
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The proof of Proposition 3 is similar to the proof of Proposition 2.

Proof of Proposition 3. By Lemma 2, it suffices to show that Qϕ ∈ X̂ whenever
ϕ ∈ DX̂ . To this end, we may assume that ϕ �≡ 0. Since � is nonatomic and {Qϕ �=
0} ⊂ (0, 1/2), we can find nonnegative random variables x and y such that x∗ = y∗ =
Qϕ and x ∧ y = 0 a.s. Let {A(t) | 0 < t ≤ 1/2} and {B(t) | 0 < t ≤ 1/2} be increasing
families of sets in � satisfying (8a)–(8d). Now we define a sequence in (0, 1/2] by
setting

t0 = µ(Qϕ �= 0) = sup{t ∈ I | x∗(t) > 0};
tn = sup{t ∈ I | (Px∗)(t) > (Px∗)(tn−1) + 1/n} (n = 1, 2, . . .).

Then, since (Px∗)(t) ≥ x∗(t) → ∞ as t → 0+ and Px∗ is continuous,

(Px∗)(tn) = (Px∗)(tn−1) + 1
n

(n = 1, 2, . . .).

Hence tn ↓ 0. We also have A(t0) ∩ B(t0) = ∅ a.s. As before, let �n = A(tn) ∪ B(tn) for
n ∈ �+ and defineF = (Fn) ∈ � by (5). Let f∞ = x − y and let f = ( fn) be the martingale
defined by (6). Then S( f ) = | f∞| = x + y ≥ x and therefore Qϕ = x∗ ≤ (S( f ))∗ on I .
Thus the proof will be complete if we can show that (S( f ))∗ ∈ X̂ .

As observed before, A fn = (Px∗)(tn)1�n + | f∞|1�\�n , and therefore

�nA f = 1�n

n
+ {| f∞| − (Px∗)(tn−1)}1�n−1\�n (n = 1, 2, . . .). (12)

Since x∗(tn−1) ≤ x ≤ x∗(tn) on the set A(tn−1) \ A(tn) by (8b), we find that

−1
n

≤ (Px∗)(tn) − x∗(tn) − 1
n

= (Px∗)(tn−1) − x∗(tn)

≤ (Px∗)(tn−1) − x

≤ (Px∗)(tn−1) − x∗(tn−1) on A(tn−1) \ A(tn).

As a result,

|x − (Px∗)(tn−1)| ≤ (Px∗)(tn−1) − x∗(tn−1) + 1
n

on A(tn−1) \ A(tn).

In the same way, we see that

|y − (Px∗)(tn−1)| ≤ (Px∗)(tn−1) − x∗(tn−1) + 1
n

on B(tn−1) \ B(tn).

Since Px∗ − x∗ = PQϕ − Qϕ = Pϕ by (7a), it follows that

|| f∞| − (Px∗)(tn−1)| ≤ (Pϕ)(tn−1) + 1
n

on �n−1 \ �n.
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Combining this with (12) gives

|�nA f | ≤ 1
n

+ (Pϕ)(tn−1)1�n−1\�n (n = 1, 2, . . .).

Moreover

|�0A f | = |A f0| ≡ (Px∗)(t0) = 1
t0

||x∗||1 = 1
t0

‖Qϕ‖1 = 1
t0

‖ϕ‖1.

Therefore

S(A f ) ≤
{(

1
t0

‖ϕ‖1

)2

+
∞∑

n=1

(
1
n

+ (Pϕ)(tn−1)1�n−1\�n

)2
}1/2

≤ 1
t0

‖ϕ‖1 +
( ∞∑

n=1

1
n2

)1/2

+
∞∑

n=1

(Pϕ)(tn−1)1�n−1\�n .

Because( ∞∑
n=1

(Pϕ)(tn−1)1�n−1\�n

)∗
(t) =

∞∑
n=1

(Pϕ)(tn−1)1[2tn, 2tn−1)(t) ≤ (Pϕ)(t/2) = (D1/2Pϕ)(t)

for all t ∈ I , we obtain

(S(A f ))∗(t) ≤ 1
t0

‖ϕ‖1 + π√
6

+ (D1/2Pϕ)(t) (t ∈ I).

Since ϕ ∈ X̂ and βX̂ = βX < 1, Shimogaki’s Theorem yields that Pϕ ∈ X̂ and hence
D1/2Pϕ ∈ X̂ . Consequently, (S(A f ))∗∈ X̂ , or equivalently S(A f ) ∈ X . The hypothesis
implies that S( f ) ∈ X and hence that (S( f ))∗ ∈ X̂ . This completes the proof. �
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