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Introduction

In [7], B. Feigin and A. Stoyanovsky introduced functional realizations of the space
of conformal blocks associated with a complex curve X and a semisimple Lie algebra
g. This space is defined as the set of g°-invariant forms on an integrable g-module
L x located at a point Py of X, g being the Lie algebra of regular maps from
X — {Py} to g and g the Kac-Moody Lie algebra at P;. Feigin and Stoyanovsky
associate to such a form , the family of forms on a product of symmetric products
of X

frs(z") = <w, [TeiMdz" iy > (1)
i=1

where r is the rank of g, e;(z)dz are the currents associated with the simple nilpotent
generators of g, w is an affine Weyl group element and v(,fp") is the highest weight
vector of L . ,

In this paper, we introduce the twisted conformal blocks /, = o Dia el
Here (r4),—; ., are functions on X, regular outside Py, single-valued around a-cycles
and all b-cycles except the ath, along which it increases by 1 (Section 1), and the /; are
the simple coroots of g. The functions r, are thus the analogues of the function 6'/6 in
the elliptic case. ¥, is independent of the choice of the functions r,.

For any v in Lay, the function vi—(i,, v) is defined as a formal function in
A= (ig)). We show (Theorem 2.1) that it is actually a holomorphic function in A
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with theta-like properties. This result relies on adelization of the representations L

(see [19]), reduction to the sl, case, formulas for the tame symbol and the identity

(f*Y = — : hf* : (see [14]). This generalizes a result obtained in [9] in the genus 1 case.
We then consider the forms

AEDE <w,¢, 1‘[ e,-(z;">>dz_,@(wv§5,2>>>. ®)
i=1

These forms have the following geometric interpretation. It is known ([1,13]) that
conformal blocks can be viewed as sections of a bundle on the moduli space
Bung, of G; such sections are called generalized theta functions. In Section 3, we
explain that the forms (1) of Feigin—Stoyanovsky can be viewed as generating
functions for lifts of the generalized theta functions to a space, which in the case
g = sl, can be described as Bun, p,), the moduli space of bundles with filtration
E, C E; C -+ and associated graded isomorphic to @,0(n;Py), n; some integer
numbers. >From this viewpoint, the twisted correlation functions (2) are generating
functions for lifts of generalized theta-functions to the moduli space Bunpg of
B-bundles over X, where B is the Borel subgroup of G.

We then express the Knizhnik—Zamolodchikov—Bernard (KZB) connection in
terms of the forms (2) (Section 4.3). Our treatment of the KZB connection follows
[8]; the KZB connection is defined on the space of projective structures on curves
of genus g. However, such a projective structure is canonically attached to the choice
of a-cycles on the curve, via a bidifferential form @ (see (7); this form appeared in [5],
cor. 2.6). This allows to define the KZB connection as a projectively flat connection
on the moduli space of curves with marked a-cycles, which is intermediate between
the moduli space of curves and its universal cover. The KZB connection is expressed
as the action of differential-evaluation operators (7%)..y on the f(4 | z}i)), which are
forms on J(X)" x [; S™ X (differential in / and residues and evaluation in the )vff)).

We also express the KZB connection in the directions given by variation of points
in case of a curve with marked points (Section 4.4). Denote by m a quadruple
(X, [{¢:}), Py, £;) formed by a curve with projective structure, marked points and
coordinates at these points, by (i71) a conformal block associated to this complex
structure, and by f(1m1)(4 | z}”) the twisted correlation function associated with this
conformal block according to (2). In the case g = slp, the connection takes the form

a
aP;

2k +2)Va f ()4 | 22) = 2k +2) o5 f)(4 | 22) = (Kif )2 | 22)
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with
(Kif )m)(4 | z4)

= |:— Ay (P, + A <Z AiG(P;, P) =2 Gz, Pi))+

J#L
+ A;p(P) + 2/\zgzx(Pi)]f(’77)(i | z)

+y° [ —2G2(P;, 2,) + (Z Waz:)d;, +2 Y Gz, z@) -

=

— 4G (Pi, 2)G(zy, Pi) + 2kd.,G2;(2s, Pi):| res.=p, f(M)(1 | z, (Zp)pr)  (3)

where the functions G and G,; are (twisted) Green functions.
The relation to the usual formulation of the KZ connection in the rational case is
the following. In that case, the KZ connection has the form

2k +2)VpY(P) = 2(k + 2)3pp(P;) — K[“Y(Py), “4)
with (P;) in a tensor product ®;V,, of lowest weight g-modules, and
£
‘P — P;

rat __
K[ =

Equation (3) above may be viewed as the expression of the action of K; on ‘Bethe
ansatz vectors” ((y)--- L)@y, where e(z) =);e?/(z— P). Extracting
coefficients of []({; — z))“ from (3), one recovers (4). The equation for the bottom
component of (P;) is simpler than (3) (see Equation (29)).

The operators (7:),.y depend in a simple way on the level k. In Section 5, we show
that these operators commute when k is critical, thus defining a commuting family of
differential operators, acting on a finite-dimensional bundle over the degree zero part
JO(X) of the Jacobian of X (Theorem 5.1). This is proved using a class of modules
Womm generalizing the twisted Weyl modules.

In the case where there are no z](-i) , these operators take the form

r

g 2 g
(T-)2) = (Z(Z am(z)a(hv)(,) + 3 ) DH 0 (2)80),
1 \a=1

V= oAy a=1
+kY w(M)(Z))f(i),
oaeAL

where (hv),_; _r is an orthonormal basis of the Cartan subalgebra hof g, (wa),_
are the canonical differentials of X, A, is the set of positive roots of g, 4is a collection
(A1, ..., Ag) of variables in b, o is the coroot associated to the root «, DE_W) is a
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connection depending on (A?”) in C¥, on the canonical bundle Qy (see (22)) and ;0
is a quadratic differential form depending on the same variables (see (24)).

We close the paper by explaining the link of the operators (7:)..y with the
Beilinson-Drinfeld (BD) operators (Rem. 14).

In a sequel to this paper, we will construct g-deformations of the operators 7-, by
replacing the inclusion Ug? C Ug by some inclusion of quasi-Hopf algebras, which
were introduced in work of one of us and V. Rubtsov ([4]). The outcome will be a
commuting family of difference-evaluation operators, which may be viewed in
the case of a rational curve as the Bethe ansatz formulation of the KZ operators.

One may hope to obtain hypergeometric representation for solutions of the KZB
equations formulated in Section 4.3. This may be related with the formulas of [11]
expressing the scalar product on the space of conformal blocks.

1 Bases of Functions on X

Let X be a smooth, compact complex curve; denote by g its genus. Let Py be a point
of X. Denote by K and O the completed local field and ring of X at Py. Denote
by Qx and Qe the spaces of differentials and regular differentials at the formal
neighborhood of Py. The residue defines a natural pairing between IC and Q.

In what follows, we will fix a system (44, By),—;._, of a- and b-cycles on X. We will
denote by y, and yp the corresponding deck transformations of the universal cover
X of X, and by o the projection from X to X.

Define R as the set of functions /" defined on X , regular outside 6! (Py), such that
there exist constant functions u,(f) such that for any z in X — ¢'(Po) and any
a=1,...,g we have f(y,,2) =f(z) and f(yp,z) = f(2) + e (f). Let us also denote
by R the space of functions on X, regular outside Py.

PROPOSITION 1.1. RypnNO=Cl. R has codimension g in Rg). Moreover,
Ry +0=K.

Proof. The first point is clear: for any f in Ry N O, df is a regular form with
vanishing a-periods, and therefore vanishes.

To prove the second point, define R as the set of regular functions defined
on the universal cover of X — Py, such that f(y,2)=/f(z)+f,(f) and
S(p,2) = f(2) + au(f), with a,(f) and B,(f) some constants. We will show that R
has codimension 2g in Rup). Rup) N O has dimension g + 1 (it is spanned by the con-
stants and the |, ;0 ®,). On the other hand, we have Ry + O =K, because
K/(Rap) + O) is zero (the differential maps it injectively to Ker res/(Qr + Qo), where
res is the residue map from Qg to C, which is the kernel of the residue
map from H'(X,Qy) to C and is therefore zero). We have an exact
sequence 0 — (Rup NO)/(RNO) = Rpy/R = (Rapy + O)/(R+ O) — 0, therefore
dim(Rap)/R) = dim(Rupy N O/RN O) +dim(IKC/R+ O) =2g.  Since  dim(Rp)/R)
= dim(Rp)/Rp) + dim(R)/R), we have dim(Rp)/Rp))+ dim(R(b)/ R) = 2g.
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On the other hand, dim(Rs)/Rwp)) and dim(Rg)/R) are both < g, because the

,,,,,

It follows that dim(R»)/Rw)) and dim(R@p)/R) are both equal to g.
Finally, the fact that /(O + R) is equal to H'(X,Oy) and has therefore
dimension g implies the last point. O

COROLLARY 1.1. Fora=1,...,g, there exists a function r, defined on X, regular
outside a='(Py), with the properties

ra(VA,,Z) = r4(2), ra(VB;,Z) = 14(2) — Oab»

forb=1,...,gandzin X — o (Py). The functions r, are well-defined up to addition
of functions of R.

Fix a coordinate z at Py. Let us denote by m the maximal ideal of O, by (r}) a basis
of m and by (¥, 1) a basis of R = H(X — Py, Oy), such that resp,r?*'dz/z = 0.
From Proposition 1.1. follows that we can fix functions (ra),_; _, of Rp) such that

resp,radz/z =0, so that (r,, 9/, 1) is a basis of Ry and (r%), r,, 19", 1) is a basis

of IC.
Let (®4)41,., be the basis of the space of holomorphic differentials
Qo N HYX — Py, Qy), dual to (r,). We have
1
2 ), ®p = Ogp-

We can fix families (»!) and (o) in Qp and HY(X — Py, Qy), so that
(@2, wq, ", dz/z) is the basis of Qx dual to (r%, Fa, 19 1).

