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Introduction

In [7], B. Feigin and A. Stoyanovsky introduced functional realizations of the space
of conformal blocks associated with a complex curve X and a semisimple Lie algebra
�g. This space is de¢ned as the set of gout-invariant forms on an integrable g-module
LL;k located at a point P0 of X , gout being the Lie algebra of regular maps from
X ÿ fP0g to �g and g the Kac^Moody Lie algebra at P0. Feigin and Stoyanovsky
associate to such a form c, the family of forms on a product of symmetric products
of X

fFS�z�i�j � � c;
Yr
i�1

ei�z�i�j �dz�i�j �wv�P0�
top �

* +
; �1�

where r is the rank of �g, ei�z�dz are the currents associated with the simple nilpotent
generators of �g, w is an af¢ne Weyl group element and v�P0�

top is the highest weight
vector of LL;k.

In this paper, we introduce the twisted conformal blocks cl � c � e
P

i;a
l�i�a hi �ra�.

Here �ra�a�1;...;g are functions on X , regular outside P0, single-valued around a-cycles
and all b-cycles except the ath, along which it increases by 1 (Section 1), and the hi are
the simple coroots of �g. The functions ra are thus the analogues of the function y0=y in
the elliptic case. cl is independent of the choice of the functions ra.

For any v in LL;k, the function v 7!hcl; vi is de¢ned as a formal function in
l � �l�i�a �. We show (Theorem 2.1) that it is actually a holomorphic function in l
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with theta-like properties. This result relies on adelization of the representations LL;k

(see [19]), reduction to the sl2 case, formulas for the tame symbol and the identity
�f k�0 � ÿ : hf k : (see [14]). This generalizes a result obtained in [9] in the genus 1 case.

We then consider the forms

f �l j z�i�j � � cl;
Yr
i�1

ei�z�i�j �dz�i�j �wv�P0�
top �

* +
: �2�

These forms have the following geometric interpretation. It is known ([1,13]) that
conformal blocks can be viewed as sections of a bundle on the moduli space
Bun �G of �G; such sections are called generalized theta functions. In Section 3, we
explain that the forms (1) of Feigin^Stoyanovsky can be viewed as generating
functions for lifts of the generalized theta functions to a space, which in the case
�g � sln can be described as Bun�ni;P0�, the moduli space of bundles with ¢ltration
E1 � E2 � � � � and associated graded isomorphic to �iO�niP0�, ni some integer
numbers. >From this viewpoint, the twisted correlation functions (2) are generating
functions for lifts of generalized theta-functions to the moduli space BunB of
B-bundles over X , where B is the Borel subgroup of �G.

We then express the Knizhnik^Zamolodchikov^Bernard (KZB) connection in
terms of the forms (2) (Section 4.3). Our treatment of the KZB connection follows
[8]; the KZB connection is de¢ned on the space of projective structures on curves
of genus g. However, such a projective structure is canonically attached to the choice
of a-cycles on the curve, via a bidifferential formeo (see (7); this form appeared in [5],
cor. 2.6). This allows to de¢ne the KZB connection as a projectively £at connection
on the moduli space of curves with marked a-cycles, which is intermediate between
the moduli space of curves and its universal cover. The KZB connection is expressed
as the action of differential-evaluation operators �Tz�z2X on the f �l j z�i�j �, which are
forms on J0�X �r �Qi S

niX (differential in l and residues and evaluation in the l�i�a ).
We also express the KZB connection in the directions given by variation of points

in case of a curve with marked points (Section 4.4). Denote by em a quadruple
�X ; �fzig�;Pi; zi� formed by a curve with projective structure, marked points and
coordinates at these points, by c�em� a conformal block associated to this complex
structure, and by f � ~m��l j z�i�j � the twisted correlation function associated with this
conformal block according to (2). In the case �g � sl2, the connection takes the form

2�k� 2�r @
@Pi
f � ~m��l j za� � 2�k� 2� @

@Pi
f � ~m��l j za� ÿ �Kif �� ~m��l j za�
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with

�Kif �� ~m��l j za�

�
"
ÿ Li

X
a

oa�Pi�@la � Li

X
j 6�i

LjG�Pj;Pi� ÿ 2
X
a

G�za;Pi�
 !

�

� L2
i f�Pi� � 2Lig2l�Pi�

�
f � ~m��l j za�

�
X
a

"
ÿ 2G2l�Pi; za� �

X
a

oa�za�@la � 2
X
b 6�a

G�za; zb�
 !

ÿ

ÿ 4G2l�Pi; za�G�za;Pi� � 2kdzaG2l�za;Pi�
#
resz�Pi f � ~m��l j z; �zb�b 6�a� �3�

where the functions G and G2l are (twisted) Green functions.
The relation to the usual formulation of the KZ connection in the rational case is

the following. In that case, the KZ connection has the form

2�k� 2�rPic�Pi� � 2�k� 2�@Pic�Pi� ÿ Krat
i c�Pi�; �4�

with c�Pi� in a tensor product 
iVLi of lowest weight �g-modules, and

Krat
i �

X
j 6�i

t�ij�

Pi ÿ Pj
:

Equation (3) above may be viewed as the expression of the action of Ki on `Bethe
ansatz vectors' ee�z1� � � �ee�zk��
ivbotLi

�, where ee�z� �Pi e
�i�=�zÿ Pi�. Extracting

coef¢cients of
Q�zi ÿ zj�aij from (3), one recovers (4). The equation for the bottom

component of c�Pi� is simpler than (3) (see Equation (29)).
The operators �Tz�z2X depend in a simple way on the level k. In Section 5, we show

that these operators commute when k is critical, thus de¢ning a commuting family of
differential operators, acting on a ¢nite-dimensional bundle over the degree zero part
J0�X � of the Jacobian of X (Theorem 5.1). This is proved using a class of modules
Wnjm;m0 generalizing the twisted Weyl modules.

In the case where there are no z�i�j , these operators take the form

�Tz f ��l� �
 Xr

n�1

Xg
a�1

oa�z�@�hn�a
 !2

�
X
a2D�

Xg
a�1

D�l;a�z oa�z�@�a_�a

� k
X
a2D�

o�l;a��z�
!
f �l�;

where �hn�n�1;...;G is an orthonormal basis of the Cartan subalgebra �h of �g, �oa�a�1;...;g
are the canonical differentials ofX , D� is the set of positive roots of �g, l is a collection
�l1; . . . ; lg� of variables in �h, a_ is the coroot associated to the root a, D�l

�i��
z is a
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connection depending on �l�i�� inCg, on the canonical bundle OX (see (22)) and o�l�i��
is a quadratic differential form depending on the same variables (see (24)).

We close the paper by explaining the link of the operators �Tz�z2X with the
Beilinson^Drinfeld (BD) operators (Rem. 14).

In a sequel to this paper, we will construct q-deformations of the operators Tz, by
replacing the inclusion Ugout � Ug by some inclusion of quasi-Hopf algebras, which
were introduced in work of one of us and V. Rubtsov ([4]). The outcome will be a
commuting family of difference-evaluation operators, which may be viewed in
the case of a rational curve as the Bethe ansatz formulation of the qKZ operators.

One may hope to obtain hypergeometric representation for solutions of the KZB
equations formulated in Section 4.3. This may be related with the formulas of [11]
expressing the scalar product on the space of conformal blocks.

1 Bases of Functions on X

Let X be a smooth, compact complex curve; denote by g its genus. Let P0 be a point
of X . Denote by K and O the completed local ¢eld and ring of X at P0. Denote
by OK and OO the spaces of differentials and regular differentials at the formal
neighborhood of P0. The residue de¢nes a natural pairing between K and OK.

In what follows, we will ¢x a system �Aa;Ba�a�1;...;g of a- and b-cycles on X . We will
denote by gAa

and gBa
the corresponding deck transformations of the universal covereX of X , and by s the projection from eX to X .

De¢neR�b� as the set of functions f de¢ned on eX , regular outside sÿ1�P0�, such that
there exist constant functions aa�f � such that for any z in ~X ÿ s1 �P0� and any
a � 1; . . . ; g, we have f �gAa

z� � f �z� and f �gBa
z� � f �z� � aa�f �. Let us also denote

by R the space of functions on X , regular outside P0.

PROPOSITION 1.1. R�b� \ O � C1. R has codimension g in R�b�. Moreover,
R�b� � O � K.

Proof. The ¢rst point is clear: for any f in R�b� \ O, df is a regular form with
vanishing a-periods, and therefore vanishes.

To prove the second point, de¢ne R�ab� as the set of regular functions de¢ned
on the universal cover of X ÿ P0, such that f �gAa

z� � f �z� � ba�f � and
f �gBa

z� � f �z� � aa�f �, with aa�f � and ba�f � some constants. We will show that R
has codimension 2g in R�ab�. R�ab� \ O has dimension g� 1 (it is spanned by the con-
stants and the

R x
P0
oa). On the other hand, we have R�ab� � O � K, because

K=�R�ab� � O� is zero (the differential maps it injectively toKer res=�OR � OO�, where
res is the residue map from OK to C, which is the kernel of the residue
map from H1�X ;OX � to C and is therefore zero). We have an exact
sequence 0! �R�ab� \ O�=�R \ O� ! R�ab�=R! �R�ab� � O�=�R�O� ! 0, therefore
dim�R�ab�=R� � dim�R�ab� \ O=R \ O� � dim�K=R�O� � 2g. Since dim�R�ab�=R�
� dim�R�ab�=Rb� � dim�R�b�=R�, we have dim�R�ab�=R�b��� dim�R�b�= R� � 2g.
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On the other hand, dim�R�ab�=R�b�� and dim�R�b�=R� are both W g, because the
maps R�ab�=R�b� ! Cg sending the class of f to �ba�f ��a�1;...;g and R�b�=R! Cg send-
ing f to �aa�f ��a�1;...;g, are both injections.

It follows that dim�R�ab�=R�b�� and dim�R�b�=R� are both equal to g.
Finally, the fact that K=�O � R� is equal to H1�X ;OX � and has therefore

dimension g implies the last point. &

COROLLARY 1.1. For a � 1; . . . ; g, there exists a function ra de¢ned on eX, regular
outside sÿ1�P0�, with the properties

ra�gAb
z� � ra�z�; ra�gBb

z� � ra�z� ÿ dab;

for b � 1; . . . ; g and z in ~X ÿ sÿ1�P0�. The functions ra are well-de¢ned up to addition
of functions of R.

Fix a coordinate z at P0. Let us denote bym the maximal ideal ofO, by �rini;0� a basis
of m and by �routi ; 1� a basis of R � H0�X ÿ P0;OX �, such that resP0r

out
i dz=z � 0.

From Proposition 1.1. follows that we can ¢x functions �ra�a�1;...;g of R�b� such that
resP0ra dz=z � 0, so that �ra; routi ; 1� is a basis of R�b� and �rini;0; ra; routi ; 1� is a basis
of K.

Let �oa�a�1;...;g be the basis of the space of holomorphic differentials
OO \H0�X ÿ P0;OX �, dual to �ra�. We have

1
2ip

Z
Aa

ob � dab:

We can ¢x families �oin
i � and �oout

i � in OO and H0�X ÿ P0;OX �, so that
�oout

i ;oa;oin
i ; dz=z� is the basis of OK dual to �rini;0; ra; routi ; 1�.

We associate with these dual bases the Green function de¢ned as

G�z;w� �
X
i

oout
i �z�rini;0�w�: �5�

It is clear that G depends only on the choice of a-cycles in X .
Denote by J�X � the Jacobian of X . It is the direct sum of its degree n components

Jn�X �, with n integer, which are identi¢ed with the sets of classes of line bundles
of degree n on X . Denote by G the lattice of periods of X , which we identify with
a lattice in Cg via the basis dual to �oa�a�1;...;g. J0�X � is identi¢ed with the quotient
Cg=G, as follows: for some l � �la� in Cg, the corresponding line bundle is denoted
by Ll. Sections of Ll, regular outside a ¢nite subset S of X , are identi¢ed with
the functions on the universal cover of X , regular outside the preimage of S, such
that f �gAa

z� � f �z� and f �gBa
z� � ela f �z�. Multiplication by the functions

exp�R z oa� identi¢es the spaces of sections of Ll and Ll0 , for l and l0 in the same
class of Cg=G.

