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1. Introduction. A graph is said to be d-polyhedral provided it is isomorphic 
with the graph formed by the vertices and edges of a ^-dimensional bounded 
(convex) polyhedron (d-polyhedron). A k-tree is a connected acyclic graph in 
which each vertex is of valence <&. The principal result of this paper is the 
following, which solves a problem of Grunbaum and Motzkin (7): 

THEOREM 1. Every 3-polyhedral graph G can be covered by a 3-tree T; that is, 
G admits a subgraph T such that T is a Z-tree and every vertex of G is a vertex of T. 

We shall also prove: 

THEOREM 2. For every k, there exists a ^-polyhedral graph that cannot be 
covered by any k-tree. 

Theorem 1 has a number of interesting consequences, some of which are 
summarized in the following: 

THEOREM 3. Let G be a 3-polyhedral graph with n vertices. Then: 
(i) The vertices of G can be covered by (n + 2)/3 or fewer disjoint simple 

paths. 
(ii) There is a simple path in G with at least (2 log2 n) — 5 vertices. 

(iii) There is a circuit in G with at least 2 \ / ( (2 log2 n) — 5) vertices. 
(iv) Between any two vertices of G, there is a path with at least V( (2 log2 n) — 5) 

vertices. 

2. Proof of Theorem 1. We first observe that a graph is 3-polyhedral if 
and only if it is planar and 3-connected (10; 8; 6). The theorem will be proved 
for a more general class of graphs called circuit graphs, which will now be 
defined. 

Let G be a 3-polyhedral graph that is embedded in the plane II. Let J be a 
simple circuit of G, and let G (J) denote the graph consisting of J together 
with all vertices and edges of G that are interior to the region of the plane 
bounded by J. Then G (J) is called a circuit graph and the edges of G (J) that 
are not edges of J are called interior edges. A simple circuit of G (J) bounding a 
connected component of II ~ G (J) is called a face of G (J). 

A face of G (J) is said to separate G (J) if there are vertices x and y of F that 
separate G (J) into two components each of which contains an interior edge. 
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We now proceed to prove the theorem for circuit graphs. The proof is by 
induction on the number of interior edges. The case in which there are no 
interior edges is obvious. Suppose the theorem is true for all circuit graphs 
with fewer than n interior edges, and consider a circuit graph G (J) having n 
interior edges. There are two cases to be treated. 

Case I. There is a vertex x of J such that x is incident to an interior edge 
and G (J) is not separated by any face of G (J) incident to x. 

Let the edges of G (J) incident to x be a0, . . . , ami in cyclic order, with a0 and 
am edges of / . Let at have end points x and xt. Let Ft be the face common to 
at and ai+i and let Tt be the path from xt to xi+i along Ft which misses x. Let 
y be the first vertex of / encountered upon traversing Tm_i from xm_i to xm 

and let r" be the portion of Tm_i that connects xm_i and y. Let P be the path 
ai U I \ U . . . U rm_2 U T', and let P ' be the path along J from x to y that 
misses am. (See Figure 1.) 

We now show that J* = P U P' is a simple circuit. Since Yt is a simple 
path, we see that if P intersects itself, then there are paths Yt and Tj that 
intersect at some vertex z. We may assume that it is not the case that V t = I^+i 
and z is the common end point. The faces Fi and Fj meet at both x and z. Let 
v be a vertex between the first and second occurrence of z on P. Then v is a 
vertex of some face that is incident to x; thus two appropriate paths from xtoz 
along Fi and Fj can be chosen so that v is interior to the circuit formed by 
these paths. But this implies that v can be separated from all vertices outside 
this circuit by removing x and z, which contradicts the 3-connectedness of G. 
Thus P has no self-intersections and it is clear that P intersects P' only at their 
common end points, since no face incident to x separates G(J). It then follows 
that J* is a simple circuit. 

The circuit graph G (J*) has fewer interior edges than G (J). By the inductive 
hypothesis, it can therefore be covered by a 3-tree T*. The only vertices of 
G (J) not in G (J*) are those on the path from x to y along / that misses x0. 
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Since the valence of x in T is at most two, we can construct a 3-tree T that 
covers G (J) by adding a portion of this path to T*. 

Case II. Each vertex of / that is incident to an interior edge is also incident 
to a face that separates G (J). 

For each face F that separates G (J), there is a path T(F) that is a subgraph 
of J and whose only vertices in common with F are its end points. Let A be the 
set of all T(F) such that F separates G (J). For T(Fi), T(F2) in A, write 
T(Fi) < T(F2) provided T(Fi) is a subgraph of T(F2). Let T(F) be a minimal 
element of A, and let its end points be x and y. 

We now show that (x, 3/) is an edge of G(J). Let Pi and P 2 be the two paths 
along F from x to y. Assume that Pi is interior to the circuit P 2 ^J r ( P ) . If 
there is a vertex on P i other than x or 3% then this vertex can be separated from 
J by removing x and y, for no internal vertex of T(F) can be incident to an 
interior edge of G (J). This contradicts the 3-connectedness of G. Thus P i is 
actually the edge (x, y). 

Let H be the graph obtained from G (J) by removing the edge (x, 3;). We 
shall show that if is a circuit graph. 

Let K be the graph consisting of H together with a vertex w outside / and 
the edges (w, z) for each vertex z in J. Clearly K is planar; so to show that H 
is a circuit graph it suffices to show that K is 3-connected and therefore 3-
polyhedral. 