We associate with these dual bases the Green function defined as

Gz, w) = Yo" riy(w). 5)

It is clear that G depends only on the choice of a-cycles in X.

Denote by J(X) the Jacobian of X. It is the direct sum of its degree n components
J"(X), with n integer, which are identified with the sets of classes of line bundles
of degree n on X. Denote by I" the lattice of periods of X, which we identify with
C#/T, as follows: for some A = (4,) in C8, the corresponding line bundle is denoted
by L,. Sections of L£;, regular outside a finite subset S of X, are identified with
the functions on the universal cover of X, regular outside the preimage of S, such
that f(y,,z)=f(z2) and f(yp2) = e*f(z). Multiplication by the functions
exp(/” w,) identifies the spaces of sections of £, and L, for 4 and /' in the same
class of C¥/T.

In what follows, we will set

R, = H(X — {Po}, L,). (6)
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Let / be a nonzero element in J°(X). We may identify H(X — {Py}, Qy ® £;) with
the space of differentials w on the universal cover of X, regular outside the preimage
of Py, such that 7} (w)=w and yj ()= e“w for a=1,...,g. The space
H'(X,Qy ® L)) may be identified with the intersection
Qo NHYX — {Py},Qx ® £;). By the Riemann—Roch theorem, it has dimension
g— 1. Let (wg2)4z,.. g1 be a basis of this space. We may complete it to a basis
(w;’;ﬁ’,wa;i,w?’) of Qi, such that (a);’;‘}f,a)a;i) is a basis of HO(X — {Py},Qx ® L))
and (g, wﬁ") is a basis of Qp. Moreover, we may assume that the cojﬁ” have a zero
of order >g— 1 ar Py (for example, we may choose w” = z8~1*idz, i > 0).

Let (1", rq;—;, 13;) be the basis of K dual to (0§, @41, f"). Then (r") is a basis of
O and (19)) is a basis of HO(X — {Py)}, L’;l). The assumption on zeroes of the o
implies that the r,,_; have poles at Py of order <g—1.

The twisted Green function defined by these bases is

g—1
Gi(z, W) = D i (22 (wW) + ) 0l @' (w). (7)
a=1 i

Remark 1. Expression of the Green functions. We may set
ro(2) = 0;, InO(=A(2) + gA(Po) — A),

where ©® is the Riemann theta-function on J°(X), A € J¢~!(X) is the vector of
Riemann constants of X, ¢, is the ath basis vector of C* and 4 is the Abel map
from X to J'(X).

A formula for G; is

O(A(z) — Aw) + (g — DA(P) — 4 — A) y
O(A(z) — A(w) + (g — DA(Po) — A)O((g — DA(Py) — 4 = A)
g

x Y5 (g = DA = o)

i=1

Gi(z,w) =

G,(z, w)is a A-twisted differential in z, with simple pole at z = w and residue 1, and a
zero of order g — 1 at Py; it is also a (—A)-twisted function in w, with simple poles at
w =z and a pole of order g — 1 at w = Py. This is because

g
> 2 (e~ 1Py~ o),
i1 a
which is equal to —d.@(w — z + (g — 1)Py — A),,,_., is a holomorphic differential with
a zero of order g — 1 at Py. For z, w fixed, G(z, w) is a meromorphic function in Py.
One may replace (g — 1)Py by any effective divisor Q =), n;Q; of degree g — 1
in the definition of G,, and obtain this way Gg(z, w), a A-twisted differential in
z, with simple pole at w and a zero of order n; at each Q;, which is also a (—/1)-twisted
function in w, with a simple pole at z and poles of order n; at w= Q;, and is a
meromorphic function in the Q;.
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A formula for G(z, w) is
G(z,w) =d.-InOAw)— A(z) + (g — ) A(Py) — A)— d.In O(gA(Py) — A(z) — A).

G(z, w) is a differential in z with simple pole at w and residue 1; simple pole at z = Py,
regular at other points, and such that an G(-, w) = 0 for w near Py; and a function in
w, multivalued in w around b-cycles, such that G(z,yz w) = G(z, w) + w.(z),
vanishing for w = Py, with simple pole at w = z, and regular at other points.

These properties of Py imply that two G(z, w) attached to different points Py differ
by a form in z, constant in w. In what follows, we will set

a(z, w) = d,,G(z, w). ()
@(z, w) is a bidifferential form in z, w with the local expansion at any point of

X, @z, w) = % + 1(2)dzdw + O(z — w)dzdw.
w

@ is symmetric in z and w, because @(z, w) — @(w, z) has no poles and for w near

Py, / (-, w) —ad(w, ) = dw/ G(-, w) — (Gw,74,2) — G(w,2)) =0
Aq Aq
because | 4, G(-, w) = 0 and because G(w, -) is single-valued along a-cycles. The fact

that @ is symmetric can also be viewed as a consequence of the expression @ =
d.d,, In ®(A(w) — A(z) + 6 — A) where § in J¢~!(X) is some odd theta-divisor.

2. Twisted Conformal Blocks

2.1. TWISTED CONFORMAL BLOCKS

Let g be a simple complex Lie algebra. Let us set g=(g® K)® CK,
g =([G® 0)® CK, ¢° = 3® R. For xin g, ¢in K, we set x[¢] = (x ® ¢, 0); the com-
mutation rules on g are then

[x[e]. ye' = [x, yllee] 4+ K(de, ') (x]y),

with (-|-) the invariant scalar product on g such that (6¥|0") = 2, where 6" is the
coroot associated to a maximal root 0, and (w, &) = resp,(we). We view g as a
subalgebra of g, using the embedding x ® pi— x[p].

Let V be a g-module of level k, and let i be a g°*/-invariant linear form on V. Fix a
Cartan decomposition § = h @ i, @ fi_. Let r be the rank of g. Let A be the set of
roots of g, and define the positive roots as those associated with n,. For each «
in A, define g, as the root subspace of g associated with a. For each simple root
o;, let us fix ¢;, h; and f; in g, , b and 9_y,, such that (e;, h;, f;) is an sh-triple.
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Let (ra),=1,... o be as in Corollary 1.1 and let 0Dy _1...., be formal variables

and define the 11near form y; in V

(W) = [ e2osa L), ©)

This form is independent of the choice of the r,, because [/;[r], A;[r,]] = O for r in R.
In the case where V is an integrable module, one expects that one can make sense
of (8) for complex A. If one wished to argue that the action of g on V lifts to a
projective action of the associated Kac-Moody group, one would meet the difficulty
that the functions exp(}_, ig)ra) have essential singularities at Py, so that we cannot
view exp(}_,; Afl’)h [ra]) as an element of the Kac—-Moody group.
However, we have:

THEOREM 2.1. For ¢ a o°“-invariant form on Lay, the form
Y, =woexp(d_;, 4 2Dhlr]) on Ly has the following properties:

(1) For any vin L, the function (r,, v) is the formal expansion at 0 of an analytic
function in A, which satisfies the equations

3;_5;') W v) = (W, hilra]v)

a=1,...,g,i=1,.
(2) Set Aa_zl.z“)h Set)—()l,...,ig) and

am (b ® R) 2] @O(EA(gx ® R(ot ), o:,/lg))~

Then ; is a g}"'-invariant form on Ly .

(3) For any v in L k, the function 21\— (\;, v) has the following theta-like behavior.
Set wup = th Wq, L(2) = -/Po g, and Q, =", wapdp, with o, the a-th basis vector
of C8. Then

<'//N> ..... D4 2ind,,.., )0V >= <‘pz(”,..,$z‘"’f ">

and
I .,
<‘//a“> ,,,,, 042inQ,,.... 2" V> = ¢l zlnkwa”(h[‘h’)<‘px‘”,m,w’eh[[é“]">v
where A, =y i_ 1)8 hi.

Proof. See the appendix.

2.2. TWISTED CORRELATION FUNCTIONS IN THE sl, CASE

In this section, we assume that g = sl and A = 0. Let i be a g°*/-invariant form on L .
Let z be a local coordinate at Py and set e(w) =) ,.» e[zlw™*"'dw. For n a positive
integer, set n = ak +b, 0 < b < k, and v, = f[z72"'1v,, with vy, as in Lemma 6.3.
We have h[1]v, = —2nv,. Set f(L | z1, ..., z,) = (Y, e(z1)dz1 - - - e(zp)dz, V).
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PROPOSITION 2.1 (see [7]). The form f(A | z1, ..., z,) depends analytically on A in
JOX) and the z; in X — {Py). It satisfies the relations

f(A+2ind0, | z1, .. .vzn) =f(A ] z1, ..., Z1) (10)

and

. ) n 2] v
FOA+2inQ, | 21, . . ., zy) = e FEDa—simkouhil) o RN FOlz1, ... 2. (1)

Moreover, it depends on z; as a section of QxL_,;, regular on X except for a pole of
order < 2a+2— 20y at Py, it is symmetric in the z;, and vanishes if k + 1 variables
z; coincide.

Proof. The proof is analogous to that of [7]. Identities (9) and (10) follow from
Theorem 2.1, (3) and from the commutation relation [A[{,], e(z;)] = 2{,(zi)e(z;). O

Since (h|h) = 2, we have

(2k)

) bl 1 -
f(/L | Zl,...,Zn) = ;G)[Q{I]C(/L_F%;A(zi))fm(zlv"'72}1)’

where the ®[2[1]c are a basis of the space of 2kth order theta functions on J°(X).

Remark 2. 1f frs(zy, ..., z,) are the forms introduced in [7], then f(0 | z, ..., z,)
coincides with frs(zy, ..., z,). It is not clear what are the functional properties of
the f(zy, - - -, z,), and how to obtain the f¥l(z,, - - -, z,) directly from frs(z1, . . ., z,).

Remark 3. The forms f (/. | z1, , z,) provided by conformal blocks also satisfy some
vanishing conditions at 4 = 0 (see [9]). These conditions, together with the functional
properties of Proposition 2.1, should probably characterize these forms.