In what follows, we will set

Rl � H0�X ÿ fP0g;Ll�: �6�
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Let l be a nonzero element in J0�X �. We may identify H0�X ÿ fP0g;OX 
 Ll� with
the space of differentials o on the universal cover of X , regular outside the preimage
of P0, such that g�Aa

�o� � o and g�Ba
�o� � elio for a � 1; . . . ; g. The space

H0�X ;OX 
 Ll� may be identi¢ed with the intersection
OO \H0�X ÿ fP0g;OX 
 Ll�. By the Riemann^Roch theorem, it has dimension
gÿ 1. Let �oa;l�a�1;...;gÿ1 be a basis of this space. We may complete it to a basis
�oout

i;l ;oa;l;oin
i � of OK, such that �oout

i;l ;oa;l� is a basis of H0�X ÿ fP0g;OX 
 Ll�
and �oa;l;oin

i � is a basis of OO. Moreover, we may assume that the oin
i have a zero

of order X gÿ 1 ar P0 (for example, we may choose oin
i � zgÿ1�idz, iX 0).

Let �rini ; ra;ÿl; routi;ÿl� be the basis of K dual to �oout
i;l ;oa;l;oin

i �. Then �rini � is a basis of
O and �routi;ÿl� is a basis of H0�X ÿ fP0g;Lÿ1l �. The assumption on zeroes of the oin

i
implies that the ra;ÿl have poles at P0 of order W gÿ 1.

The twisted Green function de¢ned by these bases is

Gl�z;w� �
Xgÿ1
a�1

oa;l�z�ra;ÿl�w� �
X
i

oout
i;l �z�rini �w�: �7�

Remark 1. Expression of the Green functions. We may set

ra�z� � @ea lnY�ÿA�z� � gA�P0� ÿ D�;
where Y is the Riemann theta-function on J0�X �, D 2 Jgÿ1�X � is the vector of
Riemann constants of X , ea is the ath basis vector of Cg and A is the Abel map
from X to J1�X �.

A formula for Gl is

Gl�z;w� � Y�A�z� ÿ A�w� � �gÿ 1�A�P0� ÿ lÿ D�
Y�A�z� ÿ A�w� � �gÿ 1�A�P0� ÿ D�Y��gÿ 1�A�P0� ÿ lÿ D� �

�
Xg
i�1

@Y
@la
��gÿ 1�A�P0� ÿ D�oa�z�;

Gl�z;w� is a l-twisted differential in z, with simple pole at z � w and residue 1, and a
zero of order gÿ 1 at P0; it is also a �ÿl�-twisted function in w, with simple poles at
w � z and a pole of order gÿ 1 at w � P0. This is because

Xg
i�1

@Y
@la
��gÿ 1�P0 ÿ D�oa�z�;

which is equal toÿdzY�wÿ z� �gÿ 1�P0 ÿ D�jw�z, is a holomorphic differential with
a zero of order gÿ 1 at P0. For z;w ¢xed, Gl�z;w� is a meromorphic function in P0.
One may replace �gÿ 1�P0 by any effective divisor Q �Pi niQi of degree gÿ 1
in the de¢nition of Gl, and obtain this way GQ

l �z;w�, a l-twisted differential in
z, with simple pole at w and a zero of order ni at eachQi, which is also a �ÿl�-twisted
function in w, with a simple pole at z and poles of order ni at w � Qi, and is a
meromorphic function in the Qi.
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A formula for G�z;w� is

G�z;w� � dz lnY�A�w�ÿ A�z� � �gÿ 1�A�P0� ÿ D�ÿ dz lnY�gA�P0� ÿ A�z� ÿ D�:

G�z;w� is a differential in z with simple pole at w and residue 1; simple pole at z � P0,
regular at other points, and such that

R
Aa

G��;w� � 0 for w near P0; and a function in
w, multivalued in w around b-cycles, such that G�z; gBa

w� � G�z;w� � oa�z�,
vanishing for w � P0, with simple pole at w � z, and regular at other points.

These properties of P0 imply that two G�z;w� attached to different points P0 differ
by a form in z, constant in w. In what follows, we will set

eo�z;w� � dwG�z;w�: �8�
eo�z;w� is a bidifferential form in z;w with the local expansion at any point of

X ;eo�z;w� � dzdw

�zÿ w�2 � r�z�dzdw�O�zÿ w�dzdw:

eo is symmetric in z and w, because eo�z;w� ÿeo�w; z� has no poles and for w near

P0;

Z
Aa

eo��;w� ÿeo�w; �� � dw

Z
Aa

G��;w� ÿ �G�w; gAa
z� ÿ G�w; z�� � 0

because
R
Aa

G��;w� � 0 and because G�w; �� is single-valued along a-cycles. The fact
that eo is symmetric can also be viewed as a consequence of the expression eo �
dzdw lnY�A�w� ÿ A�z� � dÿ D� where d in Jgÿ1�X � is some odd theta-divisor.

2. Twisted Conformal Blocks

2.1. TWISTED CONFORMAL BLOCKS

Let �g be a simple complex Lie algebra. Let us set g � ��g
K� �CK ,
gin � ��g
O� �CK , gout � �g
 R. For x in �g, e in K, we set x�e� � �x
 e; 0�; the com-
mutation rules on g are then

�x�e�; y�e0�� � �x; y��ee0� � Khde; e0i�xjy�;

with ��j�� the invariant scalar product on �g such that �y_jy_� � 2, where y_ is the
coroot associated to a maximal root y, and ho; ei � resP0�oe�. We view gout as a
subalgebra of g, using the embedding x
 p 7!x�p�.

Let V be a g-module of level k, and let c be a gout-invariant linear form on V . Fix a
Cartan decomposition �g � �h� �n� � �nÿ. Let r be the rank of �g. Let D be the set of
roots of �g, and de¢ne the positive roots as those associated with �n�. For each a
in D, de¢ne �ga as the root subspace of �g associated with a. For each simple root
ai, let us ¢x ei; hi and fi in �gai , �h and �gÿai , such that �ei; hi; fi� is an sl2-triple.
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Let �ra�a�1;...;g be as in Corollary 1.1 and let �l�i�a �a�1;...;g;i�1;...;r be formal variables
and de¢ne the linear form cl in V

hcl; vi � c; e
P

i;a
l�i�a hi �ra�v

D E
: �9�

This form is independent of the choice of the ra, because �hi�r�; hj �ra�� � 0 for r in R.
In the case where V is an integrable module, one expects that one can make sense

of (8) for complex l. If one wished to argue that the action of g on V lifts to a
projective action of the associated Kac^Moody group, one would meet the dif¢culty
that the functions exp�Pa l

�i�
a ra� have essential singularities at P0, so that we cannot

view exp�Pa;i l
�i�
a hi�ra�� as an element of the Kac^Moody group.

However, we have:

THEOREM 2.1. For c a gout-invariant form on LL;k, the form
cl � c � exp�Pi;a l

�i�
a hi�ra�� on LL;k has the following properties:

(1) For any v in LL;k, the function hcl; vi is the formal expansion at 0 of an analytic
function in l, which satis¢es the equations

@l�i�a hcl; vi � hcl; hi�ra�vi;

a � 1; . . . ; g; i � 1; . . . ; r.
(2) Set la �

P
i l
�i�
a hi. Set l � �l1; . . . ; lg� and

goutl � ��h
 R� � �a2D��ga 
 Rha;l1i;...;ha;lgi�:
Then cl is a goutl -invariant form on LL;k.

(3) For any v in LL;k, the function l 7!hcl; vi has the following theta-like behavior.
Set oab �

R
Bb
oa, za�z� �

R z
P0
oa, and Oa �

P
b oabdb, with da the a-th basis vector

of Cg. Then

cl�1�;...;l�l��2ipda;...;l�r� ; v
D E

� cl�1�;...;l�r� ; v
D E

and

cl�1�;...;l�l��2ipOa;...;l
�r� ; v

D E
� eÿk�hl jla�ÿ

1
2ipkoaa�hl jhl � cl�1�;...;l�r� ; e

hl �za�v
D E

;

where la �
Pr

i�1 l
�i�
a hi.

Proof. See the appendix.

2.2. TWISTED CORRELATION FUNCTIONS IN THE sl2 CASE

In this section, we assume that �g � sl2 andL � 0. Letc be a gout-invariant form onL0;k.
Let z be a local coordinate at P0 and set e�w� �Pi2Z e�zi�wÿiÿ1dw. For n a positive
integer, set n � ak� b, 0W b < k, and vn � f �zÿ2aÿ1�bv�a�, with v�a� as in Lemma 6.3.
We have h�1�vn � ÿ2nvn. Set f �l j z1; . . . ; zn� � hcl; e�z1�dz1 � � � e�zn�dznvni.
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PROPOSITION 2.1 (see [7]). The form f �l j z1; . . . ; zn� depends analytically on l in
J0�X � and the zi in X ÿ fP0g. It satis¢es the relations

f �l� 2ipda j z1; . . . ; zn� � f �l j z1; . . . ; zn� �10�

and

f �l� 2ipOa j z1; . . . ; zn� � eÿk�hjh�laÿ
1
2ipkoaa�hjh�e

2
Pn

l�1
R zl

P0
oa f �l j z1; . . . zn�: �11�

Moreover, it depends on zi as a section of OXLÿ2l, regular on X except for a pole of
order W 2a� 2ÿ 2db;0 at P0; it is symmetric in the zi, and vanishes if k� 1 variables
zi coincide.

Proof. The proof is analogous to that of [7]. Identities (9) and (10) follow from
Theorem 2.1, (3) and from the commutation relation �h�za�; e�zi�� � 2za�zi�e�zi�. &

Since �hjh� � 2, we have

f �l j z1; . . . ; zn� �
X�2k�g
l�1

Y�l�2k l� 1
k

Xn
i�1

A�zi�
 !

f �l��z1; � � � ; zn�;

where the Y�l�2k are a basis of the space of 2kth order theta functions on J0�X �.

Remark 2. If fFS�z1; . . . ; zn� are the forms introduced in [7], then f �0 j z; . . . ; zn�
coincides with fFS�z1; . . . ; zn�. It is not clear what are the functional properties of
the f �l��z1; � � � ; zn�, and how to obtain the f �l��z1; � � � ; zn� directly from fFS�z1; . . . ; zn�.

Remark 3. The forms f �l j z1; ; zn� provided by conformal blocks also satisfy some
vanishing conditions at l � 0 (see [9]). These conditions, together with the functional
properties of Proposition 2.1, should probably characterize these forms.

