
J. Functional Programming 6 (3): 465^83, May 1996 © 1996 Cambridge University Press 465

Haskore music notation
- An algebra of music -

PAUL HUDAK, TOM MAKUCEVICH, SYAM GADDE

AND BO WHONG
Department of Computer Science, Yale University,

New Haven, CT 06520, USA
(e-mail: hudak@cs.yale.eduj

Abstract

We have developed a simple algebraic approach to music description and composition called
Haskore. In this framework, musical objects consist of primitive notions such as notes and
rests, operations to transform musical objects such as transpose and tempo-scaling, and
operations to combine musical objects to form more complex ones, such as concurrent and
sequential composition. When these simple notions are embedded into a functional language
such as Haskell, rather complex musical relationships can be expressed clearly and succinctly.
Exploiting the algebraic properties of Haskore, we have further defined a notion of literal
performance (devoid of articulation) through which observationally equivalent musical objects
can be determined. With this basis many useful properties can be proved, such as commutative,
associative, and distributive properties of various operators. An algebra of music thus surfaces.

Capsule Review

Haskore is a clean and elegant notation for music information and structure. The notation
is an extension of the programming language Haskell, and therefore, more powerful in many
respects than conventional notation. Haskore has interesting algebraic properties, proofs of
which are facilitated by Haskell semantics. Although, highly distilled and simplified from 'real'
music, Haskore supports some interesting notions of equivalence. It also provides structures
that can be queried or processed further for music analysis purposes. It remains open whether
this approach can be (or should be) extended to express richer musical constructs such as
non-hierarchical relationships, continuous gestures and expressive timing.

1 Introduction

Traditional music notation (often called common practice notation) has many well-
known limitations. From our perspective, the following are particularly acute:

1. Traditional notation is unable to adequately capture a composer's intentions,
in particular structural aspects of a composition.

2. Traditional notation is biased towards music that is humanly performable. This
is not surprising, of course, but is an obstacle when trying to notate music

https://doi.org/10.1017/S0956796800001805 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001805

466 P. Hudak et al.

intended for computer performance, where the notation is often found to be
deficient, inconsistent, and redundant.

3. Many well-known (not just contemporary) ideas in music theory are difficult if
not impossible to express in traditional notation. The basic concepts of atonal
music theory (Forte, 1973), for example, are impossible to express without the
use of a meta-logic; more preferable would be a common notation that could
be used to express musical objects and the interrelationships between them.

4. Modern notions of algorithmic composition are also impossible to express in
traditional notation; there is simply no notion of'algorithm' at all.

These shortcomings, along with our experience in computer music and algorithmic
composition, have led us to seek alternatives to traditional music notation. Our
background in the theory, design, and implementation of high-level programming
languages, in particular/uncriona/ languages, has led us to a rather satisfying solution
based on the functional language Haskell (Hudak et al., 1992). In fact, we did not
design a new language at all: our system, which we call Haskore, is essentially a set
of program modules written in Haskell that allow the user to express musical ideas
in a high-level, higher-order, and extensible manner.

Building on the results of the functional programming community's Haskell
effort has several important advantages: first, and most obvious, we can avoid the
difficulties involved in new programming language design, and at the same time
take advantage of the many years of effort that went into the design of Haskell.
Second, the resulting system is both extensible (the user is free to add new features in
substantive, creative ways) and modifiable (if the user doesn't like our approach to a
particular musical idea, she is free to change it; we don't force our ideas on the user).

The above advantages are perhaps obvious, but do little good if we can't design
a system that is actually useful for composing music and that avoids the problems
with traditional notation that we alluded to earlier. Fortunately, as we shall soon
see, Haskell's high-level, declarative nature is well suited to music composition.
Furthermore, relying on Haskell's underlying equational theory, the resulting system
has clearly defined algebraic properties which allow one to, for example, prove
interesting properties about musical objects and transform them in such a way that
'meaning' is preserved.

A key aspect of Haskore is that objects represent both abstract musical ideas and
their concrete implementations. This means that when we prove some property about
an object, that property is true about the music in the abstract and about its imple-
mentation. Similarly, transformations that preserve musical meaning also preserve
the behaviour of their implementations. For this reason Haskell is often called
an executable specification language, i.e. programs serve the role of mathematical
specifications that are directly executable.

1.1 Limitations of traditional notation

As a simple example of the limitations of traditional notation, consider the triplet
(3-tuple), 5-tuple, and 7-tuple shown in figure la. The rules governing the 'default

https://doi.org/10.1017/S0956796800001805 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001805

Haskore music notation 467

numerator: denominator

"JJJJJJT ^7:4^
(a) (b)

7:6

JJJJJJJ JJJ JJJ JJJJ JJJ JJJ
(c)

I- 2:3 -, r 2:3 -,

J . (J J) . J J J
(d) (e) (f) (g)

Fig. 1. Deficiencies and redundancies of tupling notation.

interpretation' of such phrases are somewhat ad hoc: for example, the 3 and 5 notes
in the 3-tuple and 5-tuple are to be played in the space of 2 and 4 notes, respectively;
but the 7-tuple is intended to be played in the space of 4 (Hindemith, 1949).

To avoid this problem, traditional notation is sometimes generalized to make
the implicit 'denominator' more explicit, as shown in figure lb. With this simple
generalization we now have much more freedom in expressing more interesting
phrases, as shown, for example, in figure lc, where we see several traditional rules
being 'broken':

1. Non-conventional ratios such as 7:5 are allowed.
2. The 'numerator' is not required to match the number of notes in the figure.