3 Lifts of Generalized Theta-Functions to Bung

It follows from the works [1, 13] follows that conformal blocks may be viewed as the
space of sections of a line bundle on the moduli space Bung, of principal G-bundles
over an complex curve X, for G the simply connected group associated with §. This
identification is as follows: Bunz 1is identified with the double coset
G(R)\G(K)/G(0), with K the local field at some point Py of X, O the local ring
at Py and R the ring of functions regular outside Py. For k integer > 0, the level
k vacuum representation L ; of the Kac—-Moody algebra g associated with g carries
a projective representation of G(K). Fix a lift x+—X of G(K) to its universal central
extension. Let g°* be the Lie algebra g ® R. To each g°“-invariant form ¥ on
Lo 1s associated the function

2= (™", Eviop) (12)
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on @(IC), where v,,, is the vacuum vector of Ly x, which is a section of a power of the
determinant bundle over Bung. This construction can be extended to the case of
marked points and integrable representations other than Ljj. In what follows,
we will consider the situation of some integrable module Ly x at Py, with highest
weight vector vﬁf]‘}).

It was proposed to study these functions through their lifts to moduli spaces of
flags of bundles ([3, 18]). In [7], Feigin and Stoyanovsky studied the lift of conformal
blocks to a space, which in the case g = sl, can be described as Bun, p,), the moduli
space of bundles with filtration £} C E, C --- and associated graded isomorphic
to ®;0(n;Py), n; some integer numbers. Since this space is isomorphic to
N(R\N(K)diag(z")/N(O), with N the maximal unipotent subgroup of G, lifts of
functions provided by the conformal blocks are the

<l//out’ n}c(wvgg) > (13)

ni in N(K), w = diag(z"") an affine Weyl group translation. Generating functions for
these quantities are the forms

7
NP
<W, [T [Tetz"dz" ol >

i simple j=1

where e;(z)dz are the currents associated to the nilpotent generators ¢; attached to the
simple roots of g. In [7], Feigin and Stoyanovsky characterized the functional proper-
ties of these forms.

Let us study the lift of functions (12) to Bung, the moduli space of B-bundles over
X, where B is the Borel subgroup of G containing N. Bung can be described as
the double quotient B(K)\B(A)/B(Oy), where K is the function field C(X), A is
the adeles ring of X and O, its subring of integral adeles. To make sense of the
analogue of (13) for the space of B-bundles, one should replace the representation
at Py by its ‘adelic’ version L, which is its restricted tensor product with vacuum
representations at the points of X — {Py}. To y°* is then associated a § ® K-invariant
form y** (see Lemma 6.1). In the case of B-bundles, lifts of the functions on Bung,
provided by conformal blocks are the

bi— (™, byt ), (14)

top

for b € B(A), vf}p the product of the highest weight vector of the module at Py with
the vacuum vectors at other points. b can be decomposed as a product ntw, with
nin N(A), t in T(A) with all components of degree zero (7 is the Cartan subgroup
associated to B; the degree in A™ is defined as the sum of the valuations of all
components) and w a product of affine Weyl group translations. In the case
g = sl,, b represents a filtered bundle whose associated graded is a sum of line
bundles, associated to the projections in the Jacobian J(X) = K*\A*/O% of the

components of tw.
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The computation of (14) may be done as follows. wv,}l7 is an extremal vector of L.
n may be replaced by an element ng of N(A) with only nontrivial component at P.
The map A—f(4) of Section A.2 is a section of the projection map
K\(A)? = JO(X) (the © denotes the degree zero parts). ¢ can be decomposed
as (*1;1", " in T(K), " in T(Ox) and t;, =[], 1, f;0], t; the subgroups of G associ-

ated to the simple coroots of g. Then (14) is equal to (£, nx)( np t;n;c(wvmp) ) (where
(,) denotes the group commutator).
Therefore to compute (14), it suffices to compute the
<wA, [ Tetrol ] Jede1-- e,[e“)](wvm,,)> (15)
i=1 i=1
where r is the rank of g. In Thm. 2.1, we study the linear form
% |—><¢A, l_[ tlf,0l(v ® ®xEX{P0}Vr0p)>v (16)
i=1

for v in La .
From Theorem 2.1 follows that the expansion at (is)) =0 of (17) is equal (up to
multiplication by a phase factor) to

<¢0"' o ] ]‘[e ] (’)](wv§5;§>)>. (17)

Generating functions for (17) are the forms (2).

The interest of expressing (14) in the form (17) is that the latter expression is
computed in a single module located at Py. When the iﬁf) are formal, (17) also makes
sense in arbitrary modules. What we will do now is compute the action of the
Sugawara tensor on these correlation functions.

4. Expression of the KZB Connection

4.1. ACTION OF THE SUGAWARA TENSOR ON THE TWISTED CORRELATION FUNCTIONS
(@ =sh)
In this section, we treat the case g = sl,. Let n be an integer and let v, be a vector of
Loy such that A[l]v, = —2nv,, A[*]v, =0 for k>0 and f[]v,=0 for
k> —(g—1). An example of v, is in the vacuum module Ly, the extremal vector
Sl A2 vy, with 2a4+ 12> g — 1.
In what follows, we will denote by x(z) the series ), x[t)z7""'dz, for x in g.
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The expression for the Sugawara tensor is

20k +2)T(2)

18
— }213 |:e(z)f(z’) +f(2)e(@) + %h(z)h(z’) — 3ka(z, Z/)], 1%

with @ as in (7). It is used to define the KZB connection in Section 4.3.

4.1.1. Action of the Currents on the Correlation Functions

Assume that mis < — (g — 1). Let us compute some correlation functions in Ly .

LEMMA 4.1 We have

<lp/1’ h(z)e(zl) - e(Zp)Vn)

= (Z 0u(2)0, +2) Gz, zx)) AN
a o=1

where G(z,z,) is as in (5).

Proof. Let us write h(z) = Y, ilr¢“ o + 3, Alriw. + >, h[r?’o]w;’“’ . The contri-
bution of the first term of this sum is zero by invariance of \,, the contribution
of the second part is the differential part. The contribution of the third part is

Z(W}l, h[r;"o]e(zl) . e(zn)vn>(1);-)m(z)

- Z Z 2”%(2]')(!//1, e(z1) - - 'e(Zn)Vn)wf.’”’(z) n
i j=1
* Z<%’ e(z1) - - - e(zn)hlr v (2)

= Z Z 2G(z, Z_/)(l///p e(z)--- e(Zn)Vn)v
i =1

because v, is annihilated by the positive Cartan modes. O
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LEMMA 4.2. We have

(V. (2)e(z1) - - - e(Zng1)Vn)

=— Z G(z, 22) (Z 020, +2 ) Glzs, z@)

B#a
x (W, e(z1) - e(zy — De(zy + 1) - - e(Zpg1) va)+
n+1

kY d, Gz 2) (s ez1) - ez — Dz + 1) -+ e(Zar)Va),

(19)

with G»)(z,z,) as in (7).
Proof. Write

f@o)= Z ol @) + Y f [Va:—zz]wa;zz(z)Jer [} (2).

The contribution of the first term is zero by invariance of ;. The contribution of the
next two terms is

n+1
> Z Vs e(21) - (—ra21(Z)h(2) + kdra.21(25)) -+ - e(Zni1)Va) 022(2)+
n+1

+ DY W e) - (= Eh(zy) + kdrl'(z,) - - e(Zag )V s ().
i o=l
(20)

because of the relation

[fle]. e(2)] = —&(2)h(z) + kde(2),

and because we have f[r"]v, = f[rq2:]vs = 0; the latter equality is because the ry;
have poles of order < g—1 at Py.
Equation (20) is then equal to

n+1
Y =Gz, 2l h(z)elz1) -+ & - e )va) +

n+1

+Zk Gz, z) W, e(z1) -+ d- - - e(Zyg1 ) Vn)-

Applying Lemma 4.1 to the first sum, one gets (19). O

https://doi.org/10.1023/A:1002454201868 Published online by Cambridge University Press


https://doi.org/10.1023/A:1002454201868

30 B. ENRIQUEZ AND G. FELDER

4.1.2. Action of the Sugawara Tensor on the Correlation Functions

Let us compute now
(W, h(2)h()e(z1) - - e(zn)Vn).-
This is equal to

Zwi’ Alrdh(2)e(z1) - - - e(zn)v) 0 (2)+
+ Z(‘,b;h, h[}’ino]h(z/)e(zl) o e(Zn)Vn)w;’”’(z)

that is

> @@, (W h(Ze(z) - eza)va)+
+ D s WA ple(z1) - ey (2)+

+ dez’G(Zf Z/)(lp/lv €(Z]) T e(Zn)vn)-

The second line is equal to
D 2G(z, ) hZe(z1) -+ - e(zn) ).
a=1

Applying Lemma 4.1 to the first two sums, we find

2(k +2)(Yr;, h(2)h(2")e(z1) - - - e(zn)vn)
=2kd Gz, 2 (A1 z1,...,20)

n 2
+ (Z 0a(2)3;, +2 Gz, m)
a o=1

xf(A]z1,...,z0) +0O(z,2).
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On the other hand, we have, by Lemma 4.2,

;. f(2)e(z)e(z1) - - - e(zn)vn))
=—Gy(Z,2) (Z wa(2)9;, + Z 2G(z, z“))f(i | Z1, .., Zn)—
a oa=1