3 Lifts of Generalized Theta-Functions to BunB

It follows from the works [1, 13] follows that conformal blocks may be viewed as the
space of sections of a line bundle on the moduli space Bun �G of principal �G-bundles
over an complex curve X , for �G the simply connected group associated with �g. This
identi¢cation is as follows: Bun �G is identi¢ed with the double coset
�G�R�n �G�K�= �G�O�, with K the local ¢eld at some point P0 of X , O the local ring
at P0 and R the ring of functions regular outside P0. For k integer X 0, the level
k vacuum representation L0;k of the Kac^Moody algebra g associated with �g carries
a projective representation of �G�K�. Fix a lift x 7!ex of �G�K� to its universal central
extension. Let gout be the Lie algebra �g
 R. To each gout-invariant form cout on
L0;k is associated the function

g 7!hcout;egvtopi �12�
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on �G�K�, where vtop is the vacuum vector of L0;k, which is a section of a power of the
determinant bundle over Bun �G. This construction can be extended to the case of
marked points and integrable representations other than L0;k. In what follows,
we will consider the situation of some integrable module LL;k at P0, with highest
weight vector v�P0�

top .
It was proposed to study these functions through their lifts to moduli spaces of

£ags of bundles ([3, 18]). In [7], Feigin and Stoyanovsky studied the lift of conformal
blocks to a space, which in the case �g � sln can be described as Bun�ni;P0�, the moduli
space of bundles with ¢ltration E1 � E2 � � � � and associated graded isomorphic
to �iO�niP0�, ni some integer numbers. Since this space is isomorphic to
N�R�nN�K�diag�zni �=N�O�, with N the maximal unipotent subgroup of �G, lifts of
functions provided by the conformal blocks are the

cout; nK�wv�P0�
top �

D E
; �13�

nK in N�K�, w � diag�zni � an af¢ne Weyl group translation. Generating functions for
these quantities are the forms

cout;
Y

i simple

Ynj
j�1

ei�z�i�j �dz�i�j �wv�P0�
top �

* +
;

where ei�z�dz are the currents associated to the nilpotent generators ei attached to the
simple roots of �g. In [7], Feigin and Stoyanovsky characterized the functional proper-
ties of these forms.

Let us study the lift of functions (12) to BunB, the moduli space of B-bundles over
X , where B is the Borel subgroup of �G containing N. BunB can be described as
the double quotient B�K�nB�A�=B�OA�, where K is the function ¢eld C�X �, A is
the adeles ring of X and OA its subring of integral adeles. To make sense of the
analogue of (13) for the space of B-bundles, one should replace the representation
at P0 by its `adelic' version LA, which is its restricted tensor product with vacuum
representations at the points of X ÿ fP0g. Tocout is then associated a �g
 K-invariant
form cA (see Lemma 6.1). In the case of B-bundles, lifts of the functions on Bun �G
provided by conformal blocks are the

b 7!hcA; bvAtopi; �14�

for b 2 B�A�, vAtop the product of the highest weight vector of the module at P0 with
the vacuum vectors at other points. b can be decomposed as a product ntw, with
n in N�A�, t in T �A� with all components of degree zero (T is the Cartan subgroup
associated to B; the degree in A� is de¢ned as the sum of the valuations of all
components) and w a product of af¢ne Weyl group translations. In the case
�g � sln, b represents a ¢ltered bundle whose associated graded is a sum of line
bundles, associated to the projections in the Jacobian J�X � � K�nA�=O�A of the
components of tw.

26 B. ENRIQUEZ AND G. FELDER

https://doi.org/10.1023/A:1002454201868 Published online by Cambridge University Press

https://doi.org/10.1023/A:1002454201868


The computation of (14) may be done as follows. wvAtop is an extremal vector of LA.
n may be replaced by an element nK of N�A� with only nontrivial component at P0.
The map l 7!f �l� of Section A.2 is a section of the projection map
K�n�A��0! J0�X � (the 0 denotes the degree zero parts). t can be decomposed
as touttltin, tout in T �K�, tin in T �OA� and tl �

Q
i ti� fl�i� �, ti the subgroups of �G associ-

ated to the simple coroots of �g. Then (14) is equal to �tin; nK�hcA; tlnK�wvAtop�i (where
�; � denotes the group commutator).

Therefore to compute (14), it suf¢ces to compute the

cA;
Yr
i�1

ti�fl�i� �
Yr
i�1

ei�e�i�1 � � � � ei�e�i�ni ��wvAtop�
* +

; �15�

where r is the rank of �g. In Thm. 2.1, we study the linear form

v 7! cA;
Yr
i�1

ti�fl�i� ��v

x2XÿfP0gvtop�
* +

; �16�

for v in LL;k.
From Theorem 2.1 follows that the expansion at �l�i�a � � 0 of (17) is equal (up to

multiplication by a phase factor) to

cout; e
P

i;a
l�i�a hi �ra�Y

i

ei�e�i�1 � � � � ei�e�i�ni ��wv
�P0�
top �

* +
: �17�

Generating functions for (17) are the forms (2).
The interest of expressing (14) in the form (17) is that the latter expression is

computed in a single module located at P0. When the l�i�a are formal, (17) also makes
sense in arbitrary modules. What we will do now is compute the action of the
Sugawara tensor on these correlation functions.

4. Expression of the KZB Connection

4.1. ACTION OF THE SUGAWARA TENSOR ON THE TWISTED CORRELATION FUNCTIONS

(�g � sl2)

In this section, we treat the case �g � sl2. Let n be an integer and let vn be a vector of
LL;k such that h�1�vn � ÿ2nvn, h�tk�vn � 0 for k > 0 and f �tk�vn � 0 for
kX ÿ �gÿ 1�. An example of vn is in the vacuum module L0;k, the extremal vector
f �tÿ�2aÿ1��k � � � f �zÿ1�kvtop, with 2a� 1X gÿ 1.

In what follows, we will denote by x�z� the series
P

i2Z x�ti�zÿiÿ1dz, for x in �g.
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The expression for the Sugawara tensor is

2�k� 2�Teo�z�
� lim

z!z0
e�z�f �z0� � f �z�e�z0� � 1

2
h�z�h�z0� ÿ 3keo�z; z0�� �

;
�18�

with eo as in (7). It is used to de¢ne the KZB connection in Section 4.3.

4.1.1. Action of the Currents on the Correlation Functions

Assume that m is W ÿ �gÿ 1�. Let us compute some correlation functions in LL;k.

LEMMA 4.1 We have

hcl; h�z�e�z1� � � � e�zn�vni

�
X
a

oa�z�@la � 2
Xn
a�1

G�z; za�
 !

f �l j z1; . . . ; zn�

where G�z; za� is as in (5).
Proof. Let us write h�z� �Pi h�routi �oin

i �
P

a h�ra�oa �
P

i h�rini;0�oout
i . The contri-

bution of the ¢rst term of this sum is zero by invariance of cl, the contribution
of the second part is the differential part. The contribution of the third part is

X
i

cl; h�rini;0�e�z1� � � � e�zn�vn

 �

oout
i �z�

�
X
i

Xn
j�1

2rini;0�zj� cl; e�z1� � � � e�zn�vn

 �

oout
i �z� �

�
X
i

cl; e�z1� � � � e�zn�h�rini;0�vn

 �

oout
i �z�

�
X
i

Xn
j�1

2G�z; zj� cl; e�z1� � � � e�zn�vn

 �

;

because vn is annihilated by the positive Cartan modes. &
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LEMMA 4.2. We have

hcl; f �z�e�z1� � � � e�zn�1�vni

� ÿ
X
a

G2l�z; za�
X
a

oa�za�@la � 2
X
b 6�a

G�za; zb�
 !

�

� hcl; e�z1� � � � e�za ÿ 1�e�za � 1� � � � e�zn�1�vni�

� k
Xn�1
a�1

dzaG2l�z; za�hcl; e�z1� � � � e�za ÿ 1�e�za � 1� � � � e�zn�1�vni;

�19�

with G2l�z; za� as in (7).
Proof. Write

f �z� �
X
i

f �routi;ÿ2l�oin
i �z� �

X
a

f �ra;ÿ2l�oa;2l�z� �
X
i

f �rini �oout
i;2l�z�:

The contribution of the ¢rst term is zero by invariance of cl. The contribution of the
next two terms is

X
a

Xn�1
a�1
hcl; e�z1� � � � �ÿra;ÿ2l�za�h�za� � kdra;ÿ2l�za�� � � � e�zn�1�vnioa;2l�z��

�
X
i

Xn�1
a�1
hcl; e�z1� � � � �ÿrini �za�h�za� � kdrini �za�� � � � e�zn�1�vnioout

i;2l�z�:

�20�

because of the relation

�f �e�; e�z�� � ÿe�z�h�z� � kde�z�;

and because we have f �rini �vn � f �ra;2l�vn � 0; the latter equality is because the ra;2l

have poles of order W gÿ 1 at P0.
Equation (20) is then equal to

Xn�1
a�1
�ÿG2l�z; za��hcl; h�za�e�z1� � � � �a � � � e�zn�1�vni�

�
Xn�1
a�1

kdzaG2l�z; za��hcl; e�z1� � � � �a � � � e�zn�1�vni:
�21�

Applying Lemma 4.1 to the ¢rst sum, one gets (19). &
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4.1.2. Action of the Sugawara Tensor on the Correlation Functions

Let us compute now

hcl; h�z�h�z0�e�z1� � � � e�zn�vni:

This is equal to

X
a

hcl; h�ra�h�z0�e�z1� � � � e�zn�vnioa�z��

�
X
i

hcl; h�rini;0�h�z0�e�z1� � � � e�zn�vnioout
i �z�

that is

X
a

oa�z�@lahcl; h�z0�e�z1� � � � e�zn�vni�

�
X
i

hcl; h�z0�h�rini;0�e�z1� � � � e�zn�vnioout
i �z��

� 2kdz0G�z; z0�hcl; e�z1� � � � e�zn�vni:

The second line is equal to

Xn
a�1

2G�z; za�hcl; h�z0�e�z1� � � � e�zn�vni:

Applying Lemma 4.1 to the ¢rst two sums, we ¢nd

2�k� 2�hcl; h�z�h�z0�e�z1� � � � e�zn�vni
� 2kdz0G�z; z0�f �l j z1; . . . ; zn�

�
X
a

oa�z�@la � 2
Xn
a�1

G�z; za�
 !2

� f �l j z1; . . . ; zn� �O�z; z0�:

30 B. ENRIQUEZ AND G. FELDER

https://doi.org/10.1023/A:1002454201868 Published online by Cambridge University Press

https://doi.org/10.1023/A:1002454201868


On the other hand, we have, by Lemma 4.2,

hcl; f �z0�e�z�e�z1� � � � e�zn�vnii

� ÿG2l�z0; z�
X
a

oa�z�@la �
Xn
a�1

2G�z; za�
 !

f �l j z1; . . . ; zn�ÿ

ÿ
Xn
a�1

G2l�z0; za�
X
a

oa�za�@la �
Xn

b�1;b 6�a
2G�za; zb�

" #
�

� f �l j z1; . . . ; z; . . . ; zn�ÿ

ÿ
Xn
a�1

G2l�z0; za�2G�za; z�f �l j z1; . . . ; z; . . . ; zn��

� kdz�G2l�z0; z��f �l j z1; . . . ; zn��

� k
Xn
a�1

dza �G2l�z0; za��ff �l j z1; . . . ; z; . . . ; zn�

so that

hcl; e�z�f �z0� � f �z�e�z0�� �e�z1� � � � e�zn�vni

�
X
a

D�2l�z oa�z�@la �
Xn
a�1

2�D�2l�z 
 1�G�z; za�
 !

f �l j z1; . . . ; zn�ÿ

ÿ 2
Xn
a�1

G2l�z; za�
X
a

oa�za�@la �
Xn

b�1;b 6�a
2G�za; zb�

" #
�

� f �l j z1; . . . ; z; . . . ; zn�ÿ

ÿ 4
Xn
a�1

G2l�z; za�G�za; z�f �l j z1; . . . ; z; . . . ; zn��

� k�dz�G2l�z0; z�� � dz0 �G2l�z; z0���f �l j z1; . . . ; zn��

� 2k
Xn
a�1

dza�G2l�z; za��f �l j z1; . . . ; zn� �O�zÿ z0�

(with z in the ath place in the right-hand side, where D�l�z �o� is de¢ned by

D�l�z �o��z� � ÿ lim
z!z0
�o�z0�Gl�z; z0� � o�z�Gl�z0; z��; �22�

D�l�z de¢nes a connection from the bundle OX to O2
X .
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Set

�Tzf ��l j z1; . . . ; zn�

� 1
2

X
a

oa�z�@la � 2
X
a

G�z; za�
 !2

24 �

�
X
a

D�2l�z oa�z�@la � 2
X
a

�D�2l�z 
 1��G�z; za�� � ko2l�z�
#
fl�z1; � � � ; zn��

�
Xn
a�1
ÿ2G2l�z; za�

X
a

oa�za�@la � 2
X
b 6�a

G�za; zb�
 !"