Indeed, the meaning of a figure annotated with m :n is no longer 'play these
m notes in the space of n', but rather, 'scale the tempo by a factor of m/n'.1'

3. The numbers are not constrained to be integers. Indeed any ratio is allowed,
even irrational ones!

4. The ratio is not always greater than one, i.e. 'tempo-compression' is allowed
as well as 'tempo-expansion'.

These generalizations are adopted in Haskore, and clearly move us rapidly toward
the realm of 'not humanly performable'.

As an example of the redundancy in traditional notation, consider the convention
of dotting a note to extend its duration by 50%, as shown in figure Id. This
convention does not permit dotting more than one note, as shown in figure le. The

Note that our use of 'tempo' here is a relative one that indicates, for a particular phrase,
the rate at which the notes are played. The tempo for an overall composition is just the
starting point; it may vary considerably depending on context.

https://doi.org/10.1017/S0956796800001805 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001805

468 P. Hudak et al.

Haskore->Midi
Translator

Standard
Midi File

Midi File Player

I
Midi

i Midi Instruments

s

t

1
\

\

Haskore

Haskore->CSound
Translator

\
\
i

/

Haskore->MuslcKit
Translator

1 1
CSound MusicKit

Score File ScoreFile

\ \

CSound MusicKit

Haskore->Notatlon
Translator

CMN
code

CMN

.snd File
\

notated score

Sound File Player

Fig. 2. Overall system diagram.

meaning of such a phrase, if it were allowed, could be expressed in generalized tuple
notation as shown in figure If. But in fact, a single dotted note could be expressed
in a similar way, and therefore figures Id and lg are equivalent. Thus in a sense
dotted notation is a redundant form of'1-tupling'.

As a final example, we note that traditional notation has very few mechanisms
for allowing a composer to express how she perceives a composition's structure. All
that is available is a few ad hoc labelling techniques and a mechanism for repeating
phrases. For example, there is no way to describe a canon-like phrase as a structure
in which 'phrase A is played simultaneously with itself, but with one part delayed
by 2 measures'. Far more sophisticated structures and relationships exist in many
compositions, limited only by the composer's creativity.

1.2 Haskore

Figure 2 shows the overall structure of our system. We will not provide details of
the various translators in this paper; they are reasonably straightforward functional
programs for converting from internal abstract datatypes to the file syntax required
to play Haskore compositions as conventional midi-files (Midi 1.0, 1990), NeXT
MusicKit score files (Jaffe and Boynton, 1991) or Csound score files (Vercoe, 1986),
and to print Haskore compositions in traditional notation using the CMN (Common
Music Notation) subsystem. Of most interest is the box labelled 'Haskore'.

We will use Haskell notation throughout; readers familiar with any of a number
of strongly typed functional languages, such as Miranda or ML, should have little

https://doi.org/10.1017/S0956796800001805 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001805

Haskore music notation 469

trouble following the presentation. Those completely unfamiliar with functional
languages are urged to at least read Hudak and Fasel (1992) before continuing. This
paper is written assuming good familiarity with functional programming in general
and Haskell in particular; a different version is being written that is targeted mainly
for musicians.

As our musical ideas are presented in Haskell, we urge the reader to question, at
every step, the decisions that are being made. There is no supreme theory of music
that dictates our decisions, and what we present is actually one of several versions
that we have developed. We believe the simplicity and elegance of this version is
suitable for many purposes, especially pedagogical ones, but the reader may likely
want to modify it to better satisfy her intuitions and/or application.

This document was written in the literate programming style, and thus the IATgXfile
from which it was generated is an executable Haskell program. This file can be
retrieved via the WWW*, where the user will also find the latest version of the
Haskore system (consult the README file for details).

2 The basics

The most basic musical idea is a note (or absence thereof), which we describe using
a Haskell datatype:

> data Note = Note Pitch Dur I Rest Dur

> deriving Text

> type Pitch = Int

> type Dur = Float

where Pitch is the type that represents a note's pitch (an integer) and Dur is the
type that represents a pitch's duration (measured in number of beats). Additional
note parameters (such as volume, timbre or envelope) may easily be attached as
additional Note constructor fields, but we omit such detail here. The deriving Text
clause simply ensures that we can generate textual representations of Note's using
the overloaded show operator.

For convenience, we refer to a sequence of notes as a line:

> type Line = [Note]

From these basic primitives we will construct more complex musical ideas. For
example, two basic transformations we may wish to perform on a musical object are:

• Scaling of the tempo (in the flavor of the generalized tupling described earlier).
• Transposition of the melody.

In addition, it is desirable to have ways to compose musical objects to form lager
ones. In particular, we may wish to:

• Play several musical objects in sequence, i.e. one after the other.
• Play several musical objects in parallel, i.e. simultaneously.

* From ftp://nebula.systemsz.cs.yale.edu/pub/yale-fp/papers/haskore

https://doi.org/10.1017/S0956796800001805 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001805

470 P. Hudak et al.

It is convenient to represent these ideas in Haskell as a recursive datatype5:

> data Music = Line Line

> I Scale Int Int Music

> I Trans Int Music

> I Music :+: Music

> I Music :=: Music

> I Instr IName Music

> deriving Text

> type IName = String

— base case

— scale tempo

— transpose pitches

— play in sequence

— play in parallel

— use specified instrument

So, a musical object in Haskore is either a sequence of notes (a line), a tempo scaling
or melodic transposition of some other musical object, or the sequential or parallel
composition of two other musical objects. The final construction, Instr iname m,
simply declares the intent to play m using instrument iname.