_ Z Gy(Z, z4) |:Z 04(24)05, + Z 2G(z,, Z/;):| X
=1 a B=1.px
Xf(A|z1, sz, oy Zn)—
=Y Gl 202Gz D (A 21s 2 2+
a=1
+kd(Go (2, ) (| 215 -y Z0)+

kY A (G z Gl 21s 20 Zn)
o=1

so that

(1. (@ (&) + f(De()e(z1) - - - e(zn) )
= (Z D wy(2)d;, + Z 2(D* ® Gz, za)) O 21 Z)—
a o=1

n

-2 Z Gz, Za)|:2 0u(z)0, + Y 2G(z, zﬁ)} x
=1 a

=T Pt

XA 21y ooy 2y ey Zy)—

— 42 Go(2,2)G(zo, 2)f (A | 215 oo oy 2y ooy Z)+
a=1

+ k[dz(GZJ.(Z/’ Z)) + dz’(GM(Zv Z/))]f(/1 | Zlyenes Zn)+

+ 2k2n: d, (G (z, z V(| 21y ooy 20) + Oz — 2')
a=1

(with z in the ath place in the right-hand side, where D(w) is defined by

DP(@)(2) = ~ im(@()G,(z. 7) + w(2)Gi(Z 2));

DY defines a connection from the bundle Qy to Q3.
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Set

(TN 21 zn)

2
= % (Z 04(2)d;, +2 Z G(z, zx)> +
+3 D)3, +2 ) (DF ® NGz, 2,)) + sz,z(z):|ﬁ(21, ezt

+3° [—ZGM(Z, z2) (Z 020, +2 ) Glz, z;») +
a=1 a

P
+(—4G21(z, 24)G(zy, 2) + 2kd., G2, (z, Za))]f(i | 1,0y Zn).
(23)
where z is in the ath position in the right-hand side and we set

w;(2) =lim.,2(d2Gi(z, 2') + d-Gy(Z, 2) — 2d-G(z, 2)). (24)

Then

PROPOSITION 4.1. Let us set
SOz z) = (W, e(z1) - - e(za) )
We have
(W3, T(2)ez1) - - - e(zn)va) = (Tefi)(z1, - -+ 5 Zn)-

Remark 4. 1t would be interesting to have an expression of the action of T(z)
directly in terms of the frs(z1, . . ., z,). For this, one would need either to understand
the correspondence of Rem. 2, or how to express the 7[z”]v, as combinations of the
e[z"] - - elz" V.

4.2. ACTION OF THE SUGAWARA TENSOR IN THE GENERAL CASE

In this section, we show how the expression of the operators 7 is modified in the case
of a general semisimple §. For any o in A, let ¢,, f, and o” be in §,, _, and b forming
a standard sl,-triple, and let (a;), <;; <, be the Cartan matrix of g.

Foriy,...,i;in{l,...,r}, such that Z;=1 @, < o, define the number n,;;,
equality

,,,,, iy

([[fz eyl eyl el = nrx;ilnifx—zs 11,:;
j=1 %ij

for «, f in A4, such that o — f§ belongs to A, define the number N,z by the equality

[foc—ﬂ, e = Nac[ieﬁ;
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define v; ; by the equality

[[eil,eiz], D 61;.] = Vii..i€ o
j=1 "%

As we have seen, one may attach to a g°*/-invariant form y on any g-module V', the

forms
II a.
f(’“'z )1<1<ru€1’ _<¢ e %1 l_[l_[e(Z(l))dZ’) > (25)
i=1 uel;
where the [; are finite sets attached toi=1,...,r and v is a vector in V with the

suitable weight. The A(l) are formal variables. We attach to them the family
(a1 <a <o ©Of formal elements of b2, where A, = =Y “(’)h. For u in b*, we set
(1, 4) = (u, 2 a)1<a<g

The form f (2 | z29), < <. ver- depends on the 2\ as a section of Qy ® L_(y, 1), Teg-
ular on X out31de Py and the 20 for the j such that a; < 0. It is symmetric in
the 2z for each i, with simple poles at the diagonals z) = z{) when a; < 0, and
satisfies

V€S7<i)_,u)r€S_(i)__m e res o _ (/)f(i | ZS)) = 0
“up T4y “uy ==y ‘u17“U =ZIy

for vin [; and ui, ..., u1_,, distinct in [; (see [7]); this is a translation of the Serre
relations, using the identities res._. (W, x(2)(2' )y = (Y, [x, y1(Z')v).

Assume that vis annihilated by the positive Cartan modes &,[z'],i > 1,v=1,.
and the fi[z'],i = — (g — 1);let (1), <, <, be an orthonormal basis of hand deﬁne the
Sugawara tensor as

20k + h*)T~(2)

— lim.._.. (Z W) + 3 (Aen) + e@fol2)) = kdim)a(z, ))

v=I oaeAL

with #¥ the dual Coxeter number of g.

Let P (resp. P’) be the set of sequences p = (i1, .. ., iy) such that o = Z;:l aj, (resp.
o> Z_;f:l «;,). The sequence () is associated to P if it is a sequence of pairwise dif-
ferent elements of U;l;, such that u; belongs to I;,. We denote by S; the subset
of I; formed by all u; such that j; is equal to i.
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PROPOSITION 4.2. The action of T~(z) on the correlation function (25) is
given by

2k + 1), T (z)]‘[He,(z<’>)v

i=1 uel;

[ Z (Z @2, + D Y (2 )G, z(’)))

i uel;

+ Z (Z D(rx A)(Ua(Z)a(aV) + Z Z(a o )D(fx A)G(Z Z(l)))

aeA i uel;

+k Z a)(a,i)(z):| f(/1 | Z,(f)) + Z not;il...iSN,(;ac,-lJr"-Jra:,»s/Vil...1'3

oaeAL peP
Z Gz Z(uill))G(ac—acll,i)(Z(ll)v (u?)) ..
(u;) associated to p/

i
Gl ). ) (2 2) Tes _mTes t_ -
2 =23

res (,\ 1) f(j. | Z )|7(")—z Zny i i 1/V11 s

peP

Z Gloiy(2, Z( ))G(oc a A)(Z(”), (ulzv)) ..

(u;) associated to p

(26)

G(“_(“ﬁ ol )A)( (lvl s LIS))

[Zwa(zﬁi))a(xg)u Z Z (i, ) )G, 20) + (o0, o) )G, z)i|
a

i ueli—S;
res 11) (m)res (/z) (:;) .Ies <h R f(}L | Z )\7’3)
+§ Ny l;—l/vll A
peP

Z G(,{ /L)(Za Z( 1))G(oc o;l /1)(2(” ) Z(ulf)) o

(u;) associated to p
G, ) (i5-1) ([s) kd G (is-1)
(“*(“il+“‘+°‘f,v,1)a/t)(zu5 o Ly ) z (ozf(zx,ﬂl+-~~+a,~‘\,),ﬂ.)(zux71 , Z)
res D _ <,z)res (i) _ (,3) .. .I'CS7(iS71;__f(/1 | Zg))‘7(i5)_z,
“ug_p —* “us T

“uy Zuz ‘”2

where, for x in E_) we denote by x, the element (0,...,x,...,0) of E_)g (x at the ath
place),; and by 9y, the partial derivative in Y in the direction of h, for h in hF.

Remark 5. The set P and its associated sequences appeared in the work [16] on
integral formulas for the KZ equations.
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4.3. EXPRESSION OF THE KZB CONNECTION

Denote by Proji" the moduli space of quadruples 7 = (X, [{,}], Po, 2), where X is a
curve of genus g, [{{,}] is a projective atlas of X (that is an atlas whose transition
functions are projective transformations), Py a point of X and z a coordinate of
the atlas with origin at Py. A local coordinate related to some z, by a projective
transformations will be called a projective coordinate.

For each representation ¥ of g°*/, we may form the bundle CB(V) over Proji",
whose fiber at 72 is defined as the space of g°*’-invariant forms on V.

A projectively flat connection on the bundle CB(V) is defined as follows. Let
mi—(m) be a local section of CB(V). Let ém be a variation of m. Then

Vth = d0ah — i o To[E(om)], (27)

where the equality is in V* and £(6m) is the element of C((z))d. induced by ém (for
any moduli 7, we have a ring R~ contained in C((z)), and we set
Re ~=(1+ E(0m)R~). We set To[¢] = resp,(To(z)dz>E(0m)(2)d,), with Toy(z)
defined as T~(z) in (18) replacing @ by dzdw/(z — w)>.

This connection is well-defined, preserves CB(}') and is projectively flat (see [19]).

The form @ defined by (8) depends only on the choice of a-cycles. On the other
hand, this form determines a projective structure on X. Indeed, it is known that
there is a bijective correspondence between bidifferential forms near the diagonal
with behavior dzdw/(z — w)* + r(z)dzdw + o(z — w)dzdw, with r/z regular, up to
addition of regular bidifferential forms vanishing on the diagonal, and projective
structures on X. The correspondence associates to the projective atlas [{{,}] the form
d:,dy In((, — {'). Conversely, the projective coordinate ( associated to the
bidifferential form dzdz'/(z — 2')* + r(z)dzdz' + o(z — z')dzdz' is determined by the
equation S({, z) = —6r(z), where S({, z) is the Schwarzian derivative of { with respect
to z. Then To({)(d¢)?, computed in a projective coordinate determined by @, gets
identified with T~(z)(dz)’.

Let us define /\/lif’) as the moduli space of genus g curves with marked hom-
ology classes of a-cycles. @ defines a map from /\/li,“) to Proj,, such that its
composition with projection of Proj, to M, coincides with the projection of
M on M,.

Define MV as the fibered product of MY with Proj{" over Proj,. The KZB
connection is defined on Projg), and it induces a connection on Mfg")(l),
using the map from M to Proj". This connection can be expressed as
follows.

Let us express the connection induced by (27) in terms of correlation functions.
For any formal vector field & = &(z)d, in C((2))d., let ¢ be an indeterminate with
2 =0 and R, = (1+¢e5)R; let Qr C Qx be the space of differentials of R and
Qp, the space of differentials of R,. Then Qg is equal to (1 4 &L:)(Qg), where
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L is the Lie derivative associated to &. Similarly, we have dR, = (1 + eL¢)(dR).
Therefore, 1 4+ ¢L;: induces a map from Qr/dR to Qg /dR,. Bases of these spaces
are the classes of the w, and dr,. On the other hand, we have the formula
j;,,(l +eL:)(w) =j;,a) for any cycle y of X, deformed to 7’ and any w in Qg.
Therefore, we have L:(dr,) =0 mod dR and L:w, =), 0tudr, mod dR, where
0ty 18 the variation of the period matrix corresponding to dm.