�

� ÿ4G2l�z; za�G�za; z� � 2kdzaG2l�z; za�
ÿ ��

f �l j z1; . . . ; zn�:
�23�

where z is in the ath position in the right-hand side and we set

ol�z� � limz!z0 dz0Gl�z; z0� � dzGl�z0; z� ÿ 2dz0G�z; z0�� �: �24�

Then

PROPOSITION 4.1. Let us set

f �l j z1; . . . ; zn� � hcl; e�z1� � � � e�zn�vni

We have

hcl;Teo�z�e�z1� � � � e�zn�vni � �Tzfl��z1; � � � ; zn�:

Remark 4. It would be interesting to have an expression of the action of T �z�
directly in terms of the fFS�z1; . . . ; zn�. For this, one would need either to understand
the correspondence of Rem. 2, or how to express the T �zp�vn as combinations of the
e�zi1 � � � � e�zil �vn�l .

4.2. ACTION OF THE SUGAWARA TENSOR IN THE GENERAL CASE

In this section, we show how the expression of the operators Tz is modi¢ed in the case
of a general semisimple �g. For any a in D�, let ea; fa and a_ be in �ga, �gÿa and �h forming
a standard sl2-triple, and let �aij�1W i;jW r be the Cartan matrix of �g.

For i1; . . . ; is in f1; . . . ; rg, such that
Ps

j�1 aij < a, de¢ne the number na;i1;...;is by the
equality

���fa; ei1 �; ei2 � � � � ; eis � � na;i1...is faÿ
Ps

j�1 aij
;

for a; b in D�, such that aÿ b belongs to D�, de¢ne the number Nab by the equality

� faÿb; ea� � Nabeb;
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de¢ne ni1...is by the equality

��ei1 ; ei2 �; � � � ; eis � � ni1...ik ePs

j�1 eaij
:

As we have seen, one may attach to a gout-invariant form c on any g-module V , the
forms

f �l j z�i�u �1W iW r;u2Iÿi � c; e
P

a;i
l�i�a hi �ra�Yr

i�1

Y
u2Ii

ei�z�i�u �dz�i�u v

* +
; �25�

where the Ii are ¢nite sets attached to i � 1; . . . ; r and v is a vector in V with the
suitable weight. The l�i�a are formal variables. We attach to them the family
�la�1W aW g of formal elements of �hg, where la �

P
i l
�i�
a hi. For m in �h�, we set

�m; l� � �m; la�1W aW g.
The form f �l j z�i�u �1W iW r;u2Iÿi depends on the z�i�u as a section of OX 
 Lÿ�ai;l�, reg-

ular on X outside P0 and the z�j�v for the j such that aij < 0. It is symmetric in
the z�i�u for each i, with simple poles at the diagonals z�i�u � z�j�v when aij < 0, and
satis¢es

resz�i�u1�z
�j�
v
resz�i�u2�z

�j�
v
� � � resz�i�u1ÿaij �z�j�v f �l j z

�i�
u � � 0

for v in Ij and u1; . . . ; u1ÿaij distinct in Ij (see [7]); this is a translation of the Serre
relations, using the identities resz�z0 hc; x�z�y�z0�vi � hc; �x; y��z0�vi.

Assume that v is annihilated by the positive Cartan modes hn�zi�, iX 1, n � 1; . . . ; r
and the fi�zi�; iX ÿ �gÿ 1�; let �hn�1W nW r be an orthonormal basis of �h and de¢ne the
Sugawara tensor as

2�k� h_�Teo�z�
� limz0!z

Xr
n�1

hn�z�hn�z0� �
X
a2D�

�
fa�z�ea�z0� � ea�z�fa�z0�

�
ÿ k�dim�g�eo�z; z0� !

;

with h_ the dual Coxeter number of �g.
Let P (resp. P0) be the set of sequences p � �i1; . . . ; is� such that a �Ps

j�1 aij (resp.
a >

Ps
j�1 aij ). The sequence �uj� is associated to P if it is a sequence of pairwise dif-

ferent elements of [iIi, such that uk belongs to Iik . We denote by Si the subset
of Ii formed by all uj such that ij is equal to i.
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PROPOSITION 4.2. The action of Teo�z� on the correlation function (25) is
given by

2�k� h_�hcl;Teo�z�Yr
i�1

Y
u2Ii

ei�z�i�u �vi

�
"X

n

X
a

oa�z�@�hn�a �
X
i

X
u2Ii
�ai; hn�G�z; z�i�u �

 !2

�
X
a2D�

X
a

D�a;l�z oa�z�@�a_�a �
X
i

X
u2Ii
�ai; a_�D�a;l�z G�z; z�i�u �

 !

� k
X
a2D�

o�a;l��z�
#
f �l j z�i�u � �

X
p02P0

na;i1...isNa;ai1�����ai s=ni1...isX
�ui� associated to p0

G�a;l��z; z�i1�u1 �G�aÿai1;l��z�i1�u1 ; z
�i2�
u2 � � � �

G�aÿ�ai1�����ais �;l��z�is�us ; z� res
z
�i1 �
u1
�z�i2 �u2

res
z
�i2 �
u2
�z�i3 �u3
� � �

res
z
�isÿ1 �
usÿ1 �z

f �l j z�i�u �jz�is�us �z ÿ
X
p2P

na;i1...isÿ1=ni1...isX
�ui� associated to p

G�a;l��z; z�i1�u1 �G�aÿai1 ;l��z�i1�u1 ; z
�i2�
u2 � � � �

G�aÿ�ai1�����aisÿ1 �;l��z
�isÿ1�
isÿ1 ; z

�is�
us �"X

a

oa�z�is�us �@�a_is �a
X
i

X
u2IiÿSi

�ai; a_is �G�z�is�us ; z
�i�
u � � �a; a_is �G�z�is�us ; z�

#
res

z
�i1 �
u1
�z�i2 �u2

res
z
�i2 �
u2
�z�i3 �u3

. . . res
z
�isÿ1�
usÿ1 �z

f �l j z�i�u �jz�is �us �z

�
X
p2P

na;i1...isÿ1=ni1...isX
�ui� associated to p

G�a;l��z; z�i1�u1 �G�aÿai1;l��z�i1�u1 ; z
�i2�
u2 � � � �

G�aÿ�ai1�����aisÿ1 �;l��z�isÿ1�usÿ1 ; z
�is�
us � kdzG�aÿ�ai1�����ais �;l��z�isÿ1�usÿ1 ; z�

res
z
�i1 �
u1
�z�i2 �u2

res
z
�i2 �
u2
�z�i3 �u3

. . . res
z
�isÿ1 �
usÿ1 �z

f �l j z�i�u �jz�is �us �z;

�26�

where, for x in �h, we denote by xa the element �0; . . . ; x; . . . ; 0� of �hg (x at the ath
place); and by @h the partial derivative in �hg in the direction of h, for h in �hg.

Remark 5. The set P and its associated sequences appeared in the work [16] on
integral formulas for the KZ equations.
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4.3. EXPRESSION OF THE KZB CONNECTION

Denote by Proj�1�g the moduli space of quadruples em � �X ; �fzag�;P0; z�, where X is a
curve of genus g, �fzag� is a projective atlas of X (that is an atlas whose transition
functions are projective transformations), P0 a point of X and z a coordinate of
the atlas with origin at P0. A local coordinate related to some za by a projective
transformations will be called a projective coordinate.

For each representation V of gout, we may form the bundle CB�V � over Proj�1�g ,
whose ¢ber at em is de¢ned as the space of gout-invariant forms on V .

A projectively £at connection on the bundle CB�V � is de¢ned as follows. Letem 7!c�em� be a local section of CB�V �. Let dem be a variation of em. Then

r
demc � @demcÿ c � T0�x�dem��; �27�

where the equality is in V� and x�dem� is the element of C��z��@z induced by dem (for
any moduli em, we have a ring Rem contained in C��z��, and we set
Rem�dem � �1� x�dem��Rem). We set T0�x� � resP0�T0�z�dz2x�dem��z�@z�, with T0�z�
de¢ned as Teo�z� in (18) replacing eo by dzdw=�zÿ w�2.

This connection is well-de¢ned, preserves CB�V � and is projectively £at (see [19]).
The form eo de¢ned by (8) depends only on the choice of a-cycles. On the other

hand, this form determines a projective structure on X . Indeed, it is known that
there is a bijective correspondence between bidifferential forms near the diagonal
with behavior dzdw=�zÿ w�2 � r�z�dzdw� o�zÿ w�dzdw, with r=z regular, up to
addition of regular bidifferential forms vanishing on the diagonal, and projective
structures on X . The correspondence associates to the projective atlas �fzag� the form
dzadz0a ln�za ÿ z0a�. Conversely, the projective coordinate z associated to the
bidifferential form dzdz0=�zÿ z0�2 � r�z�dzdz0 � o�zÿ z0�dzdz0 is determined by the
equation S�z; z� � ÿ6r�z�, where S�z; z� is the Schwarzian derivative of z with respect
to z. Then T0�z��dz�2, computed in a projective coordinate determined by eo, gets
identi¢ed with Teo�z��dz�2.

Let us de¢ne M�a�g as the moduli space of genus g curves with marked hom-
ology classes of a-cycles. eo de¢nes a map from M�a�g to Projg, such that its
composition with projection of Projg to Mg coincides with the projection of
M�a�g on Mg.

De¢ne M�a��1�g as the ¢bered product of M�a�g with Proj�1�g over Projg. The KZB
connection is de¢ned on Proj�1�g , and it induces a connection on M�a��1�g ,
using the map from M�a��1�g to Proj�1�g . This connection can be expressed as
follows.

Let us express the connection induced by (27) in terms of correlation functions.
For any formal vector ¢eld x � x�z�@z in C��z��@z, let e be an indeterminate with
e2 � 0 and Re � �1� ex�R; let OR � OK be the space of differentials of R and
ORe the space of differentials of Re. Then ORe is equal to �1� eLx��OR�, where
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Lx is the Lie derivative associated to x. Similarly, we have dRe � �1� eLx��dR�.
Therefore, 1� eLx induces a map from OR=dR to ORe=dRe. Bases of these spaces
are the classes of the oa and dra. On the other hand, we have the formulaR
g0 �1� eLx��o� �

R
g o for any cycle g of X , deformed to g0 and any o in OR.

Therefore, we have Lx�dra� � 0 mod dR and Lxoa �
P

b dtabdrb mod dR, where
dtab is the variation of the period matrix corresponding to d ~m.

We have obtained:

PROPOSITION 4.3. Let em 7!c�em� be a section of the bundle F�n��m0� overM�a��1�g ,
then the KZB connection is expressed as

rdemf �em�l�z1; . . . ; zn� � @demf �em�l�z1; . . . ; zn� ÿ hcl;T �x�dem��e�z1� � � � e�zn�vni;
where hcl;

1
k�2T �x�dem��e�z1� � � � e�zn�vni can be computed using (23).

Remark 6. The fact that the action of T �z� preserves the vanishing conditions of
Feigin and Stoyanovsky (vanishing on codimension k diagonals) probably again
follows from the identity �ek�0 �: hek :.

4.4. MOTION OF MARKED POINTS (sl2 CASE)

In this section, we indicate how the above results are changed in the case of curves
with marked points. Let �Pi�i�1;...;N be marked points on X , distinct from P0. Attach
to each Pi the weight Li and the evaluation Verma module VLi . VLi is generated
by the vector vÿLi such that hvÿLi � ÿLivÿLi , and fvÿLi � 0. Set again
cl � c � e

P
a
lah�ra� and

f �l j z1; . . . ; zm� � hcl; e�z1�dz1 � � � e�zm�dzmvn� � 
 vÿL1 
 � � � 
 vÿLN i;

m � nÿ 1
2

P
i Li.

fl�z1; � � � ; zm� depends on the za as a section of OXL2l, regular outside P0 and with
simple poles at the Pi.