2.1 Examples

With this modest beginning, we can already express quite a few complex relationships
simply and effectively. For convenience, we first create a few functions to generate
pitch values based on familiar octave and note names, as follows11:

> cf ,c,cs,df ,d,ds,ef ,e,es,ff ,f ,f s,gf ,g,gs,af ,a,as,bf,b,bs :: Pitch

> cf = -1; c = 0; c s = l ; d f = l ; d = 2 ; d s = 3

> ef = 3; e = 4; es = 5; ff = 4; f = 5; fs = 6

> g f = 6 ; g = 7 ; g s = 8 ; a f = 8 ; a = 9 ; a s = 1 0

> bf = 10; b = 11; bs = 12

> note :: Int -> Int -> Dur -> Note

> note oct pit = Note (pitch oct pit)

> pitch o p = 12*o + p

Note that the expression Note p is a function that, when applied to a duration d,
returns a note with pitch p and duration d.

Similarly, here are convenient names for common durations and rests:

wn,
wnr,

wn =

hn =

qn =

en =

sn =

hn,
hnr,

1
1/2
1/4
1/8
1/16

qn,
qnr,

en, sn :: Dur
enr, snr :: Note

; wnr = Rest

; hnr = Rest

; qnr = Rest

; enr = Rest

: snr = Rest

wn
hn
qn
en
sn

— whole note rest

— half note rest

— quarter note rest

— eighth note rest

— sixteenth note rest

Next, let's define the longest and most boring piece of music that we can imagine:
an infinite sequence of a single note:

> infLine :: Note -> Line
> infLine note = note : infLine note — or, "cycle [note]"

§ An alternative is to represent them as functions, but then we lose the ability to take musical
objects apart, analyse their structure, print them in a structure-preserving way, etc.

11 An alternative is to define a separate (enumerated) datatype for notes, but manipulating
notes as integers is so convenient that we prefer the present approach.

https://doi.org/10.1017/S0956796800001805 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001805

Haskore music notation 471

PM J J J J J 3 J J J J J J J J

•7:6

I 5:4 1 r— 5:4 —11 5:4

pr2 rJLn

JJJJJJ JJJJJ JJJJJJ JJ
Fig. 3. Nested polyrhythms.

From this we can define a function to create a similar line, but of a specified length:

> mkLine :: Int -> Note -> Line

> mkLine len = take len . infLine

Now consider the nested polyrhythms shown in figure 3. They can be expressed
in Haskore as follows:

> prl, pr2 :: Pitch -> Music

> prl p = Scale 5 6 (Scale 4 3 (mkLn 1 qn :+:

> Scale 3 2 (mkLn 3 en :+:

> mkLn 2 sn :+:

> mkLn 1 qn) :+:

> mkLn 1 qn) :+:

> Scale 3 2 (mkLn 6 en))

> where mkLn n d = Line (mkLine n (Note p d))

>

> pr2 p = Scale 7 6 (ml :+:

> Scale 5 4 (mkLn 5 en) :+:

> ml :+:

> mkLn 2 en)

> where ml = Scale 5 4 (Scale 3 2 i2 :+: m2)

> m2 = mkLn 3 en

> mkLn n d = Line (mkLine n (Note p d))

Note the use of the where clause in pr2 to capture recurring phrases.
To play polyrhythms p r l and pr2 in parallel using middle C and middle G,

respectively, we would do the following (assuming that middle C is in the 5th
octave):

> p r l2 :: Music

> p r l2 = p r l (p i tch 5 c) :=: pr2 (p i t ch 5 g)

An expression of the form:

m :=: Trans 7 m

https://doi.org/10.1017/S0956796800001805 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001805

472 P. Hudak et al.

describes a melody m accompanied by a second voice a perfect 5th higher. Similarly,
a canon-like structure involving m can be expressed as:

m :=: delay d m

where

> delay :: Dur -> Music -> Music

> delay d m = Line [Rest d] :+: m

A musical object may be repeated ad nauseum using this simple function:

> muRepeat :: Music -> Music

> muRepeat m = m :+: muRepeat m

For example, an infinite ostinato can be expressed in this way, and then used in
different contexts that extract only the portion that's actually needed.

The basic notions of inversion, retrograde, retrograde inversion, etc. used in
12-tone theory are also easily captured in Haskore, as the following definitions
demonstrate (we assume that these transformations are only well-defined for lines):

> retro, invert, retrolnvert, invertRetro :: Music -> Music

> retro (Line line) = Line (reverse line)

> invert (Line line) = Line (map inv line)

> where Note p _ = head line

> inv (Note p' d) = Note (2*p-p>) d

> inv n = n

> retrolnvert = retro . invert

> invertRetro = invert . retro

As a final example, we can can compute the duration in beats of a musical object,
a notion we will need in the next section, as follows:

> dur :: Music -> Dur

> dur (Scale a b m) = dur m * (float b / float a)

> dur (Trans _ m) = dur m

> dur (ml : + : m2) = dur ml + dur m2

> dur (ml :=: m2) = dur ml 'max' dur m2

> dur (Line line) = sum (map getDur line)

> where getDur (Rest d) = d

> getDur (Note _ d) = d

> dur (Instr i m) = dur m

> float = fromlnteger . tolnteger :: Int -> Float

3 Performance and interpretation

Now that we have defined the structure of musical objects, let us turn to the issue of
performance, which we define as a temporally ordered sequence of musical events:

> type Event = (Time,IName,Pitch,DurT)

> type Performance = [Event]

> type Time = Float

> type DurT = Float

https://doi.org/10.1017/S0956796800001805 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001805

Haskore music notation 473

An event (s , i ,p ,d) captures the fact that at time s, instrument i plays pitch p for
a duration d (where now duration is measured in seconds, rather than beats).