We have obtained:

PROPOSITION 4.3. Let iii— (i) be a section of the bundle F™(m') over M;")(l),
then the KZB connection is expressed as

Vornf (), (21, . . . za) = dsmf (1),(21, . ., 2a) — (W, T[EOM)]e(z1) - - - e(zp)Vn),

where (Y, #2 T[E(0m)]e(zy) - - - e(z,)vy) can be computed using (23).

Remark 6. The fact that the action of T'(z) preserves the vanishing conditions of
Feigin and Stoyanovsky (vanishing on codimension k diagonals) probably again
follows from the identity (eX) =: heX :.

4.4. MOTION OF MARKED POINTS (sl CASE)

In this section, we indicate how the above results are changed in the case of curves
with marked points. Let (P;),_; v be marked points on X, distinct from Py. Attach
to each P; the weight A; and the evaluation Verma module Vy,. Vy, is generated
by the vector v_a, such that hv_,, =—A;v_,,, and fv_,, =0. Set again
W, =vyo e M) and

f(;L [ 21,000 Zm) = (lyb/l’ (e(Zl)le e ~e(zm)dzmv,,) RV A® - ® V—AN>»

m=n—13"A;.

fi(z1, -+, z,n) depends on the z, as a section of Qy L,;, regular outside Py and with
simple poles at the P;.

For w; in Va,, the values of the (Y, (e(z1) - - - €(zn)va) ® (®Y,w;)) can be recovered
from (1] z1, ..., zy) using the rule

res._p, (. (e(z)dze(z1)dz, - - e(Zp)dzmvn) ® (R wi))
= — ;. (e(z1)dzy - - e(zp)dz V) ® V(@Y wy)).
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The action of the Sugawara tensor is expressed as

<¢A, (T;(z)e(zl)dz1 . ~e(zm)dzmvn> ® (@Y 1V,A,-)>

2
= |:% (Z 0a(2)9;, + 22 G(z, zy) — ZAiG(Z’ Pi)) +

+3 D wu(2)3;, +2  DG(z.2,)—
- ZAZD(ZZ&)G(Z’ pP;) +szz(2):|f(i | Z1s ..o, z)+
7

+ Xn:|: 2Gy; (Z Zx) <Z wu(zx)8) +2 Z G(Zou Zﬂ) Z A; G(Zou P; ))
a=1

[

+ (—4G21(z, 24)G(2y, 2) + 2kd., G2,(z, z“)):|f(/l [ Z1y ooy Zy ey Zn).

When k = —2, the right-handside of this formula is the expression for a com-
muting family of differential-difference operators, or alternatively, for a commuting
family of differential operators acting on some finite-dimensional bundle over J(X).

The KZB connection is now a connection over the bundle of conformal blocks
over Projé”), which is the set of quadruples m = (X, [{{,}], P;, {;) of curves with
projective structure, n marked points and flat coordinates vanishing at these
points.

The vector fields {;d/9(; describing the changes of coordinates fixing the points,
and 9/0P; describing the changes of points in the fixed coordinate, are respectively
given by the action of Sugawara elements corresponding to vector fields é 2 equal
to 9/9(; at P; and o((;) at P;, and ¢; Gk equal to (;0/3(; at P; and o((;) at P»‘.

Set

G(z,w) =dz/(z — w) + ¢(2)dz + o(z — w)dz,

so that Gy(z, w)dz = dz/(z — w) + g,(z)dz, with

g
gi(2)dz = ¢(2)dz + Z @4(2)(3, InO(=4 4 (g — DA(Py) — A) —

9, In ®(gA(Po) —A(2) - A)).

PROPOSITION 4.4. The KZ B connection is expressed, in the direction of variation of
coordinates at P; by

2k + 2V af ()4 ] z) = 2(k + 2)G; 5 f (M) | 25) — Ai(Ai + 2)f (M) (4| z,).
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and in the direction of variation of P;, by

2k +2)V_a f ()2 ] 22)

= 204 2 012 = [ <A P,

+ A (Z A;iG(P;, P)) — 22 G(P;, z“)>

# P

AP + zAigM(Pi)}fow 2

+ Z |: —2G (P, ZO()(Z 0a(25)9;, +2 Z G(z,, Zﬁ))

==

— 4G (P, 2,)G(zy, P) + 2kd., Go,(z,, Pi):|
x res.—p,f (M)(4 | 2, (2p) p4) (28)
when m = 0, this equation simplifies to

ad
oP;

2(k + 2)Vﬁ;%’ f(m), =2(k +2)—f(m)(2)
- [ — A Y 0P, + A Y NGP, Py + Al G(P)
a J#i

+2Aigzg(Pi)}f(ﬁ4)(/1)~ (29)

Remark 7. 1t would be interesting to express the equations obtained above in terms
of dynamical r-matrices, as it was done in [§].

5. Commuting Differential Operators

The operators (23) are differential-evaluation operators acting on functions on
JOX) x [Ti—, S X. They make sense for arbitrary complex values of k. When k
is critical, one expects these operators to commute with each other. To prove this,
we will consider modules W), ,» generalizing the twisted Weyl modules.

For generic Ay in J(X), Jo-twisted conformal blocks for these modules can be

characterized via functions (2) as formal sections of finite-dimensional bundles over
JO(X).
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5.1. TWISTED CONFORMAL BLOCKS FOR GENERAL MODULES

Let X be a smooth complex curve of genus g > 1 and let Py be a fixed point of X.
Denote by K and O the local field and ring of X at Py. Denote also by R the ring
H(X — {Py}, Ox) and by A the adéle ring of X.

Recall that (8) defines a form y;, depending on formal variables ifj), on an arbi-
trary g-module V.

For u, ..., u, complex linear combinations of the A(l) define R(f)) as the subspace
of K[[2{"]] formed by the functions f(z, 1) depending formally on the 2\, such that
the coefficients of the monomials in A extend to regular functions on
X — o7 (Py) and we have f(y, z, 2") = f(z, A7) and f(yp z, A7) = etaf (z, AD).

¥, has the following properties:

LEMMA 5.1 (a) Set fora=1,...,8 Ja=Y,\Ph;. Define gi”m as
g;"" = (0 ® RN © @uca@ ® RY),) )

Then , is o0*"-invariant.

(b) A= {(,, v) satisfies the differential equation 3, (Yr;,v) = (;, hilra]v) for any v
inV. ’

Proof. Clearly, gj{“r(") is contained in Ad(e_Z Al ) AN, this
implies (a). We have fgr any a, b=1,...,g (dry,rp) =1/2in fai(X) dr,rp; the contri-
butions of the paths B, and BC_1 cancel each other, as well as those of the paths
;lc and :1;1, ¢ # b; the sum of the contributions of the paths Zb and :11;1 is equal
to 1/2in [ 4, dr,, which is zero as r, is single-valued along a-cycles. Therefore we have
[Ailra), hjlrp]] = O for any i/, a, b, which proves (b).

5.2. CONFORMAL BLOCKS FOR THE W

In this section, we set g = sl,. Let k be an arbitrary complex number.
For m, m'" integer numbers with m + m’ > 0, define g2 by

g,y =0 ®"0) 0 (He®0) e (i, ®:"0) CK.

Define g . and g”_ . by the convention that z*O =0 and z=*0 = K.

Let n be a positive integer. If m + m' > 0, (m, m’) = (—o0, 00), or m + m' = 0 and
n=—km, define y,,,,, as the character of g , such that y,,, . (K)=k
Tt 1) = =208,0K, e (K2 = 0, x = . f.

Define W, as the induced module Ug ® vgr (@ oy - DENOLE by v, the vector
1 ® 1 of this module. (When m +m' =0, Wy, is a twisted Weyl module.) For
/o a complex number, define CB; (Wjm,») as the space of gfg’—mvarlant linear forms
on Wym (Where g"”’ is as in Theorem 2.1).

Let us define .7-'( " as the space of forms f(1 | zy, . .., z,), depending formally on 1 in

the nelghborhood of Ao, symmetric in zy, ..., z,, sections of QyL_»; in z;, regular
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outside Py. Define for any integer p, F SZ)([)) as the subspace of F (A';) consisting of the
forms with poles at z; = Py of order at most p.
For any p in Ry, define first order differential operators f[p] by

A 21, s Zng)

n+1
= Z |:—P(Zi) <Z 0q(21)0;, + 2 Z G(z;, Zj)) + de(Zi)i|
i=1 a JEi
X fON 21y oot Znst). (30)

~

(n) (n+1)
STp]l maps F;” to F; .

40

PROPOSITION 5.1. Define a map 1 from CBj(Wymm) — Fy by
W, )zt oy za) = (W, €MD o(z)) - e(z,)v,),

fO}’ lp/l(, in CBA[)(Wnlm,m’)-

Assume that HY(X, Ly;(—mPy)) is zero. Then 1 is an isomorphism from
CB;y(Wyimm) to the intersection of the kernels of the 7[p] in }'f{;)(m/), with p in
Ry; N 2O (which is the same as HY(X, Ly;(—mPy))).

Proof. The fact that the image of 1 is contained in the kernel of the f[p] follows
from the identity

(%,0, ezcl(l—lo)ah[m][f‘[p]’ e(zy)--- €(Zn)]vn> =0,

which follows from f[p]v, = 0 and (n//%,f[e*2 Z“(Fio)a"“p]v) =0 for any vector v.

Let us now consider f(4 | z1, ..., z,) in FEZ)(m’), in the kernel of the f[p] and let us
construct its preimage by 1.

Clearly, CB;,(Wyjm,») 1s isomorphic to the space of linear forms ¢ on Ug, such
that ¢p(xx™) = p(x*"'x) = 0, for x™ in gl and x** in g3*'.