For wi in VLi , the values of the hcl; �e�z1� � � � e�zm�vn� 
 �
N
i�1wi�i can be recovered

from f �l j z1; . . . ; zm� using the rule

resz�Pi hcl; �e�z�dze�z1�dz1 � � � e�zm�dzmvn� 
 �
N
i�1wi�i

� ÿhcl; �e�z1�dz1 � � � e�zm�dzmvn� 
 e�i��
N
i�1wi�i:
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The action of the Sugawara tensor is expressed as

cl; Teo�z�e�z1�dz1 � � � e�zm�dzmvn� �

 �
N

i�1vÿLi�
D E
�
"
1
2

X
a

oa�z�@la � 2
X
a

G�z; za� ÿ
X
i

LiG�z;Pi�
 !2

�

�
X
a

D�2l�z oa�z�@la � 2
X
a

D�2l�z G�z:za�ÿ

ÿ
X
i

LiD�2l�z G�z;Pi� � ko2l�z�
#
f �l j z1; . . . ; zn��

�
Xn
a�1
ÿ2G2l�z; za�

X
a

oa�za�@la � 2
X
b 6�a

G�za; zb� ÿ
X
i

LiG�za;Pi�
 !"

�

� ÿ4G2l�z; za�G�za; z� � 2kdzaG2l�z; za�
ÿ �#

f �l j z1; . . . ; z; . . . ; zn�:

When k � ÿ2, the right-handside of this formula is the expression for a com-
muting family of differential-difference operators, or alternatively, for a commuting
family of differential operators acting on some ¢nite-dimensional bundle over J0�X �.

The KZB connection is now a connection over the bundle of conformal blocks
over Proj�n�g , which is the set of quadruples em � �X ; �fzag�;Pi; zi� of curves with
projective structure, n marked points and £at coordinates vanishing at these
points.

The vector ¢elds zi@=@zi describing the changes of coordinates ¢xing the points,
and @=@Pi describing the changes of points in the ¢xed coordinate, are respectively
given by the action of Sugawara elements corresponding to vector ¢elds x @

@Pi
equal

to @=@zi at Pi and o�zj� at Pj, and xzi @@zi
equal to zi@=@zi at Pi and o�zj� at Pj.

Set

G�z;w� � dz=�zÿ w� � f�z�dz� o�zÿ w�dz;

so that Gl�z;w�dz � dz=�zÿ w� � gl�z�dz, with

gl�z�dz � f�z�dz�
Xg
a�1

oa�z��@ea lnY�ÿl� �gÿ 1�A�P0� ÿ D� ÿ

ÿ @ea lnY�gA�P0� ÿ A�z� ÿ D��:

PROPOSITION 4.4.The KZB connection is expressed, in the direction of variation of
coordinates at Pi by

2�k� 2�rzi @@zi f � ~m��l j za� � 2�k� 2�zi
@

@zi
f � ~m��l j za� ÿ 1

2
Li�Li � 2�f � ~m��l j za�:
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and in the direction of variation of Pi, by

2�k� 2�r @
@Pi
f � ~m��l j za�

� 2�k� 2� @
@Pi

f � ~m��l j za� ÿ
�
ÿLi

X
a

oa�Pi�@la

� Li

X
j 6�i

LjG�Pi;Pj� ÿ 2
X
a

G�Pi; za�
 !

� L2
i f�Pi� � 2Lig2l�Pi�

�
f � ~m��l j za�

�
X
a

"
ÿ 2G2l�Pi; za�

 X
a

oa�za�@la � 2
X
b 6�a

G�za; zb�
!

ÿ 4G2l�Pi; za�G�za;Pi� � 2kdzaG2l�za;Pi�
#

� resz�Pi f � ~m��l j z; �zb�b 6�a� �28�

when m � 0, this equation simpli¢es to

2�k� 2�r @
@Pi

f �em�l � 2�k� 2� @
@Pi

f � ~m��l�

ÿ
�
ÿ Li

X
a

oa�Pi�@la � Li

X
j 6�i

LjG�Pi;Pj� � L2
i f�Pi�

� 2Lig2l�Pi�
�
f � ~m��l�: �29�

Remark 7. It would be interesting to express the equations obtained above in terms
of dynamical r-matrices, as it was done in [8].

5. Commuting Di¡erential Operators

The operators (23) are differential-evaluation operators acting on functions on
J0�X �r �Qr

i�1 S
niX . They make sense for arbitrary complex values of k. When k

is critical, one expects these operators to commute with each other. To prove this,
we will consider modules Wnjm;m0 generalizing the twisted Weyl modules.

For generic l0 in J0�X �, l0-twisted conformal blocks for these modules can be
characterized via functions (2) as formal sections of ¢nite-dimensional bundles over
J0�X �.
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5.1. TWISTED CONFORMAL BLOCKS FOR GENERAL MODULES

Let X be a smooth complex curve of genus gX 1 and let P0 be a ¢xed point of X .
Denote by K and O the local ¢eld and ring of X at P0. Denote also by R the ring
H0�X ÿ fP0g;OX � and by A the ade© le ring of X .

Recall that (8) de¢nes a form cl, depending on formal variables l�i�a , on an arbi-
trary g-module V .

For m1; . . . ; mg complex linear combinations of the l�i�a , de¢ne R�f ��mi� as the subspace
of K��l�i�a �� formed by the functions f �z; l�i�a � depending formally on the l�i�a , such that
the coef¢cients of the monomials in l�i�a extend to regular functions oneX ÿ sÿ1�P0� and we have f �gAa

z; l�i�a � � f �z; l�i�a � and f �gBa
z; l�i�a � � ema f �z; l�i�a �.

cl has the following properties:

LEMMA 5.1 (a) Set for a � 1; . . . ; g, la �
P

i l
�i�
a hi. De¢ne g

out�f �
l as

g
out�f �
l � ��h
 R���l�i�a �� � �a2D��gl 
 R�f �ha;l1i;...;ha;lgi�:

Then cl is gout�f �l -invariant.
(b) l 7!hcl; vi satis¢es the differential equation @l�i�a hcl; vi � hcl; hi�ra�vi for any v

in V.
Proof. Clearly, g

out�f �
l is contained in Ad�eÿ

P
i;a

l�i�a hi �ra���gout��l�i�a ���l�i�ÿ1a ��; this
implies (a). We have for any a; b � 1; . . . ; g, hdra; rbi � 1=2ip

R
@i�X � drarb; the contri-

butions of the paths eBc and eBÿ1c cancel each other, as well as those of the pathseAc and eAÿ1c , c 6� b; the sum of the contributions of the paths eAb and eAÿ1b is equal
to 1=2ip

R
Ab

dra, which is zero as ra is single-valued along a-cycles. Therefore we have
�hi�ra�; hj�rb�� � 0 for any i; j; a; b, which proves (b).

5.2. CONFORMAL BLOCKS FOR THE Wnjm;m0

In this section, we set �g � sl2. Let k be an arbitrary complex number.
For m;m0 integer numbers with m�m0X 0, de¢ne ginm;m0 by

ginm;m0 � � �nÿ 
 zmO� � ��h
O� � � �n� 
 zm
0O� �CK :

De¢ne ginm;1 and ginÿ1;1 by the convention that z1O � 0 and zÿ1O � K.
Let n be a positive integer. If m�m0 > 0, �m;m0� � �ÿ1;1�, or m�m0 � 0 and

n � ÿkm, de¢ne wnjm;m0 as the character of ginm;m0 such that wnjm;m0 �K� � k,
wnjm;m0 �h�zi�� � ÿ2ndi;0k, wnjm;m0 �x�zi�� � 0, x � e; f .

De¢ne Wnjm;m0 as the induced module Ug
Ugin
m;m0

Cwnjm;m0 . Denote by vn the vector
1
 1 of this module. (When m�m0 � 0, Wnjm;m0 is a twisted Weyl module.) For
l0 a complex number, de¢ne CBl0�Wnjm;m0 � as the space of goutl0

-invariant linear forms
on Wnjm;m0 (where goutl0 is as in Theorem 2.1).

Let us de¢ne F�n�l0 as the space of forms f �l j z1; . . . ; zn�, depending formally on l in
the neighborhood of l0, symmetric in z1; . . . ; zn, sections of OXLÿ2l in zi, regular
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outside P0. De¢ne for any integer p, F�n�l0 �p� as the subspace of F
�n�
l0

consisting of the
forms with poles at zi � P0 of order at most p.

For any r in R2l, de¢ne ¢rst order differential operators ef �r� by
�~f �r�f ��l j z1; . . . ; zn�1�

�
Xn�1
i�1
ÿr�zi�

X
a

oa�zi�@la � 2
X
j 6�i

G�zi; zj�
 !

� kdr�zi�
" #

� f �l j z1; . . . �i . . . zn�1�: �30�
ef �r� maps F�n�l0 to F�n�1�l0

.

PROPOSITION 5.1. De¢ne a map i from CBl0�Wnjm;m0 � ! F�n�l0 by

i�cl0 ��ljz1; . . . ; zn� � cl0 ; e
Sa�lÿl0�ah�ra�
 �

e�z1� � � � e�zn�vni;

for cl0 in CBl0 �Wnjm;m0 �.
Assume that H1�X ;L2l0 �ÿmP0�� is zero. Then i is an isomorphism from

CBl0 �Wnjm;m0 � to the intersection of the kernels of the ef �r� in F�n�l0 �m0�, with r in
R2l \ zmO (which is the same as H0�X ;L2l�ÿmP0��).

Proof. The fact that the image of i is contained in the kernel of the ef �r� follows
from the identity

cl0 ; e
Sa�lÿl0�ah�ra��f �r�; e�z1� � � � e�zn��vn


 � � 0;

which follows from f �r�vn � 0 and hcl0 ; f �eÿ2
P

a
�lÿl0�arar�vi � 0 for any vector v.

Let us now consider f �l j z1; . . . ; zn� in F�n�l0 �m0�, in the kernel of theef �r� and let us
construct its preimage by i.

Clearly, CBl0 �Wnjm;m0 � is isomorphic to the space of linear forms f on Ug, such
that f�xxin� � f�xoutx� � 0, for xin in ginm;m0 and xout in goutl0 .

De¢neChh�ra�; e�e�i as the subalgebra of Ug generated by the h�ra� and the e�e�, e in
K. Since we have K � R2l0 � zmO, the map

p : Ugoutl0 
Chh�ra�; e�e�i 
Uginm;m0 ! Ug

given by the product is surjective. It kernel is spanned by the ae�e� 
 b
 cÿ
a
 e�e�b
 b, e in Rÿ2l0 , the a
 be�e� 
 cÿ a
 b
 e�e�c, e in zm

0O, the
ah�1� 
 b
 cÿ a
 b
 h�1�cÿ a
 �h�1�; b� 
 c and the af �e� 
 b
 cÿ a
 b

f �e�cÿP a�f �e�; b�0 
 �f �e�; b�00 
 �f �e�; b�000 
 c, e in R2l0 \ zmO with a; b; c in Ugoutl0 ,
Chh�ra�; e�e�i and Uginm;m0 , and

P�f �e�; b�0 
 �f �e�; b�00 
 �f �e�; b�000 any preimage of
� f �e�; b� by p.

De¢ne a linear form �f on Chh�ra�; e�e�i by the formula

�f
Y
a

h�ra�aae�e1� � � � e�en0 �
 !

�dnn0resz1�P0 � � � reszn�P0f�aa��z1; . . . ; zn�e1�z1� � � � en�zn�;
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where we set f �l j z1; . . . ; zn� �
P
�ai�
Q

a�lÿ l0�aaa f�aa��z1; . . . ; zn�. Extend �f toUgoutl0 

Chh�ra�; e�e�i 
Uginm;m0 by the rule that �f�a
 b
 c� � e�a�e�c� �f�b�, e denoting the
counit.