For a performer to give an interpretation to a musical object, it must know on
which instrument to perform, a time to begin the performance, and the proper key
and tempo. We can thus model a performer as a function perform which maps this
information and a musical object into a performance:

> perform :: (Time,IName,Key,Tempo) -> Music -> Performance

> type Key = Int

> type Tempo = Float

Of course, there are many kinds of performances; music can be interpreted
in many different ways. Eventually, we may want to develop fairly sophisticated
performances, but for now the one that interests us most is what we call the literal
performance: a flawless but emotionless (i.e. devoid of articulation) interpretation
of a musical object. To begin, let's define the literal performance of a line:

> playLine :: (Time,IName,Key,Tempo) -> Line -> Performance

> playLine (s,i,k,t) (n:notes) =

> case n of Rest d -> playLine (s+d*60/t,i,k,t) notes

> Note p d -> (s,i,p+k,d') : playLine (s+d',i,k,t) notes

> where d' = d*60/t

> playLine _ [] = []

With this as a foundation, we can define the literal performance of an entire
musical object:

> perform x@(s,i,k,t) m =

> case m of

> Scale a b m -> perform (s,i,k,t*(float a / float b)) m

> Trans p m -> perform (s,i,k+p,t) m

> ml :+: m2 -> perform x ml ++ perform (s+(dur ml)*60/t,i,k,t) m2

> ml :=: m2 -> merge (perform x ml) (perform x m2)

> Line line -> playLine x line

> Instr i' m -> perform (s,i',k,t) m

>

> merge :: Performance -> Performance -> Performance

> merge (el:esl) (e2:es2) =

> if el<e2 then el : merge esl (e2:es2)

> else e2 : merge (el:esl) es2

> merge [] es2 = es2

> merge esl [] = esl

Note that perform invokes playLine for the base case (a line). The function
merge is required to preserve the property that a performance is a temporally ordered
sequence of events, and dur (defined in the last section) is needed to compute the
duration of the first argument to : + :."

The use of dur in the definition of perform results in quadratic time complexity. A more
efficient solution is to have perform compute the duration directly, returning it as part of
its result. The current approach is pedagogically clearer, however, and thus we leave the
optimization as an exercise for the reader. Note also that merge compares entire events
rather than just start times. This is to ensure that it is commutative, a desirable condition
for some of our proofs.

https://doi.org/10.1017/S0956796800001805 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001805

474 P. Hudak et al.

4 Equivalence of literal performances

There are many different musical objects whose literal performances we expect to
be equivalent. For example, the following two musical objects are certainly not equal
as data structures, but we would expect their literal performances to be identical:

Line [nl,n2] :+: Line [n3,n4]

Line [nl,n2,n3,n4]

Thus we define a notion of equivalence:

Definition Two musical objects ml and m2 are equivalent, written ml = m2, if and
only if:

(Vx) perform x ml = perform x m2

where '=' is equality on values (which in Haskell is defined by the underlying
equational logic).

One of the most useful things we can do with this notion of equivalence is establish
the validity of certain transformations on musical objects. A transformation is valid
if the result of the transformation is equivalent (in the sense denned above) to the
original musical object, i.e. it is 'meaning preserving'.

The most basic of these transformation we treat as axioms in an evolving algebra
of music. For example:

Axiom 1
For any r l , r2, r3, r4, and m:

Scale r l r2 (Scale r3 r4 m) = Scale (rl*r3) (r2*r4) m

To prove this axiom, we use conventional equational reasoning:

Proof

perform (_,_,_,t) (Scale rl r2 (Scale r3 r4 m))

= perform (_(_,_,rl*t/r2) (Scale r3 r4 m) — unfolding perform

= perform (_,_,_,r3*(rl*t/r2)/r4) m — unfolding perform

= perform (_,_,_,(rl*r3)*t/(r2*r4)) m — simple arithmetic

= perform (_,_,_,t) (Scale (rl*r3) (r2*r4) m) — folding perform

Here is another useful transformation and its validity proof:

Axiom 2
For any r l , r2, ml, and m2:

Scale r l r2 (ml : + : m2) = Scale r l r2 ml : + : Scale r l r2 m2

In other words, tempo scaling distributes over sequential composition.

https://doi.org/10.1017/S0956796800001805 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001805

Haskore music notation 475

JJ J JJ J
Fig. 4. Equivalent phrases.

Proof

perform (s,_,_,t) (Scale rl r2 (ml :+: m2))

= perform (s,_,_,rl*t/r2) (ml :+: m2) — unfold perform

= perform (s,_,_,rl*t/r2) ml ++ perform (s',_,_,rl*t/r2) m2

— unfold perform

= perform (s,_,_,t) (Scale rl r2 ml) ++

perform (s',_,_,t) (Scale rl r2 m2) — fold perform

= perform (s,_,_,t) (Scale rl r2 ml :+: Scale rl r2 m2) — fold perform

where s' = s + dur (perform (s,_,_(rl*t/r2) ml)

An even simpler axiom is given by:

Axiom 3
For any r and m:

Scale r r m = m

In other words, unit tempo scaling is the identity.