Define C(h[r,], ¢[¢]) as the subalgebra of Ug generated by the /[r,] and the ¢[¢], ¢ in
K. Since we have K = Ry, + 2O, the map

m: Ugs" ® Chlr,). elel) ® Uglt,, — Usg

given by the product is surjective. It kernel is spanned by the ae[e]® b ® c—
a@ele]lb®b, ¢ in R_y,, the a®belc]®c—aR@b®ele]lc, ¢ in 20O, the
a[1l@b®c—a®@bQRh[llc—a@[h1],b)]®c and the af[e]l®bRc—a® bR
flele = 3 alfTel, b] ® [f1el. b]” ® [fTe], b]” ® ¢, & in Ry, N 2"O with a, b, ¢ in Ugl,
C(hlra), ele]) and Ugpy .. and Y [f[e], b] ® [f1el. b]” @ [f[el. b]” any preimage of
L/[¢], b] by 7. i

Define a linear form ¢ on C{A[r,], e[¢]) by the formula

(ES (l—[ hlr > elel] - - - e[an/]) =0pwreSz =p, -+ - 1€8z,=Pf(0)(Z1, - . ., Zn)e1(21) - - - €u(2n),
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where we set f(4 | z1, ..., zn) = D ) [1(4 — 20 fan (21, o zn). Extend $to Ug%”@
C(h[ry), ele]) ® Ug, ,, by the rule that ¢(a ® b ® ¢) = e(a)e(c)d(b), ¢ denoting the
counit.

The functional properties of f(4 | z1, .. ., z,) imply that the image of the kernel of
is mapped to 0 by (ES, so that d_ﬁ defines a linear form of Ug. It is then clear that this
form is left g%"-invariant and right ¢ -invariant, and that its image by 1 is

m,m

fO |z, ..oy zn). O

LEMMA 5.2. The operator T(z) acts naturally on CB;(Wymumw). When m is
< —(g—1), this action is expressed on the f(A | z1, ..., z,) by formula (23).

Remark 8. Since H'(X, Ly;,(—mPy)) is zero, H' (X, L,;(—mPy)) also vanishes for 4
in a neighborhood to Zo. By the Riemann-Roch theorem, it follows that
H'(X, L£y;(—mPy)) has constant dimension at the neighborhood of 4. It follows that
the p understood in the statement of Proposition 5.1 form a free
Cl[(4 = 40),]]-module with rank equal to this dimension. O

Remark 9. The condition that H'(X, L£y;,(—mPy)) vanishes is fulfilled if

m < —(g—1) and any A, or if m = —(g—1) and 2/p not in some translate of
the theta characteristic containing zero. In the latter case, CB (Wyumm) 18
isomorphic to F (1’;)(’”,)’ because H(X, L1;,(—mPy)) also vanishes. O

Remark 10. If m = —(g — 1) and 24y is in the translate of the theta-characteristic
(for example, if A¢ is zero), the image of 1 is characterized by some vanishing con-
ditions near /.

5.3. COMMUTING DIFFERENTIAL OPERATORS

THEOREM 5.1. Suppose that k equals —2.

(1) Set for p integer >g and i in J°(X), fi")(p) = S"H(X, QxyL_2;,(pPy)).
(]:gfl)(p))iEJO(X) forms a finite-dimensional vector bundle over J°(X), denoted
F"(p). The operators T. defined by (23) form a family of commuting differential
operators acting on sections of this bundle. This family has rank <3g—3+p. It
normalizes the first order operators f[p] defined by (30), p in H'(X, L;(—mPy))
for any m (that is, it preserves the intersection of their kernels).

(2) Formula (23) also defines a family of commuting differential-evaluation
operators, acting on functions of J.in J%(X) and of z\, . . ., z, in a subset U of X (e.g.
the pointed formal disc at Py), symmetric in the z;; these operators are indexed
by points of U. They normalize the operators f[p], p some function on U, defined
by formula (30).

Proof. Let us prove (1). If p > g, the action of T, on the jets at 4y of sections of
F®(p) coincides with the action of T'(z) on CB;y(Wy—(¢-1)p), by Remark 9 and
Lemma 5.2. Since the 7'(z) commute together, this shows that the operators 7., form
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a commutative family. The result on normalization of the]N‘[p] follows from the fact
that the action of 7. on the intersection of their kernels coincides with the action
of T(z) on CB;,(Wym,o00)-

LEMMA 5.3 For any f;, (T.f))(z1, ..., zy) is a quadratic form on z, regular on X
except for a pole of order < p at Py.

Proof of Lemma. 1t is clear that the right-hand side of (23) is a quadratic form in z
with possible poles at Py and the z,. Since £k = —2, one checks that this expression has
no pole at z,.

Let us evaluate the pole at Py. Let z be a local coordinate at Py. G,(z, w) has the
expansion

s=lyl=¢d;

Goslz, W) = —— + 2 g 3 gy ().

-w ij>0
Therefore, if @ belongs to H(X, Qy), then DY is in HO(X, Q%(Py)), because if o,
is (z* 4+ o(z%))dz, we have Do, = [(2g — 2 — a)z°~! + O(z%)]d=.

On the other hand, w;; has the expansion at P

W = —glg — 1)z272(dz)* — 2(g — 1)z~ (d=)*apo(2) + O(1)(dz)*.

So the two first lines of the right-hand side of (23) have a poles of order < 2 at Py.
Since w,(z), G(z, z,), G(z4, z) and Gy;(z, z,) are regular at z = Py, the pole at Py
of the two last lines of (23) is of order at most p. O

The result on the rank of the family (7,) now follows from the fact that
W(Q3(pPy)) = 3g — 3 +p.

Let us prove (2). If we set p = oo in the result of (1), we see that the operators T+, z
in U, commute on all functions of 4 and the z;, which are symmetric in these variables
and behave as sections of QyL_»;, regular outside Py. The commutator [T, 7] is
again a differential-evaluation operator. But no such operator can vanish on these
functions without being zero. O

Remark 11. Arguments similar to the proof of Theorem 5.1 imply that the 7.
defined by (26) commute when k is critical.

Remark 12. In the case n = 0, we find a commuting family of operators

(TS )15 - - )

2
_ % <Z wa(z)aia) Y D, — 20m0) |fG ). )
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If g =1, we have

A Y,
o /_9<—m+z—z>0(0)
W, = 2indz, Gy(z,7') =

dz,

Dgﬂ)wa =2 0— (.i)2in(dz)2,
0 \ir

6// )\. )
om ==& (21.“) (d2).

where 0 is the Jacobi theta-function, so that
1 () 0" (2
T. = |=Qind;)> +2— = )2ind, + 2— =) |(d=)*
2 0 \irn 0 \in

1/.. 0 () ,
= 5 <2l77:81 + 25 <E>> (dZ) s

which is conjugate to 1(2ind;)*.

When g > 1, (21) is a generating series for one first order and 3g — 3 second order
operators. The linear operatoris ), 2(1 — g)w.(Po)d;, + (1 — g)aoo(4). From the for-
mula for the variation of the periods matrix dt,, = resp,(w,wp¢) follows that the
operator corresponding to a variation dt; has leading term Za,b 0T4p0;,0;,.

Remark 13. In the case of the rational curve, we get the commuting family of
operators defined on symmetric functions f(zy, - - -, z,) by

T m) Z(Z I Zi)f(zh...,z,...,zn)—f(zl,...,zn)’ )

=1 \j# 9~ T
where z is at the ith position in the right-hand side.

Remark 14. Relation with the Beilinson—Drinfeld operators. It is not possible to
interpret directly the operators 7, directly as Beilinson—Drinfeld (BD) operators
([2]D). Indeed, for g = nit[f;]w, with ng in N(K), f; in C, (see Section 6.2) and
w= (3 %), the local ring (A?Buné([g]) is Ho(®' o™, Ind3 C,)*, where C, is the
go-module associated with the character y of gp, defined by y(K)= -2 and
2(3® ©) =0, and %x denotes the conjugation of x by g for x in g and g in G(K).
This space is isomorphic to CB;(W_z,—24,2,), Which has no interpretation in terms
of the F\"(p).

However, the vector f[z=>""'Vv_, is cyclic in W_p,_2,24, Which implies that
W _snj—2n0n 1s @ quotient of Wj,_oy—242042. CBi(W_24-24,2,) may then be viewed
as a subspace of CBjy(W)_on—2424+2), Which has a functional interpretation when
p =2n. The BD operators may then be expressed as the commuting family of
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operators (7), acting on some subspace (defined as the intersection of a familyf[p]
and some vanishing conditions) of some .7-'2")(;7).

Another connection with the BD operators is the following. The BD operators
admit lifts to bundles over the moduli space of G-bundles with parabolic structure
at Py. Such bundles are attached to a weight A. The space of local sections of this
bundle is then Hg(gflg"’”,IndiCXA)‘* where G, is the g -module defined by
IAK) = =2, ya(h[1]) = A and y,(x[#]) =0 for x =f and i > 0, and x = A, e and
i > 0. This space is isomorphic to CB;(W)_2y—2n,20+1) Which is isomorphic to the
intersection of kernels of some ?[p] in some F gf”)(p) if -2n<1—gand 2> 2n.

The commuting family of operators (7%), acting on the intersection of kernels of
the f[p], gets then identified with the BD operators. The commuting family (7%)
acting on F (")(p) itself gets then identified with the lift of the BD operators to some

moduli space of B-bundles with additional structure.