The functional properties of f �l j z1; . . . ; zn� imply that the image of the kernel of p
is mapped to 0 by �f, so that �f de¢nes a linear form of Ug. It is then clear that this
form is left goutl0 -invariant and right ginm;m0-invariant, and that its image by i is
f �l j z1; . . . ; zn�. &

LEMMA 5.2. The operator T�z� acts naturally on CBl0 �Wnjm;m0 �. When m is
W ÿ �gÿ 1�, this action is expressed on the f �l j z1; . . . ; zn� by formula (23).

Remark 8. SinceH1�X ;L2l0 �ÿmP0�� is zero,H1�X ;L2l�ÿmP0�� also vanishes for l
in a neighborhood to l0. By the Riemann^Roch theorem, it follows that
H0�X ;L2l�ÿmP0�� has constant dimension at the neighborhood of l0. It follows that
the r understood in the statement of Proposition 5.1 form a free
C���lÿ l0�a��-module with rank equal to this dimension. &

Remark 9. The condition that H1�X ;L2l0 �ÿmP0�� vanishes is ful¢lled if
m < ÿ�gÿ 1� and any l0, or if m � ÿ�gÿ 1� and 2l0 not in some translate of
the theta characteristic containing zero. In the latter case, CBl0 �Wnjm;m0 � is
isomorphic to F�n�l0 �m0�, because H0�X ;L2l0 �ÿmP0�� also vanishes. &

Remark 10. If m � ÿ�gÿ 1� and 2l0 is in the translate of the theta-characteristic
(for example, if l0 is zero), the image of i is characterized by some vanishing con-
ditions near l0.

5.3. COMMUTING DIFFERENTIAL OPERATORS

THEOREM 5.1. Suppose that k equals ÿ2.
(1) Set for p integer X g and l in J0�X �, F�n�l �p� � SnH0�X ;OXLÿ2l�pP0��.
�F �n�l �p��l2J0�X � forms a ¢nite-dimensional vector bundle over J0�X �, denoted
F�n��p�. The operators Tz de¢ned by (23) form a family of commuting differential
operators acting on sections of this bundle. This family has rank W 3gÿ 3� p. It
normalizes the ¢rst order operators ef �r� de¢ned by (30), r in H0�X ;L2l�ÿmP0��
for any m (that is, it preserves the intersection of their kernels).

(2) Formula (23) also de¢nes a family of commuting differential-evaluation
operators, acting on functions of l in J0�X � and of z1; . . . ; zn in a subset U of X (e.g.
the pointed formal disc at P0), symmetric in the zi; these operators are indexed
by points of U. They normalize the operators ef �r�, r some function on U, de¢ned
by formula (30).

Proof. Let us prove (1). If pX g, the action of Tz on the jets at l0 of sections of
F�n��p� coincides with the action of T �z� on CBl0�Wnjÿ�gÿ1�;p�, by Remark 9 and
Lemma 5.2. Since the T �z� commute together, this shows that the operators Tz form
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a commutative family. The result on normalization of theef �r� follows from the fact
that the action of Tz on the intersection of their kernels coincides with the action
of T �z� on CBl0�Wnjm;1�.

LEMMA 5.3 For any fl, �Tzfl��z1; . . . ; zn� is a quadratic form on z, regular on X
except for a pole of order W p at P0.

Proof of Lemma. It is clear that the right-hand side of (23) is a quadratic form in z
with possible poles at P0 and the za. Since k � ÿ2, one checks that this expression has
no pole at za.

Let us evaluate the pole at P0. Let z be a local coordinate at P0. Gl�z;w� has the
expansion

G2l�z;w� � zgÿ1w1ÿgdz
zÿ w

� zgÿ1w1ÿgdz
X
i;jX 0

aij�l�ziwj:

Therefore, if o belongs to H0�X ;OX �, then D�2l�o is in H0�X ;O2
X �P0��, because if oa

is �za � o�za��dz, we have D�2l�z oa � ��2gÿ 2ÿ a�zaÿ1 �O�za��dz.
On the other hand, o2l has the expansion at P0

o2l � ÿg�gÿ 1�zÿ2�dz�2 ÿ 2�gÿ 1�zÿ1�dz�2a00�l� �O�1��dz�2:

So the two ¢rst lines of the right-hand side of (23) have a poles of order W 2 at P0.
Since oa�z�, G�z; za�, G�za; z� and G2l�z; za� are regular at z � P0, the pole at P0

of the two last lines of (23) is of order at most p. &

The result on the rank of the family �Tz� now follows from the fact that
h0�O2

X �pP0�� � 3gÿ 3� p.
Let us prove (2). If we set p � 1 in the result of (1), we see that the operators Tz, z

inU , commute on all functions of l and the zi, which are symmetric in these variables
and behave as sections of OXLÿ2l, regular outside P0. The commutator �Tz;Tz0 � is
again a differential-evaluation operator. But no such operator can vanish on these
functions without being zero. &

Remark 11. Arguments similar to the proof of Theorem 5.1 imply that the Tz

de¢ned by (26) commute when k is critical.

Remark 12. In the case n � 0, we ¢nd a commuting family of operators

�Tzf ��l1; . . . ; lg�

� 1
2

X
a

oa�z�@la
 !2

�
X
a

D�2l�z oa�z�@la ÿ 2o2l�z�
24 35f �l1; . . . ; lg�:

�31�
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If g � 1, we have

oa � 2ipdz;Gl�z; z0� �
y ÿ l

2ip� zÿ z0
� �

y0�0�
y ÿ l

2ip

� �
y�zÿ z0�

dz;

D�2l�z oa � 2
y0

y
l
ip

� �
2ip�dz�2;

o2l � ÿ y00

y
l
2ip

� �
�dz�2;

where y is the Jacobi theta-function, so that

Tz � 1
2
�2ip@l�2 � 2

y0

y
l
ip

� �
2ip@l � 2

y00

y
l
ip

� �� �
�dz�2

� 1
2

2ip@l � 2
y0

y
l
ip

� �� �2

�dz�2;

which is conjugate to 1
2 �2ip@l�2.

When g > 1, (21) is a generating series for one ¢rst order and 3gÿ 3 second order
operators. The linear operator is

P
a 2�1ÿ g�oa�P0�@la � �1ÿ g�a00�l�. From the for-

mula for the variation of the periods matrix dtab � resP0 �oaobx� follows that the
operator corresponding to a variation dtij has leading term

P
a;b dtab@la@lb .

Remark 13. In the case of the rational curve, we get the commuting family of
operators de¢ned on symmetric functions f �z1; � � � ; zn� by

�T �z�f ��z1; � � � ; zn� �
Xn
i�1

X
j 6�i

1
zj ÿ zi

 !
f �z1; � � � ; z; � � � ; zn� ÿ f �z1; � � � ; zn�

zÿ zi
; �32�

where z is at the ith position in the right-hand side.

Remark 14. Relation with the Beilinson^Drinfeld operators. It is not possible to
interpret directly the operators Tz directly as Beilinson^Drinfeld (BD) operators
([2]). Indeed, for g � nKt�fl�w, with nK in N�K�, fl in Cl (see Section 6.2) and
w � ÿzn0 0

zÿn
�
, the local ring ÔBun �G

��g�� is H0�gÿ1gout; Indg
gOCw��, where Cw is the

gO-module associated with the character w of gO, de¢ned by w�K� � ÿ2 and
w��g
O� � 0, and gx denotes the conjugation of x by g for x in g and g in �G�K�.
This space is isomorphic to CBl�Wÿ2njÿ2n;2n�, which has no interpretation in terms
of the F�n�l �p�.

However, the vector f �zÿ2nÿ1�pvÿn is cyclic in Wÿ2njÿ2n;2n, which implies that
Wÿ2njÿ2n;2n is a quotient of Wpÿ2njÿ2n;2n�2. CBl�Wÿ2njÿ2n;2n� may then be viewed
as a subspace of CBl�Wpÿ2njÿ2n;2n�2�, which has a functional interpretation when
pX 2n. The BD operators may then be expressed as the commuting family of
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operators �Tz�, acting on some subspace (de¢ned as the intersection of a familyef �r�
and some vanishing conditions) of some F�n�l �p�.

Another connection with the BD operators is the following. The BD operators
admit lifts to bundles over the moduli space of �G-bundles with parabolic structure
at P0. Such bundles are attached to a weight L. The space of local sections of this
bundle is then H0�gÿ1gout; Indg

g0j0;1CwL �� where CwL is the g0j0;1-module de¢ned by
wL�K� � ÿ2, wL�h�1�� � L and wL�x�ti�� � 0 for x � f and iX 0, and x � h; e and
i > 0. This space is isomorphic to CBl�Wlÿ2njÿ2n;2n�1� which is isomorphic to the
intersection of kernels of some ef �r� in some F�n�l �p� if ÿ2nW 1ÿ g and l > 2n.

The commuting family of operators �Tz�, acting on the intersection of kernels of
the ef �r�, gets then identi¢ed with the BD operators. The commuting family �Tz�
acting on F�n�l �p� itself gets then identi¢ed with the lift of the BD operators to some
moduli space of B-bundles with additional structure.

Appendix A. Proof of Theorem 2.1

A.1. ADELIZATION

For any point s of X , denote by Ks and Os the local ¢eld and ring at this point. For a
¢nite subset S of X , set KS � �s2SKs and OS � �s2SOs. Set also
RS � H0�X ÿ S;OX �; we view RS as a subring of KS. De¢ne gS as the Lie algebra
��g
KS� �CK , endowed with the Lie bracket

�x�e�; y�e0�� � �x; y��ee0� � Khde; e0i; �33�
with ho; ei �Ps2S ress�oe� and x�e� � �x
 e; 0�. Set goutS � �g
 RS; we view goutS as a
Lie subalgebra of gS, by the embedding x
 r 7!x�r�. For any s in X , let gs be
the space ��g
Ks� �CK , endowed with the bracket analogous to (23), is a Lie
subalgebra of gA; the associated embedding is denoted by is.

Let k be a positive integer, �L; k� be an integrable weight of g and �rL;k;LL;k� be the
associated integrable module over g.

De¢ne �r0;k;L0;k� as the integrable module over g with highest weight �0; k� (the
vacuum module of level k). Denote by vtop its highest weight vector. De¢ne VS

as the vector space LL;k 

s2S;s6�P0L0;k; there is a map rS : gS ! End�VS� de¢ned
by the condition that the action of gs by rS � is on VS is identical to r�P0�

L;k if
s � P0 and to r�s�0;k else.

De¢ne gA as the space ��g
A� �CK , endowed with the Lie bracket analogous to
(23); the map x 7!�x; 0� makes �g
C�X � a Lie subalgebra of gA. For x in �g,
e � �es�s2X in A, we sometimes denote by x�s��e� the element of gs equal to �x
 es; 0�.

De¢ne VA as the gA-module 
0x2XVx, with Vx � L0;k for x 6� P0 and VP0 � LL;k.
(Here 
0 means that the module is spanned by the products 
x2Xvx with vx in
Vx equal to the vacuum vector v�x�top for all but ¢nitely many x.) The proof of the
following Lemma is a variant of that of [19], Prop. 2.2.3:
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LEMMA A.1. Let c be a gout-invariant linear form on LL;k. For any ¢nite subset S of
X containing P0, there is a unique linear form cS on VS, which is goutS -invariant
and such that cS�
x2S;x6�P0v

�x�
top 
 v� � c�v� for any v in LL;k.

There is also a unique linear form cA on VA, which is �g
C�X �-invariant and such
that cA�
x2X ;x 6�P0v

�x�
top 
 v� � c�v� for any v in LL;k.