Proof

perform (s,_,_,t) (Scale r r m)
= perform (s,_,_,r*t/r) m
= perform (s,_,_,t) m

— unfold perform

— simple arithmetic

Note that the above proofs, being used to establish axioms, all involve the
definition of perform. In contrast, we can also establish theorems whose proofs
involve only the axioms. For example, Axioms 1, 2 and 3 are all needed to prove
the following:

Theorem 1
For any r l , r2, ml, and m2:

Scale r l r2 ml :+: m2 = Scale r l r2 (ml :+: Scale r2 r l m2)

Proof

Scale rl r2 (ml :+: Scale r2 rl m2)

= Scale rl r2 ml :+: Scale rl r2 (Scale r2 rl m2)

= Scale rl r2 ml :+: Scale (rl*r2) (r2*rl) m2

= Scale rl r2 ml :+: Scale (rl*r2) (rl*r2) m2

= Scale rl r2 ml :+: m2

— by Axiom 1

— by Axiom 2

— simple arithmetic

— by Axiom 3

For example, this fact justifies the equivalence of the two phrases shown in figure 4.

https://doi.org/10.1017/S0956796800001805 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001805

476 P. Hudak et al.

Many other interesting transformations of Haskore musical objects can be stated
and proved correct using equational reasoning. We leave as an exercise for the reader
the proof of the following axioms (which include the above axioms as special cases).

Axiom 4
Scale and Transpose are additive. That is, for any r l , r2, r3, r4, p, and m:

Scale r l r2 (Scale r3 r4 m) =s Scale (rl*r3) (r2*r4) m
Trans pi (Trans p2 m) = Trans (pl+p2) m

Axiom 5
Function composition is commutative with respect to both tempo scaling and trans-
position. That is, for any r l , r2, r3, r4, pi and p2:

Scale r l r2 . Scale r3 r4 = Scale r3 r4 . Scale r l r2
Trans pi . Trans p2 = Trans p2 . Trans pi

Scale r l r2 . Trans pi = Trans pi . Scale r l r2

Axiom 6
Tempo scaling and transposition are distributive over both sequential and parallel
composition. That is, for any r l , r2, p, ml, and m2:

Scale r l r2 (ml : + : m2) = Scale r l r2 ml : + : Scale r l r2 m2
Scale r l r2 (ml :=: m2) = Scale r l r2 ml :=: Scale r l r2 m2

Trans p (ml : + : m2) = Trans p ml : + : Trans p m2
Trans p (ml : = : m2) = Trans p ml : = : Trans p m2

Axiom 7
Sequential and parallel composition are associative. That is, for any mO, ml, and m2:

mO : + : (ml : + : m2) = (mO : + : ml) : + : m2
mO : = : (ml : = : m2) = (mO :=: ml) : = : m2

Axiom 8
Parallel composition is commutative. That is, for any mO and ml:

mO :=: ml = ml :=: mO

Axiom 9
Line [] is a unit for Scale and Trans, and a zero for sequential and parallel
composition. That is, for any r l , r2, p, and m:

Scale r l r2 (Line []) = Line []
Trans p (Line []) = Line []

m : + : Line [] = m = Line [] : + : m
m : = : Line [] = m = Line [] : = : m

Axiom 10
For any 11 and 12:

Line 11 :+: Line 12 s Line (11 ++ 12)

https://doi.org/10.1017/S0956796800001805 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001805

Haskore music notation All

The proofs of these axioms are no more difficult than those given earlier, except
for the proof of the last (which covers the very first example given in this section),
whose inductive proof we have included in the Appendix.

5 Notating chords

So far we have built musical objects from 'lines' of notes, but sometimes it is better
to think in terms of chords. Of course, a chord consisting of the notes nl, n2, and
n3 (of equal duration) could be expressed in our current framework as:

Line [nl] :=: Line [n2] :=: Line [n3]

and for convenience we could define a function to turn an arbitrary list of notes
into such a chord, as follows:

> mkChord :: [Note] -> Music
> mkChord = foldr (\note mus -> Line [note] :=: mus) (Line [])

Nevertheless, it may be preferable to add a chord constructor (having the same type
as mkChord above) to the Music datatype, for the same reasons justifying the use of
the datatype to begin with. In any case, the following discussion does not rely on
this decision.

Rather than think of a chord in terms of its actual notes, it is also useful to think
of it in terms of its chord 'quality', coupled with the key it is played in and the
particular voicing used. For example, we can describe a chord as being a 'major
triad in root position, with root middle C. Several approaches have been put forth
for representing this information, and we do not intend to cover all of them here.
Rather, we will describe two basic representations, leaving other alternatives to the
skill and imagination of the reader.**

First, one could use a pitch representation, where each note is represented as its
distance from some fixed pitch. 0 is the obvious fixed pitch to use, and thus, for
example, [0 ,4 ,7] represents a major triad in root position. The first zero is in some
sense redundant, of course, but it serves to remind us that the chord is in 'normal
form'. For example, when forming and transforming chords, we may end up with a
representation such as [2 ,6 ,9] , which is not normalized; its normal form is in fact
[0 ,4 ,7] . Thus we define:

A chord is in pitch normal form if the first pitch is zero, and the subsequent pitches are
monotonically increasing.