Appendix A. Proof of Theorem 2.1
A.l. ADELIZATION

For any point s of X, denote by Ky and O; the local field and ring at this point. For a
finite subset S of X, set Kg=@usks and Og= PesO;. Set also
Rs = H'(X — S, Oy); we view Ry as a subring of K. Define gg as the Lie algebra
(6 ® Ks) ® CK, endowed with the Lie bracket

[xle], YT = [x, yllee'] + K(de, €), (33)

with (w, &) = ) g ress(we) and x[¢] = (x @ ¢, 0). Set g% = g ® Rg; we view g¢ as a
Lie subalgebra of gg, by the embedding x ® ri—x[r]. For any s in X, let g, be
the space (g ® Ks) ® CK, endowed with the bracket analogous to (23), is a Lie
subalgebra of g*; the associated embedding is denoted by .

Let k be a positive integer, (A, k) be an integrable weight of gand (p, 4, La «) be the
associated integrable module over g.

Define (pg ., Lox) as the integrable module over g with highest weight (0, k) (the
vacuum module of level k). Denote by vy, its highest weight vector. Define VS
as the vector space L x ® ®ses,s£p,Lok; there is a map pg : gs — End( 175) defined
by the condition that the action of g, by pgoi; on V¥ is identical to ps\fj‘,’() if
s = Py and to pgf)k else.

Define g as the space (3 ® A) @ CK, endowed with the Lie bracket analogous to
(23); the map xi—(x,0) makes §® C(X) a Lie subalgebra of ¢*. For x in g,
& = (&),cy in A, we sometimes denote by x)[¢] the element of g, equal to (x ® &, 0).

Define V' as the g**-module ®ex Ve, With Vi = Lo for x # Py and Vp, = L.
(Here ® means that the module is spanned by the products ®,cxv, with v, in
V, equal to the vacuum vector vg,), for all but finitely many x.) The proof of the
following Lemma is a variant of that of [19], Prop. 2.2.3:
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LEMMA A.1. Let y be a g°*'-invariant linear form on L x. For any finite subset S of
X containing Py, there is a unique linear form g on VS, which is 94" -invariant
and such that Y g(Rxes x£p, v(,f,;, ®v) =y(v) for any v in L.

There is also a unique linear form lﬁA on VA, which is § ® C(X)-invariant and such
that Y™ (®xex.xzp,Viop ® v) = Y(v) for any v in Ly .

Proof. Let us set g%'gfx = H(X — {Py, x}, §). Let us denote by W the Weyl mod-
ule Ug ®yqn C, where C is the g”-module on which g ® O acts by zero and K acts

by k. Let us prove that there is a bijective correspondence between

(i) the forms yp on Ly x, which are g°*'-invariant,

(i) the forms yp . on Wy ® Lk, which are g‘;,’gfx-invariant

and .

(iii) the forms /p, , on Lox ® Lk, which are g;‘gfx-invariant, the correspondence
being such that

lpPO(V) = l//P[),x(vtop b V) = lLPU,)C(Vtop b V).

The proof of the general statement of the Lemma is similar.

Let us construct a form as in (ii) from a form as in (i). Fix a family of functions
(P1)imo in HY(X — {Py, x}, Ox), such that p, has the expansion z;’ + O(1) near x,
and a basis (x,),c4 of 3. Choose an order of the index set 4. By the PBW theorem,
a basis of Wy is given by the [T, x[p; ] - X2[p;,, w]Viop, for sequences of
integers n(o) and of indices i1 (o) < ir(«t) - - - < dp()(), where the product is performed
according to the order of 4. Set then

¥ py x (n xggx)[Pil(a)] .- -ng)[ﬂim)(a)]vmp ® V)
o

' (P P
=Yp, <H Xl 0)[—,01'”(“)(&)] o 0)[_pi|(oc)]v>-
o

Here []' means that the product over all «’s is taken in the order inverse to the order
of A. We have then

Vp,.x (H X oi ] X0 ) Viop © V)> -0

oaeA

for all v in VA, if the product is nonempty. Since the elements of Wy ® Va . are
combinations of the [T,c, X"V [p; ] ¥ V[p;  )](viep ®v), it follows that
Yp, 18 gp -invariant.

Let us now show that any form as in (ii) is of the type (iii). We follow the argument
of [6], based on [10].

For any integer N > 2g, we can construct an element py, in H %X — {Py, x}, Ox)
with the expansions py, = z:! 4+ O(1) near x and Pvy = z;ON(oc + O(zp,)) near Py,
with o # 0. For that, it suffices to add to p; some function of H'(X — {Py}, Oy).
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Fix " in the coroot lattice, such that (", 8) # 0. Let N be an integer > 2g and of
the form 1+ d{(a, 0), with d integer.

Loy is the quotient Wy /I, where I is the submodule of W, generated by
eolz ‘l]k“v,(,p, where ¢y is the root vector associated to the maximal root 0. I is
isomorphic to some Verma module. From [10] follows that e(\)[ ~11 is surjective
on I. One may use some element of the form exp(hV[e]), with ¢ in z,C[[z,]], to
conjugate e(x) [z:1] to e(x)[p ). Therefore, eé [o)] is also surjectlve on I.

Let us now show that e(H [p(v)] 18 locally nilpotent on L k. e(, [p( N)] is conjugated
by some element of the form exp(h*0)[e]), with ¢ in zp, C[[zp, ]], to aeg[zp, P N1. Recall that
the affine Weyl group contains a translation element w,, associated to any w in the
coroot lattice; the action of w, on the nilpotent loop generators is
Wwe, - P[] = e,[(zp,) " f], for e, the root vector associated to any root «. Moreover,
the module L x endowed with the composition of the action of g with an affine Weyl
group automorphism is again integrable. It follows that the action of w - ey[z}, 1, for w
any affine Weyl group element, is locally nilpotent. In partlcular for w = w_g,v, we
find that eo[zP ] is locally nilpotent on Lax, as well as ee ")[p(N)]

These two results imply that p,.x Vanishes on I ® L, x: indeed, any v,V in I and
L, fix m such that (e(P ")[p( )"V vanishes; we may write v = (— eg [P(N D™v”, with
Viin 1. p,x(v®) is then equal to (' ® (— e(P ”)[p(N)]) V'), which is zero. OJ

A.2. FORMULA FOR THE TAME SYMBOL

Denote by ¢ the tame symbol defined in (A*)* by

(Fhrex (@xex) = (=P [T ()"

xeX

we fix a coordinate z, at each point x of X and set fy = z(f"(x) + O(z,)).
Fix a lift 7 of the universal covering X — X of X, such that the boundary of i(X) is
a union of paths A,, B, projecting to a standard system (4,), (B,) of a- and b-cycles.
We will identify the local field and ring at any point x of X with the local field
and ring at i(x). For A =(/,) in C?, define C; as the set of the adeles of the
meromorphic functions f : X — C*, such that f(y4,z) = f(z) and f (yp,2) = e~ f(z).
We then have

LEMMA A.2. (a) Forany 4 in C¢, C; is not empty, moreover, we can find elements of
C; without any zero or pole on the Za.

(b) For f in CG(X)*, without any zero or pole on the cycles A,, and f; in C;, we have
a(f, f3) = e Ve with ny(f) = 1/2in [, df /f.

Proof. Let us prove (a). Denote by ® the Riemann theta-function on the Jacobian
on X, and by A the Abel map. Let @ be any vector of the Jacobian of X, then the
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function

O(A(z) + a — 1/2in)
O(A(z) + a)

belongs to C;. That the zero-poles requirement can be satisfied follows from a tra-
nsversality argument.
Let us prove (b). Suppose that f, g are nonzero meromorphic functions on i(X),

such that
d,
Sores = Y res %o
xeX xeX

Then we may introduce cuts on X , connecting the zeroes and the poles of f, and
choose a determination of In(f) which is single-valued along 9i(X). The same
can be done for g. We have then

. 1 df dg
oV 8) = exp <4”T /81()() f 1nf>

This formula may be proved by deforming 9i(X) to a set of contours encircling the
cuts of Inf and Ing.

Then in the case where f/ and g belong to C(X)* and C;, we evaluate the integral
comparing the contributions of the paths above 4, and 4;!, and above B, and
B;!. For example, in case the zeroes and poles of f/ and g form disjoint sets, inte-
gration by parts gives

o Tng-Snr— o [ Ding
din 3,(X)f 2in Jyicxy S

_ %Z /A S ng@) - ng(r50)
o df
- ﬂ;/?zﬂ,
which implies (b). [

Remark 15. Lemma A.2, (b) implies that o(f, g) = 1 for any f, g in C(X)*, which is
a well-known fact. One could also prove that for any f in C; and f” in Cy, without
any zero or pole on the A4,, we have

o(ff) = edaal Vil Vi, (34)
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6.3. CONSTRUCTION OF

We now follow the classical procedure to construct operators in End(V*") integrating
the Lie algebra action on V**. For f in A, ¢;[f] and f;[f] are locally nilpotent on V.
We set

nf[f] = exp(elf]. nj[f]=exp(filf])
for f in A. Set also, for p in A, wip] = ni[pln; [—p~'Ini[p], and
tilp] = wilplwi 117"

We have then

tlop'] = a(p, p) I 4 pleidp'] (35)
for i simple, and
Lol 1l 111" = a(p, p/Y M, (36)

for any indices i, j (observe that (/;]h;) is always integer and (%;|h;) always even).
The first identity is a consequence of [12], Thm. 12.24, and the second is a conse-
quence of this identity and [17], 7.3) e) (see also [15], Lemma 8.2, formula (3)).