Proof. Let us set goutP0;x � H0�X ÿ fP0; xg; �g�. Let us denote by W0;k the Weyl mod-
ule Ug
Ugin C, where C is the gin-module on which �g
O acts by zero and K acts
by k. Let us prove that there is a bijective correspondence between

(i) the forms cP0
on LL;k, which are gout-invariant,

(ii) the forms cP0;x on W0;k 
 LL;k, which are goutP0;x-invariant
and
(iii) the forms �cP0;x on L0;k 
 LL;k, which are goutP0;x-invariant, the correspondence

being such that

cP0
�v� � cP0;x�vtop 
 v� � �cP0;x�vtop 
 v�:

The proof of the general statement of the Lemma is similar.
Let us construct a form as in (ii) from a form as in (i). Fix a family of functions
�ri�i>0 in H0�X ÿ fP0; xg;OX �, such that ri has the expansion zÿix �O�1� near x,
and a basis �xa�a2A of �g. Choose an order of the index set A. By the PBW theorem,
a basis of W0;k is given by the

Q
a x
�x�
a �ri1�a�� . . . x�x�a �rin�a��a��vtop, for sequences of

integers n�a� and of indices i1�a�W i2�a� � � � W in�a��a�, where the product is performed
according to the order of A. Set then

cP0;x

Y
a

x�x�a �ri1�a�� . . . x�x�a �rin�a��a��vtop 
 v

 !

� cP0

Y
a

0
x�P0�
a �ÿrin�a��a�� . . . x�P0�

a �ÿri1�a��v
 !

:

Here
Q0 means that the product over all a's is taken in the order inverse to the order

of A. We have then

cP0;x

Y
a2A

x�P0;x�
a �ri1�a�� . . . x�P0;x�

a �rin�a��a���vtop 
 v�
 !

� 0;

for all v in VL;k, if the product is nonempty. Since the elements of W0;k 
 VL;k are
combinations of the

Q
a2A x�P0;x�

a �ri1�a�� . . . x�P0;x�
a �rin�a��a���vtop 
 v�, it follows that

cP0;x is goutP0;x-invariant.
Let us now show that any form as in (ii) is of the type (iii). We follow the argument

of [6], based on [10].
For any integer NX 2g, we can construct an element r�N� in H0�X ÿ fP0; xg;OX �

with the expansions r�N� � zÿ1x �O�1� near x and r�N� � zÿNP0
�a�O�zP0�� near P0,

with a 6� 0. For that, it suf¢ces to add to r1 some function of H0�X ÿ fP0g;OX �.
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Fix a_ in the coroot lattice, such that ha_; yi 6� 0. Let N be an integer X 2g and of
the form 1� dha_; yi, with d integer.

L0;k is the quotient W0;k=I , where I is the submodule of W0;k generated by
ey�zÿ1x �k�1vtop, where ey is the root vector associated to the maximal root y. I is
isomorphic to some Verma module. From [10] follows that e�x�y �zÿ1x � is surjective
on I . One may use some element of the form exp�h�P0��e��, with e in zxC��zx��, to
conjugate e�x�y �zÿ1x � to e�x�y �r�N��. Therefore, e�x�y �r�N�� is also surjective on I .

Let us now show that e�P0�
y �r�N�� is locally nilpotent on LL;k. e

�P0�
y �r�N�� is conjugated

by some element of the form exp�h�P0��e��, with e in zP0C��zP0 ��, to aey�zÿNP0
�. Recall that

the af¢ne Weyl group contains a translation element wo associated to any o in the
coroot lattice; the action of wo on the nilpotent loop generators is
wo � e�P0�

a �f � � ea��zP0 �ho;aif �, for ea the root vector associated to any root a. Moreover,
the module LL;k endowed with the composition of the action of gwith an af¢ne Weyl
group automorphism is again integrable. It follows that the action ofw � ey�zÿ1P0

�, for w
any af¢ne Weyl group element, is locally nilpotent. In particular, for w � wÿda_ , we
¢nd that ey�zÿNP0

� is locally nilpotent on LL;k, as well as e�P0�
y �r�N��.

These two results imply that �cP0;x vanishes on I 
 LL;k: indeed, any v; v0 in I and
LL;k, ¢x m such that �e�P0�

y �r�N���mv0 vanishes; we may write v � �ÿe�x�y �r�N���mv00, with
v00 in I . �cP0;x�v
 v0� is then equal to �c�v00 
 �ÿe�P0�

y �r�N���mv0�, which is zero. &

A.2. FORMULA FOR THE TAME SYMBOL

Denote by s the tame symbol de¢ned in �A��2 by

s��fx�x2X ; �gx�x2X � � �ÿ1�Sx2X vx�f �vx�g�
Y
x2X

g0�x�vx�f �f 0�x�ÿvx�g�;

we ¢x a coordinate zx at each point x of X and set fx � zvx�f �x �f 0�x� �O�zx��.
Fix a lift i of the universal covering eX ! X of X , such that the boundary of i�X � is

a union of paths eAa, eBa projecting to a standard system �Aa�; �Ba� of a- and b-cycles.
We will identify the local ¢eld and ring at any point x of X with the local ¢eld
and ring at i�x�. For l � �la� in Cg, de¢ne Cl as the set of the adeles of the
meromorphic functions f : eX ! C�, such that f �gAa

z� � f �z� and f �gBa
z� � eÿla f �z�.

We then have

LEMMAA.2. (a) For any l inCg, Cl is not empty; moreover, we can ¢nd elements of
Cl without any zero or pole on the eAa.

(b) For f inC�X ��, without any zero or pole on the cycles Aa, and fl in Cl, we have
s�f ; fl� � eSana�f �la ; with na�f � � 1=2ip

R
Aa

df =f .
Proof. Let us prove (a). Denote byY the Riemann theta-function on the Jacobian

on X , and by A the Abel map. Let a be any vector of the Jacobian of X , then the
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function

z 7!Y�A�z� � aÿ l=2ip�
Y�A�z� � a�

belongs to Cl. That the zero-poles requirement can be satis¢ed follows from a tra-
nsversality argument.

Let us prove (b). Suppose that f ; g are nonzero meromorphic functions on i�X �,
such that

X
x2X

resx
df
f
�
X
x2X

resx
dg
g
� 0:

Then we may introduce cuts on eX , connecting the zeroes and the poles of f , and
choose a determination of ln�f � which is single-valued along @i�X �. The same
can be done for g. We have then

s�f ; g� � exp
1
4ip

Z
@i�X �

df
f

ln gÿ dg
g

ln f
� �

:

This formula may be proved by deforming @i�X � to a set of contours encircling the
cuts of ln f and ln g.

Then in the case where f and g belong to C�X �� and Cl, we evaluate the integral
comparing the contributions of the paths above Aa and Aÿ1a , and above Ba and
Bÿ1a . For example, in case the zeroes and poles of f and g form disjoint sets, inte-
gration by parts gives

1
4ip

Z
@i�X �

df
f

ln gÿ dg
g

ln f � 1
2ip

Z
@i�X �

df
f

ln g

� 1
2ip

X
a

Z
Aa

df
f
�ln g�z� ÿ ln g�gBaz��

� 1
2ip

X
a

Z
a

df
f
la;

which implies (b). &

Remark 15.Lemma A.2, (b) implies that s�f ; g� � 1 for any f ; g inC�X ��, which is
a well-known fact. One could also prove that for any f in Cl and f 0 in Cl0 , without
any zero or pole on the eAa, we have

s�f ; f 0� � e
P

a
na�f �l0aÿna�f 0�la : �34�
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6.3. CONSTRUCTION OF ecl

We now follow the classical procedure to construct operators inEnd�VA� integrating
the Lie algebra action on VA. For f in A, ei�f � and fi�f � are locally nilpotent on VA.
We set

n�i �f � � exp�ei�f ��; nÿi �f � � exp�fi�f ��

for f in A. Set also, for r in A�, wi�r� � n�i �r�nÿi �ÿrÿ1�n�i �r�, and

ti�r� � wi�r�wi�1�ÿ1:

We have then

ti�rr0� � s�r; r0�ÿk�hi jhi�=2ti�r�ti�r0� �35�

for i simple, and

ti�r�tj �r0�ti�r�ÿ1tj�r0�ÿ1 � s�r; r0�k�hijhj�; �36�

for any indices i; j (observe that �hijhj� is always integer and �hijhi� always even).
The ¢rst identity is a consequence of [12], Thm. 12.24, and the second is a conse-

quence of this identity and [17], 7.3) e) (see also [15], Lemma 8.2, formula (3)).

PROPOSITION^DEFINITION A.1. Let us ¢x l�1�; . . . ; l�r� in Cg. For fl�i� in Cli ,
such that the fl�i� have no zero or pole on the Aa, and v in VL;k, the quantity

exp
X
i

k�hi j hi�
2

X
a

l�i�a na�fl�i� � �
X
i<j

k�hi j hj�
X
a

liana�fl�j� �
" #
� cA; t1� fl�1� � � � � tr� fl�r� � v

x 6�P0v

�x�
top

� �D E
�37�

is independent of the choice of the fl�i� . We will set l � �l�1�; . . . ; l�r�� and

h ~cl; vi � exp
X
i

k�hi j hi�
2

X
a

l�i�a na�fl�i� �
X
i<j

k�hi j hj�
X
a

l�i�a na�fl�j� �
" #

cA; t1�fl�1� � � � � tr�fl�r� � v

O
x 6�P0

v�x�top

 !* +

for any such fl�i� .
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Proof. Let f 0
l�i�

be other elements ofCl�i� , satisfying the same zero-poles condition as
fl�i� . Then f 0

l�i�
� fifl�i� , with fi in C�X ��, without zero or pole on the Aa. We have

exp
X
i

k�hi j hi�
2

X
a

l�i�a na�f 0l�i� � �
X
i<j

k�hi j hj�
X
a

l�i�a na�f 0l�j� �
" #

� cA; t1� f 0l�1� � � � � tr� f 0l�r� � v

O
x 6�P0

v�x�top

 !* +

� exp
X
i

k�hi j hi�
2

X
a

liana�fi� �
X
i<j

k�hi j hj�
X
a

l�i�a na�fi�
" #

�

� exp
X
i

k�hi j hi�
2

X
a

l�i�a na�fl�i� �
X
i<j

k�hi j hj�
X
a

l�i�a na�fl�j�
" #

�

� cA; t1�f1fl�1� � � � � tr�frf �r�l � v

O
x6�P0

n�x�>

 !* +

The identities (35) and (36) imply that this is equal to

exp
X
i

k�hi j hi�
2

X
a

l�i�a na�fi� �
X
i<j

k�hi j hj�
X
a

liana�fj�
" #

� exp
X
i

k�hi j hi�
2

X
a

lia�fl�i� � �
X
i<j

k�hi j hj�
X
a

liana�flj� �
" #

�

�
Y
i

s�fi; fl�i� �ÿk�hi jhi�=2
Y
i<j

s�fj; fl�i� �ÿk�hijhi�

� cA; t1�f1� � � � tr�fr�t1�fl�1� � � � � tr�fl�r� n

O
x 6�P0

n�x�top

 !* +

Now, as the ti�fi� are products of exponentials of elements of the �g
C�X � and cA

is �g
C�X �-invariant, we have hecl;
Qr

i�1 ti�fi�v0i � hecl; v
0i for any v0 in VA. Applying

Lemma A.2., (b), we ¢nd that (38) is equal to

exp
X
i

k�hi j hi�
2

X
a

l�i�a na�fl�i� �
X
i<j

k�hi j hj�
X
a

l�i�a na�flj �
" #

�

� cA; t1�fl�1� � � � � tr�fl�r� � n

O
x 6�P0

n�x�top

 !* +
:

&
Remark 16. In view of (36) and (34), it is clear that (37) is independent of the

chosen ordering of simple coroots.
Let us now give an expression of ecl in terms of extremal vectors.
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LEMMA A.3. De¢ne the vectors vi;�n� in L0;k by the formulas

vi;�0� � vtopvi;�n�1� � �ÿ1�
k

k!
fi�zÿ2nÿ1�kvi;�n�

and

vi;�ÿnÿ1� � 1
k!
ei�zÿ2nÿ1�kvi;�ÿn� for nX 0:

Then we have vi;�n� � ti�zn�vtop.