One could also represent a chord intervalically, i.e. as a sequence of intervals. A
major triad in root position, for example, would be represented as [4 , 3 , -7] , where
the last interval 'returns' us to the 'origin'. Like the 0 in the pitch representation, the
last interval is redundant, but allows us to define another sense of normal form:

A chord is in interval normal form if the intervals are all greater than zero, except for the
last which must be equal to the negation of the sum of the others.

"* For example, Forte (1973) prescribes normal forms for chords in an atonal setting.

https://doi.org/10.1017/S0956796800001805 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001805

478 P. Hudak et al.

In either case, we can define a chord type as:
> type Chord = [Pitch]

We might ask whether there is some advantage, computationally, of using one of
these representations over the other. However, there is an invertible linear transfor-
mation between them, as defined by the following functions, and thus there is in
fact little advantage of one over the other:
> pitToInt :: Chord -> Chord

> pitToInt ch = aux ch

> where aux (nl:n2:ns) = (n2-nl) : aux (n2:ns)

> aux [n] = [head ch - n]
>

> intToPit :: Chord -> Chord

> intToPit ch = 0 : aux 0 ch

> where aux p [n] = []

> aux p (n:ns) = n' : aux n' ns where n' = p+n

We can in fact prove:
Theorem 2
pitToInt and intToPit are inverses in the following sense: for any chord chl in
pitch normal form, and ch2 in interval normal form, each of length at least two:

intToPit (pitToInt chl) = chl
pitToInt (intToPit ch2) = ch2

Another operation we may wish to perform is a test for equality on chords, which
can be done at many levels: based only on chord quality, taking inversion into
account, absolute equality, etc. Since the above normal forms guarantee a unique
representation, equality of chords with respect to chord quality and inversion is
simple: it is just the standard (overloaded) equality operator on lists. On the other
hand, to measure equality based on chord quality alone, we need to account for the
notion of an inversion.

Using the pitch representation, the inversion of a chord can be defined as follows:
> pitlnvert (pl:p2:ps) = 0 : map (subtract p2) ps ++ [12-p2]
Although we could also directly define a function to invert a chord given in interval
representation, we will simply define it in terms of functions already defined:
> intlnvert = pitToInt . pitlnvert . intToPit

We can now determine whether a chord in normal form has the same quality (but
possibly different inversion) as another chord in normal form, as follows: simply
test whether one chord is equal either to the other chord or to one of its inversions.
Since there is only a finite number of inversions, this is well defined. In Haskell:
> samePitChord chl ch2 =

> let invs = take (length chl) (iterate pitlnvert chl)

> in or (map (==ch2) invs)

>

> samelntChord chl ch2 =

> let invs = take (length chl) (iterate intlnvert chl)

> in or (map (==ch2) invs)

For example, samePitChord [0,4,7] [0,5,9] returns True (since [0,5,9] is the
pitch normal form for the second inversion of [0,4,7]).

https://doi.org/10.1017/S0956796800001805 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001805

Haskore music notation 479

6 Haskore in practice

The version of Haskore presented in this paper has been simplified for pedagogical
purposes. Indeed, since Haskore is not a new language, but rather is simply a
collection of datatypes and functions written in Haskell, there has been a tendency
for it to evolve as we have gained experience using it. This is both a blessing and
a curse. It is a blessing because we (and our users) are never constrained by past
design decisions, and can easily adapt the system to meet current needs. It is a curse
because compositions written in previous versions of Haskore will not always run
in newer ones! Nevertheless, the system seems to be stabilizing fairly rapidly, and
in this section we briefly describe some specific changes and extensions that have
become part of the new design. These changes are primarily at the level of the Music
datatype and its associated interpretation via perform; the various translators to
midi, Csound, etc. remain unaltered.

The uncomfortable treatment of a 'line' as something special led us at one point
to also include a constructor for chords, as suggested in Section 5, thus providing
two base cases for the Music datatype. However, further reflection convinced us that
making either of them special was wrong. Instead, why not make the note and rest
primitive music objects, and use the constructors (: + :) and (: = :) to build lines
and chords? The resulting datatype:

data Music = Note Pitch Dur — base case

I Rest Dur — base case

I Music :+: Music — play in sequence

I Music :=: Music — play in parallel

is more streamlined, and allows us to write simple definitions such as:

line,chord :: [Music] -> Music

line = foldr (:+:) (Rest 0)

chord = foldr (:=:) (Rest 0)

when we wish to work with the sometimes-more-convenient list representation of
notes.

The Music datatype has also been extended with annotations to allow more
expressiveness over both notes and larger phrases:

data Music = Note Pitch Dur [NoteAttribute]
I Phrase [PhraseAttribute] Music

where the attributes are defined by:

data NoteAttribute = Volume Float

I Timbre Timbre

I Envelope Envelope

data PhraseAttribute = Dyn Dynamic

I Art Articulation

I Orn Ornament

data Dynamic = Accent Int I Crescendo Int I Diminuendo Int

https://doi.org/10.1017/S0956796800001805 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001805

480 P. Hudak et al.

data Articulation = Staccato Float I Legato Float I Slurred
I Tenuto I Marcato
I Fermata I FermataDown I Breath

data Ornament = T r i l l I Mordent I InvMordent I DoubleMordent
I Turn I TrilledTurn I ShortTril l I Arpeggio

Note that many of the above annotations are borrowed from traditional common
practice notation, but nevertheless may be useful to the composer. However, they
immediately pose more difficult issues with respect to interpretation than those
we have encountered so far, and it is no longer clear whether a notion of literal
performance is valid anymore. The use of traditional terms conjures the image of
human performance, further complicating the situation. In general, articulations are
subjectively interpreted by humans, and are usually not played the same every time
even by the same musician. A legato phrase can be expressed using our notion
of musical events by overlapping slightly the beginning of a note with the end of
the preceding note, but how much overlap should be used, and should it vary with
context? A composer of computer music may in fact wish to specify these details,
thus some of the constructors listed above are provided with numeric arguments to
specify the degree to which the articulation is to be expressed.