PROPOSITION-DEFINITION A.1. Let us fix 2V, ..., 2" in C. For f0 in Cj,
such that the f,» have no zero or pole on the A,, and v in V, the quantity

i i<j a

Xp |:Z M Z ;Lg)na(f/l(i)) + Z k(hi | hf) Z lf’na(ﬁm)}
< (0 alfol- - 4lfol(v © @snni) 7

is independent of the choice of the f,». We will set J. = W, 29 and

i i<j a

~ k(hi | h; ; ;
Wi = exp[z%zzynm + Y K 1 ) zxynam]

<WA9 t [fim] cee l,,m(y)] <V ® ® V553,>>

X;ﬁPO

Sor any such f .

https://doi.org/10.1023/A:1002454201868 Published online by Cambridge University Press


https://doi.org/10.1023/A:1002454201868

COMMUTING DIFFERENTIAL AND DIFFERENCE OPERATORS 49

Proof. Letf ’(,) be other elements of C), satisfying the same zero-poles condition as
Jf,o. Then f o = fif 0, with f; in C(X)*, without zero or pole on the 4,. We have

Xp[zwzw nalf) + 3 klhi |y )Z;“(I)”a(fm):|

, - =
x <¢~*\ alfl- - Zr[féu)](" ® g? v§§§,>>
:exp{z"“’ "”Zzu )+ Ykl |h>Zz“>na(f)]
: =
xexp[zk(h lh)Z/l(’>na(/’,m+Zk(h |h)ZA n(,(fw}
i i<j

The identities (35) and (36) imply that this is equal to

Xp[zk(h '“ZN )+ > k(s |h)2/1 na(ﬁ}

! i<j
k(h; | hy
X exp|:2 (hi | )Z,{l(f}m)-l-Zk(h | h)ZA na(ﬁ,)):|
t i<j
X 1_[0.(]0 f ) k(hilh;)/2 Ho_(f f()) k(hi|h;)
i<j
« <l//A, nlfil-- - lfn [f)}”] - Zr[/{)}'” (v ® ® v§;1),>>
x#£Py

Now, as the 7[f;] are products of exponentlals of elements of the g ® C(X) and 1//
is g ® C(X)-invariant, we have ( 1//2, [T, tlfi] w,, ) forany v/ in V. Applying
Lemma A.2., (b), we find that (38) is equal to

‘o |:Z k(h; | hy) ZN na(f 0 + Zk(h | h; )Z}L(l)nu(fﬁz)i|

i i<j

X <lp)’\\s tl m(l)] e Z"[ﬂ(r>] (V ® ® vgz;)) >.
X#Pgy
]

Remark 16. In view of (36) and (34), it is clear that (37) is independent of the
chosen ordering of simple coroots.
Let us now give an expression of i, in terms of extremal vectors.
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LEMMA A.3. Define the vectors vi[u in Loy by the formulas

k
B =D ok
Vi(0) = ViopViilnt1] =~y iz i
and
1 —2n—11k
Vien—1] = Eei[z ] Vis[=n] for n>=0.

Then we have vip; = ti[2"]viop-

Proof. It is enough to prove this statement for the case g = sl,. The formulas for
viny and vi—1) are derived by direct expansions. The other formulas are obtained
by applying the affine Weyl group translation associated with the coroot 4; (which
preserves t;[z]). O

We have then

PROPOSITION A.1. Assume that the sets S; of zeroes and poles of the f,» are dis-
tinct. Then we have for v in Vay,

(. v) = exp [Z w Y i0na(f0) + Y ki | 1) Y Ana(f0) %

i i<j a
r r ( )
/ s
X 1_[ l_[(fi([)(s)’/") W{P()}U(U[S,»)v ® ® vi:["x(f;ﬁ(f))] ®
i=1 seS; i=1 \seS;

.
® l—[ IEPO)[f;u(f>]V>,
i=1

where we set f,0(2) :ﬁ(,)(s)zs +o(zy) for s in Si. Recall that Y p s, denotes the
prolongation of \ to the product of Ly and vacuum modules at the points of S;.

A.4. PROOF OF THEOREM 2.1

To prove Thm. 2.1, 1), we first prove

LEMMA A.4. For any vin Ly, the function A+— (t%v, v) depends analytically on A and
satisfies 3;}0@17 V) = (JZ, hilrgv), a=1,...,g,i=1,...,r

Proofof”Lemma. Let us prove this first in the case g = sl,. In that case, we work in
a neighborhood of some point 4y of J°(X). Let P;(/) be pointson X (i=1,...,2)
such that f; has simple zeroes at the P;(4) and a pole of order g at Py. Let zp,,)
a coordinate at P;(4y); we will again denote by P;(1) the coordinate of the point
P;(A) in the coordinate system. We will assume that the local coordinate at P;(1)

IS Zp3) = Zp,9) — Pi(4).
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Let for Pin X, pp be a meromorphic function on X, with only poles at Py and at P,
with the expansion p = z' + O(1). We assume that the expansions at P, the
functions pp depend smoothly on P, for P near any of the P;(4y). We set also

[:(2) = [1(Pi(2))zpy + 317 (P22, gy + -
Then Proposition A.1 implies that

;. v) = exp [k > ana(f) Hﬂ(w»"}

Szl e
<w{P(),P,~().)} ® k' ( i(4)) ® t(P())[f;L]v .
i=1

As we have seen, f[—zp u)]kvgfp())) is equal to fP[—p, T, (i) By the
coinvariance of ¥, and the fact that vy is annihilated by the f[¢], ¢ in O, the
right-hand side of this equation is equal to

ﬁ CXp |:k Z ala(f7) Hfg/(Pa(i))k] <l//, l_[ (f[PP,().)]k) Z[f;fPO)]v>.

i=1

o

This formula shows that ( %, depends smoothly on 4. Let us compute its differ-
ential. Let 04 be a variation of 4. A computation of adjoint actions shows that

o] = (h B?P))} +k< ar®, ;{PO)) >)t[f;”°>],

so that

3. v) = k(Z na(méza) W M)+
1
(k|)g eXp |:Z /lll(fi :|
x Z<w, ]_[(f[pw)]")kf[pp,.@]k‘1f[5pp,(;.)]t[]’fp°)]v>><

i=1 i

x lf[ﬂ(Pi<z))*k
(k!)g P [Z Zaalf3) }
5o Py
x <l//, ]_[(f [pp,<i>]k) (h [%] + k<d P {po) >> LA >
i=1 1 (1)
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< [ [ri@on™ +
of (P (/1))
—k 2 V),
( Z 17 (Pi(4))
which can be rewritten (using coinvariance) as

- Sf(PAA) , Jdfi & "
S, v) <k2(”a”a(ff) kZ ;{/((15((&)))) <£ J{)> )W v

+ HmPiu))

< ron S @6

i J#i

SIP(Dzp i) lzp) i vio®
® (PI[f;] >+1_[f;(P(/L)) x

x <‘//{P0,P,-(z>1’ Zh(PO)[ j{ﬂ ](®g =R °)[ﬁ]V)>.

The penultimate term is rewritten as

[l f(’l))_k<W{Po,P,-u) 251’ (Ah" ZP<A>]<®vﬁ)]) ® (P[f] >

using the identity in Lo .

( 1)/(—1
k=)

Az vy 12721271 iops

which follows from

iz 112" T viop = (elz] 12711 = 12 elz) 12 T viop

39
= k1T v 9

because f[z72] flz'F viop = 0, which is a consequence of the integrability conditions.
On the other hand, we have

(Po)
t[f;FPo)]h[ra]l[f;Po)] = h[r,] + 2k< f(P R 7, >
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so that ), S2a 50 h[ra]vy is equal to
P exp[z Lanaf; 1‘[f (Pi(2))” "]
~ k df" (P
< 350w, H(f[pp,m] )t + 2% ) | U)
a i=1 )

A

Therefore, we have

Sy = > 02alhy. ralv)

df; o\ _ AN X/ (0)
[ fff 5] ol o), SR FEE]
W) + [ [P

x <¢{P¢nPf(i)}’ <h(PO)|: ] Z(SP (D515 — 25} WPy )

X (® v[1]> ® Z[fi(PO)]v>.

On the other hand,

5 (Po)
o= =Y Shata

P
fi(l)) -

is single-valued on X and has simple poles at the P;(1). Therefore,

<¢{Po,ﬂ-u>}’ (h(P")[Q] + Z HOlaD(@n) ® 1 °)v> >

is zero, so that 5 - 0 (l///l, h[r,]v) is proportional to
of{(Pi(2)) . <df 5ﬁ>
5 a'ta L
Zfi(P(ﬂ)) +; SRV AN

(40)

2y o) 23| (L) e - S |
a fl Py i f’“ a

where we set

S\
( ]f )(z) = sz + ( jﬁ: ) (PAD) + 0.
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The vanishing of (40) then follows from the identities
af, of; df; of, ,
<ﬂ ﬂ> Z<f; ﬁ> BB
<dﬁ', ra> = = SR (PO) + 1)
vz Py i

and

P <de> <5ﬁ>g N
oy \n P\ =0

the latter identity follows from the expansions

df; dz f_ (Pi(A))dz + O(z — Py(A))dz,

£ =P 2Jg

i z=P)

o _ P | [%f(g'l)))) _12 L (PSP, (/1)} +0(z — Pi2)),
ANE IV

5f/z>reg O (Pi(A) 1

- P = Z=F—5) 5 (P (2))0Pi(2).

<fa fi(Pi(4) 2 f

This ends the proof of Lemma 6. 4 in the case g = slp. In the case of general g, this
result allows to compute 9, 0 l// ; the additional prefactors of the expression
of (lp v) allow to transfer the hl[ra] in front of v. Using Remark 16, we can treat
the case of any simple coroot in the same way. O

Let us now show why Lemma 6.4 implies Theorem 2.1(1). The differential
equation of Lemma 6.4 and the equality y, = imply that the formal expansion
of { lp;, ) for 4 near 0 is equal to (y,, v). This implies Theorem 2.1(1).

L

Theorem 2.1(2) follows from the equality i/, =, and the fact that for any f;» in
C,», we have

Adi[ f,o]- - 6L foD(@3") = g™

Finally, Theorem 2.1(3) follows from the equality J ;, =V, and the fact that if f}
belongs to C;, fieé* belongs to C;1q,- This ends the proof of Theorem 2.1.

Remark 17. Equation (39) is translated through the states-fields correspondence
into the identity

d :
(/@Y =—har @),

which is valid in level £ modules (see [14]), and means thatf(z)k is a vertex operator.
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The connection between this vertex algebra and the Abel-Jacobi map was noticed in

[7].
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