Proof. It is enough to prove this statement for the case �g � sl2. The formulas for
vi;�1� and vi;�ÿ1� are derived by direct expansions. The other formulas are obtained
by applying the af¢ne Weyl group translation associated with the coroot hi (which
preserves ti�z�). &

We have then

PROPOSITION A.1. Assume that the sets Si of zeroes and poles of the fl�i� are dis-
tinct. Then we have for v in VL;k,

h ~cl; ni � exp
X
i

k�hi j hi�
2

X
a

l�i�a na�fl�i� � �
X
i<j

k�hi j hj�
X
a

l�i�a na�fl�j� �
"

�

�
Yr
i�1

Y
s2Si

�f 0l�i��s�ÿk � cfP0g[�[iSi�;
Or

i�1

O
s2Si

n�s�i;�ns�fl�i� ��

 !*





Yr
i�1

t�P0�
i �fl�i� �n

+
;

where we set fl�i� �z� � f 0
l�i�
�s�zs � o�zs� for s in Si. Recall that cfP0g[�[iSi� denotes the

prolongation of c to the product of LL;k and vacuum modules at the points of Si.

A.4. PROOF OF THEOREM 2.1

To prove Thm. 2.1, 1), we ¢rst prove

LEMMAA.4. For any v in LL;k, the function l 7!hecl; vi depends analytically on l and
satis¢es @l�i�a hecl; vi � hecl; hi�ra�vi; a � 1; . . . ; g; i � 1; . . . ; r.

Proof of Lemma. Let us prove this ¢rst in the case �g � sl2. In that case, we work in
a neighborhood of some point l0 of J0�X �. Let Pi�l� be points on X (i � 1; . . . ; g)
such that fl has simple zeroes at the Pi�l� and a pole of order g at P0. Let zPi�l0�
a coordinate at Pi�l0�; we will again denote by Pi�l� the coordinate of the point
Pi�l� in the coordinate system. We will assume that the local coordinate at Pi�l�
is zPi�l� � zPi�l0� ÿ Pi�l�.
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Let for P in X , rP be a meromorphic function on X , with only poles at P0 and at P,
with the expansion r � zÿ1P �O�1�. We assume that the expansions at P0 the
functions rP depend smoothly on P, for P near any of the Pi�l0�. We set also
fl�z� � f 0l�Pi�l��zPi�l� � 1

2 f
00
l �Pi�l��z2Pi�l� � � � �.

Then Proposition A.1 implies that

h ~cl; ni � exp k
X
a

lana�fl�
Y
i

f 0l�Pi�l��ÿk
" #

cfP0;Pi�l�g;
Og
i�1

f �ÿzÿ1Pi�l��k
k!

n�Pi�l��
> 
 t�P0��fl�n

* +
:

As we have seen, f �ÿzÿ1Pi�l��kv
�Pi�l��
top is equal to f �Pi�l���ÿrPi�l��kv�Pi�l��

top . By the
coinvariance of c, and the fact that v�1� is annihilated by the f �f�, f in O, the
right-hand side of this equation is equal to

1
�k!�g exp k

X
a

lana�fl�
Y
i

f 0l�Po�l��ÿk
" #

c;
Yg
i�1

f �rPi�l��k
� �

t�f �P0�
l �v

* +
:

This formula shows that hecl; vi depends smoothly on l. Let us compute its differ-
ential. Let dl be a variation of l. A computation of adjoint actions shows that

dt f �P0�
l

h i
� h

df �P0�
l

f �P0�
l

" #
� k df �P0�

l ;
df �P0�

l

�f �P0�
l �2

* + !
t f �P0�

l

h i
;

so that

dhecl; vi � k
X
a

na�fl�dla
 !

hecl; vi�

� 1
�k!�g expk

X
a

la�fl�
" #

�

�
Xg
i�1

c;
Y
j 6�i

f �rPj�l��k
� �

kf �rPi�l��kÿ1f �drPi�l��t�f �P0�
l �v

* +
�

�
Y
i

f 0l�Pi�l��ÿk

� 1
�k!�g expk

X
a

lana�fl�
" #

�

� c;
Yg
i�1

f �rPi�l��k
� �

h
df �P0�

l

f �P0�
l

" #
� k df �P0�

l ;
df �P0�

l

�f �P0�
l �2

* + !
t� f �P0�

l �v
* +

�
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�
Y
i

f 0l�Pi�l��ÿk �

� ÿk
Xg
i�1

df 0l�Pi�l��
f 0l�Pi�l��

 !
hecl; vi;

which can be rewritten (using coinvariance) as

dhecl; vi�
 
k
X
a

dlana� fl�ÿk
X
i

df 0l�Pi�l��
f 0l�Pi�l�� �k

dfl
fl
;
dfl
fl

� �
P0

!
hecl; vi�

�
Y
i

f 0l�Pi�l��ÿk�

� cfP0;Pi�l�g;
X
i

O
j 6�i

v�j��1� 

�ÿ1�k
k!

f �dPi�l�zÿ2Pi�l�� f �zÿ1Pi��l��kÿ1v
�i�
top

*




 t�P0��fl�v
+
�
Y
i

f 0l�Pi�l��ÿk�

�
*
cfP0;Pi�l�g;

X
i

h�P0� dfl
fl

� �
�
g

i�1v
�i�
�1� 
 t�P0�� fl�v�

+
:

The penultimate term is rewritten as

Y
i

f 0l�Pi�l��ÿk
�
cfP0;Pi�l�g;ÿ

X
i

dPi�l�h�i��zÿ1Pi�l��
Og
i�1

v�i��1�

 !

 t�P0��fl�v

�
;

using the identity in L0;k

h�zÿ1�v�1� � �ÿ1�
kÿ1

�kÿ 1�! f �z
ÿ2�f �zÿ1�kÿ1vtop;

which follows from

h�zÿ1� f �zÿ1�kvtop � e�z� f �zÿ1� ÿ f �zÿ2�e�z�ÿ �
f �zÿ1�kvtop

� ÿkf �zÿ2� f �zÿ1�kÿ1vtop;
�39�

because f �zÿ2� f �zÿ1�kvtop � 0, which is a consequence of the integrability conditions.
On the other hand, we have

t� f �P0�
l �h�ra�t� f �P0�

l �ÿ1 � h�ra� � 2k
�
df �P0�

l

f �P0�
l

; ra

�
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so that
P

a dlahecl; h�ra�vi is equal to

1
�k!�g exp

X
a

lana�fl
Y
i

f 0l�Pi�l��ÿk
" #

�

�
X
a

dla c;
Yg
i�1

f �rPi�l��k
� �

h�ra� � 2k
df �P0�

l

f �P0�
l

; ra

* + !
t�f �P0�

l �v
* +

:

Therefore, we have

dhecl; vi ÿ
X
a

dlahecl; h�ra�vi

� k
X
a

dlana�fl� � k
dfl
fl
;
dfl
fl

� �
P0

ÿ2k
X
a

dla
dfl
fl
; ra

� �
P0

ÿk
X
i

df 0l�Pi�l��
f 0l�Pi�l��

" #
�

h ~cl; vi �
Y
i

f 0l�Pi�l��ÿk�

�
*
cfP0;Pi�l�g; h�P0� dfl

fl

� �
ÿ
X

dPi�l�h�i��zÿ1Pi�l�� ÿ
X
a

dlah�P0��ra�
 !

�

�
 O

i

v�1�

!

 t� f �P0�

l �v
+
:

On the other hand,

R � df �P0�
l

f �P0�
l

ÿ
X
a

dlara

is single-valued on X and has simple poles at the Pi�l�. Therefore,

cfP0;Pi�l�g; h�P0��R� �
X
i

h�i��R����
iv
�i�
�1�� 
 t�P0�v

 !* +

is zero, so that dhecl; vi ÿ
P

a dlahecl; h�ra�vi is proportional to

ÿ
Xg
i�1

df 0l�Pi�l��
f 0l�Pi�l�� �

X
a

dlana�fl� � dfl
fl
;
dfl
fl

� �
P0

ÿ

ÿ 2
X
a

dla
dfl
fl
; ra

� �
P0

�2
X
i

dfl
fl

� �reg

�Pi�l�� ÿ
X
a

dlara�Pi�l��
" #

;

�40�

where we set

dfl
fl

� �
�z� � al;izÿ1Pi�l� �

dfl
fl

� �reg

�Pi�l�� �O�zPi�l��:

COMMUTING DIFFERENTIAL AND DIFFERENCE OPERATORS 53

https://doi.org/10.1023/A:1002454201868 Published online by Cambridge University Press

https://doi.org/10.1023/A:1002454201868


The vanishing of (40) then follows from the identities

dfl
fl
;
dfl
fl

� �
P0

� ÿ
X
i

dfl
fl
;
dfl
fl

� �
Pi

�
X
a

na�fl�dla;

dfl
fl
; ra

� �
P0

� ÿ
X
i

ra�Pi�l�� � na�fl�

and

ÿ df 0l�Pi�l��
f 0l�Pi�l�� ÿ

dfl
fl

� �
Pi

�2 dfl
fl

� �reg

�Pi� � 0;

the latter identity follows from the expansions

dfl
fl
� dz

zÿ Pi�l� �
1
2
f 00l
f 0l
�Pi�l��dz�O�zÿ Pi�l��dz;

dfl
fl
� ÿ dPi�l�

zÿ Pi�l� �
df 0l�Pi�l��
f 0l�Pi�l�� ÿ

1
2

X
a

f 00l
f 0l
�Pi�l��dPi�l�

" #
�O�zÿ Pi�l��;

dfl
fl

� �reg

�Pi�l�� � df 0l�Pi�l��
f 0l�Pi�l�� ÿ

1
2

X
i

f 00l
f 0l
�Pi�l��dPi�l�:

This ends the proof of Lemma 6.4 in the case �g � sl2. In the case of general �g, this
result allows to compute @l�1�a hecl; vi; the additional prefactors of the expression
of hecl; vi allow to transfer the h1�ra� in front of v. Using Remark 16, we can treat
the case of any simple coroot in the same way. &

Let us now show why Lemma 6.4 implies Theorem 2.1(1). The differential
equation of Lemma 6.4 and the equality ec0 � c imply that the formal expansion
of hecl; vi for l near 0 is equal to hcl; vi. This implies Theorem 2.1(1).

Theorem 2.1(2) follows from the equality cl � ecl and the fact that for any fl�i� in
Cl�i� , we have

Ad�t1� fl�1� � � � � tr� fl�r� ���goutl � � gout:

Finally, Theorem 2.1(3) follows from the equality ecl � cl and the fact that if fl
belongs to Cl, fleza belongs to Cl�Oa . This ends the proof of Theorem 2.1.

Remark 17. Equation (39) is translated through the states-¢elds correspondence
into the identity

d
dz
� f �z�k� � ÿ:h�z�f �z�k:;

which is valid in level kmodules (see [14]), and means that f �z�k is a vertex operator.
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The connection between this vertex algebra and the Abel^Jacobi map was noticed in
[7].
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COMMUTING DIFFERENTIAL AND DIFFERENCE OPERATORS 55

https://doi.org/10.1023/A:1002454201868 Published online by Cambridge University Press

https://doi.org/10.1023/A:1002454201868


18. Thaddeus, M.: Stable pairs, linear systems and the Verlinde formulas, Invent. Math. 117
(1994), 317^353.

19. Tsuchiya, A., Ueno, Y., Yamada, Y.: Conformal ¢eld theory on universal family of stable
curves with gauge symmetries, Adv. Stud. Pure Math. 10 (1989), 459^566.

56 B. ENRIQUEZ AND G. FELDER

https://doi.org/10.1023/A:1002454201868 Published online by Cambridge University Press

https://doi.org/10.1023/A:1002454201868