We also note that the interpretation of many annotations is instrument dependent;
for example, a legato phrase will be interpreted quite differently when using a piano
versus, say, a violin. We have dealt with this problem by treating instruments as a
pair of functions:

type Instrument = (Pitch -> Dur -> [NoteAttribute] -> Event,
[PhraseAttribute] -> Music -> Music)

which are used to interpret individual notes and phrases. The relevant lines in the
revised definition of perform look something like:

perform x@(s,i ,k,t) m =
case m of

Note p d nas -> fs t i (p+k) d' nas : perform (s+d ' , i ,k , t) notes
where d' = d*60/t

Phrase pas m -> perform x (snd i pas m)

This 'object oriented' approach to instrument definition should permit us to prove
properties about the interpretation of note and phrase attributes for specific instru-
ments, although we have not attempted to do so. (The Event datatype, by the way,
has also been extended to express aspects of dynamics, timbre, etc. that arise from
interpretation of the extended Music datatype described earlier.)

To aid in the construction of new instruments, we have also defined default
instruments giving default interpretations to such things as legato and staccato, and
from which more complex instruments may be derived. Several such defaults have
been defined to capture certain classes of instruments such as string, woodwind,
and percussion, since members of these classes tend to be constrained by the same
physical features.

https://doi.org/10.1017/S0956796800001805 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001805

Haskore music notation 481

7 Related and future research

Many proposals have been put forth for programming languages targeted for
computer music composition (Dannenberg, 1989; Schottstaedt, 1983; Collinge, 1984;
Anderson and Kuivila, 1992; Dannenberg et al., 1992; Haus and Samett, 1992;
Cointe and Rodet, 1984; Orlarey et al, 1994), so many in fact that it would be
difficult to describe them all here. None of them (perhaps surprisingly) are based on
a pure functional language, with one exception: the recent work done by Orlarey
et al. (1994) at GRAME, which uses a pure lambda calculus approach to music
description, and bears a strong resemblance to our effort (but unfortunately has
not been implemented). There are some other related approaches based on variants
of Lisp, most notably Dannenberg's Fugue language (Dannenberg et al., 1992), in
which operators similar to ours can be found but where the emphasis is more on
instrument synthesis rather than note-oriented composition. Fugue also highlights
the utility of lazy evaluation in certain contexts, but extra effort is needed to make
this work in Lisp, whereas in a non-strict language such as Haskell it essentially
comes 'for free'. Other efforts based on Lisp utilize Lisp primarily as a convenient
vehicle for 'embedded language design', and the applicative nature of Lisp is not
exploited well (for example, in Common Music the user will find a large number of
macros which are difficult if not impossible to use in a functional style).

We are not aware of any computer music language that has been shown to
exhibit the kinds of algebraic properties that we have demonstrated for Haskore.
Indeed, none of the languages that we have investigated make a useful distinction
between music and performance, a property that we find especially attractive about
the Haskore design. On the other hand, Balaban describes an abstract notion
(apparently not yet a programming language) of 'music structure', and provides
various operators that look similar to ours (Balaban, 1992). In addition, she describes
an operation called flatten that resembles our literal interpretation perform. It would
be interesting to translate her ideas into Haskell; the match would likely be good.

Perhaps surprisingly, the work that we find most closely related to ours is not
about music at all: it is Henderson's functional geometry, a functional language
approach to generating computer graphics (Henderson, 1982). There we find a
structure that is in spirit very similar to ours: most importantly, a clear distinction
between object description and interpretation (which in this paper we have been
calling musical objects and their performance). A similar structure can be found in
Arya's functional animation work (Arya, 1994).

There are many interesting avenues to pursue with this research. On the theoretical
side, we need a deeper investigation of the algebraic structure of music, and would
like to express certain modern theories of music in Haskore. The possibility of
expressing other scale types instead of the thus far unstated assumption of standard
equal temperament is another area of investigation. On the practical side, the
potential of a graphical interface to Haskore is appealing. We are also interested in
extending the methodology to sound synthesis. Our primary goal currently, however,
is to continue using Haskore as a vehicle for interesting algorithmic composition
(for example, see Hudak and Berger, 1992).

https://doi.org/10.1017/S0956796800001805 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001805

482 P. Hudak et al.

A Proof of Axiom 10

We first state a simple lemma (proof omitted):

dur (Line (Note p d : ns)) = d + dur (Line ns)
dur (Line (Rest d : ns)) = d + dur (Line ns)

With this lemma, the proof of Axiom 4 is as follows:

pf x ® (s , _ , _ , t) (Line 11 :+: Line 12)
= pf x (Line 11) ++ pf (s+dur(Line l l) , _ , _ , t) (Line 12)

We proceed by induction on 11. The basis is when 11 = [] :

= pf x (Line []) ++ pf (s+dur(Line []) , _ , _ , t) (Line 12)
= p lay x [] ++ pf (s+dur(Line []) , _ , _ , t) (Line 12)
= G ++ pf (s+dur(Line []) , _ , _ , t) (Line 12)
= pf (s+dur(Line []) , _ , _ , t) (Line 12)
= pf (s , _ , _ , t) (Line 12)
= pf x (Line ([] ++ 12))

Thus proving the basis case. For the induction step, we have 11 = n:ns:

= pf x (Line (n:ns)) ++ pf (s+(dur (Line (n:ns)))*60/t,_,_,t) (Line 12)

= play x (n:ns) ++ pf (s+(dur (Line (n:ns)))*60/t,_,_,t) (Line 12)

At this point there are two possibilities for n. First, it could be a note; i.e. n = Note
P d:

= play x (Note p d : ns) ++ pf (s+(dur(Line(Note p d : ns)))*60/t ,_,_, t)
(Line 12)

= play x (Note p d : ns) ++ pf (s+d'+(dur(Line ns))*60/t ,_,_, t) (Line 12)
where d' = d*60/t

= ((s ,_ ,_ ,d ') : play (s+d_,_ ,_) ns) ++
pf (s+d'+(dur(Line ns))*60/ t ,_ ,_ , t) (Line 12)

= ((s ,_ ,_ ,d ') : pf (s+d_,_ ,_) (Line ns)) ++
pf (s+d'+(dur(Line ns))*60/ t ,_ ,_ , t) (Line 12)

= (s ,_ ,_ ,d ') : (pf (s+d_,_ ,_) (Line ns) ++
pf (s+d'+(dur(Line ns))*60/ t ,_ ,_ , t) (Line 12))

= (s ,_ ,_ ,d ') : pf (s+d_,_ ,_) (Line ns : + : Line 12)
= (s ,_ ,_ ,d ') : pf (s+d',_,_,_) (Line (ns++12)) — induction hypothesis
= (s ,_ ,_ ,d ') : play (s+d_,_ ,_) (ns++12)
= play (s,_,_,_) (Note p d : (ns++12))
= play (s,_,_,_) (11++12)
= pf (s ,_ ,_ ,_ ,) (Line (11++12)

Thus completing the proof for the induction step when n is a note. The proof for
the case when n = Rest d is almost identical to the above, and is thus omitted.

References

Anderson, D. P. and Kuivila, R. (1992) Formula: A programming language for expressive
computer music. In D. Baggi, editor, Computer Generated Music. IEEE Computer Society
Press.

Arya, K. (1994) A functional animation starter-kit. J. Functional Programming 4(1):1—18.

https://doi.org/10.1017/S0956796800001805 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001805

Haskore music notation 483

Balaban, M. (1992) Music structures: Interleaving the temporal and hierarchical aspects of
music. In M. Balaban, K. Ebcioglu and O. Laske, editors, Understanding Music With AI,
pp. 110-139. AAAI Press.

Collinge, D. (1984) Moxie: A languge for computer music performance. Proc. Int. Computer

Music Conference, pp. 217-220. Computer Music Association.

Cointe, P. and Rodet, X. (1984) Formes: an object and time oriented system for music
composition and synthesis. Proc. ACM Symposium on Lisp and Functional Programmming,
pp. 85-95. ACM.

Dannenberg, R. B. (1989) The Canon score language. Computer Music J., 13(l):47-56.

Dannenberg, R. B., Fraley, C. L. and Velikonja, P. (1992) A functional language for sound
synthesis with behavioral abstraction and lazy evaluation. In D. Baggi, editor, Computer
Generated Music. IEEE Computer Society Press.

Forte, A. (1973) The Structure of Atonal Music. Yale University Press.

Hudak, P. and Berger, J. (1995) A model of performance, interaction, and improvisation.

Proc. Int. Computer Music Conference. International Computer Music Association.

Henderson, P. (1982) Functional geometry. Proc. ACM Symposium on Lisp and Functional

Programmming. ACM.

Hudak, P. and Fasel, J. (1992) A gentle introduction to Haskell. ACM SIGPLAN Notices
27(5) May.

Hindemith, P. (1949) Elementary Training for Musicians. 2nd ed. Associated Music Publishers.
Hudak, P., Peyton Jones, S. and Wadler, P. (editors) (1992) Report on the Programming Lan-

guage Haskell, A Non-strict Purely Functional Language (Version 1.2). ACM SIGPLAN

Notices 27(5) May.

Haus, G. and Sametti, A. (1992) Scoresynth: A system for the synthesis of music scores based
on petri nets and a music algebra. In D. Baggi, editor, Computer Generated Music. IEEE
Computer Society Press.

Midi 1.0 detailed specification: Document version 4.1.1, February 1990.

Jaffe, D. and Boynton, L. (1991) An overview of the sound and music kits for the NeXT

computer. In S. T. Pope, editor, The Well-Tempered Object, pp. 107-118. MIT Press.

Orlarey, O., Fober, D., Letz, S. and Bilton, M. (1994) Lambda calculus and music calculi.

Proc. Int. Computer Music Conference. International Computer Music Association.

Schottstaedt, B. (1983) Pla: A composer's idea of a language. Computer Music J., 7(1) :11-20.

Vercoe, B. (1986) Csound: A manual for the audio processing system and supporting
programs. Technical report, MIT Media Lab.

https://doi.org/10.1017/S0956796800001805 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001805