Suppose that K can be separated by removing two vertices. First we note 
that no subgraph of G (J) can be separated from J by removing two vertices, 
for this would contradict the 3-connectedness of G. The vertex w cannot be 
separated from / by removing two vertices, because J has at least three vertices. 
Thus no subgraph of K can be separated from / , and so each component must 
contain at least one vertex of J. Apparently the two vertices that separate K 
into these components are vertices of /s ince it requires two vertices to separate 
J. But these components are connected by edges incident to w. 

By the induction hypothesis H can be covered by a 3-tree, and this same 
tree will also cover G (J). Observing that a 3-polyhedral graph is a circuit 
graph, we have proved Theorem 1. 

3. Proof of Theorem 2. 

LEMMA. A k-tree T with n vertices can be covered by n(k — l)/k or fewer 
disjoint simple paths. 

Proof. The proof is by induction on the number of branch points (vertices 
of valence > 3 ) of T. The case where T has only one branch point is easily 
verified. 

Suppose that T has m branch points and that the lemma is true for every 
&-tree with fewer than m branch points. Let x be an arbitrary vertex of T. 
For any vertex y of T, let d{x, y) be the number of vertices on the path from 
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x to y. Choose a branch point y so that d(x, y) is maximal. Let T' be the largest 
subtree of T that contains every branch point other than y. The remaining 
vertices belong to a tree T " which can be covered by / — 1 disjoint simple 
paths, where / is the valence of y. If T has n vertices and T' has n\ vertices, 
then T can be covered by 

(ni k — ni + kl — k)/k 

or fewer disjoint simple paths. But 

n(n — l)/k > (ni k — ni + kl — l)/k > (ni k — ni + kl ~ k)/k. 

To prove Theorem 2, we shall construct a 5-polytope with n vertices that 
cannot be covered by n(k — l)/k or fewer disjoint simple paths. The construc­
tion involves the use of cyclic polytopes, and of the following theorem of 
Gale (5): 

If a cyclic d-polytope P has v vertices, then the number of (d — 1)-dimensional 
faces of P is equal to 

/ P I ni \ 

21 . 1 when d = 2u — 1. 
\u - 1/ 

Let P be a cyclic 5-polytope with v vertices, and let Pr be the polytope 
obtained by adding pyramidal caps to each 4-dimensional face of P. We call 
the vertices added in this way new vertices and the other vertices of P' old 
vertices. 

Between any two new vertices on a simple path on P r , there is an old vertex. 
Thus each simple path has at most one more new vertex than old. If n is the 
number of new vertices, then at least n — v disjoint simple paths are required 
to cover the vertices of P'. Then m = n + v and n = v2 — 7v + 12; hence at 
least m — 2\/(m — 3) — 6 disjoint simple paths are required to cover P. 
To complete the proof, we simply choose v large enough so that 

m — 2y/(m — 3) — 6 < m(k — l)/k. 

4. Consequences of Theorem 1. The path number, m(G), of a graph G is 
the number of simple disjoint paths necessary to cover the vertices of G. Let 

m(n) = max {m(G)\ G is 3-polyhedral and G has n vertices}. 

Brown (1) has shown that m(n) > (n — 10)/3. We shall show in Theorem 3 
that m(n) < (n + 2) /3 . 

The path length p(G) of a graph G is the maximum number of vertices con­
tained in a simple path in G. Let 

p(n) = min{^(G): G is 3-polyhedral and G has n vertices}. 

Moon and Moser (9) have shown that 

(log2 ^/log2 log2 n) - 1 < p(n) < 9((n - 2)/2) I o g 2 / l o g 3 - 1. 

We shall show that (2 log2 ri) — 5 < p(n). 
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Proof of Theorem 3. An argument similar to that of the lemma for Theorem 2 
will show that a 3-tree can be covered by (n + 2)/3 or fewer disjoint simple 
paths, and this implies (i). 

Let T be a 3-tree with n vertices that covers G. Let P be a longest path in T, 
let its end points be y and z, and let I be the number of vertices in P. Choose a 
vertex x of P such that min(d(x, y), d(x, z)) is maximal, where d(x, y) is the 
number of edges on the path from x to y. 

The number of vertices of T of distance one from x is < 3 . The number of 
distance two is < 3 X 2. The number of distance i is < 3 X 2i~1. Thus 

[O+D/2] 

n < 1 + 3 £ 2'-1 

where [ ] denotes the least integer function. This shows that 

(2 log2 n) - 5 < I. 

To prove (iii), we use the following theorem by Dirac (3): 

If G is a 2-connected graph with a simple path of length /, then G has a simple 
circuit of length at least 2\/l. 

To prove (iv), we use another theorem by Dirac (4): 

If A and B are two disjoint sets of vertices in a 2-connected graph, then there 
are two independent simple paths from A to B. 

Let C be a simple circuit of G with at least 2V((2 log n) — 5) vertices. Let 
A be the set of vertices of C, let x and y be two arbitrary vertices of G, and let 
B be the set of vertices in {x, y] that are not vertices of C. By using Dirac's 
theorem, it is now easy to construct a simple path connecting x and y that 
has at least half as many vertices as C. 

Note that if G is a 3-polyhedral graph in which each vertex is of valence 3, the 
bounds in (ii), (iii), and (iv) can be replaced by (2 log2 n) — 6, (3 log2 n) — 10, 
and (log2 n) — 3, respectively. 

Proof. Since G is 3-connected, there are independent paths Pi , P2 , and P 3 

connecting any two vertices x and y. An argument similar to that of (3, 
Theorem 5) shows that each Pt must have at least (log2 ft) — 3 vertices. Thus 
any two of these paths form the required circuit for (ii). If we remove an edge 
of P i incident to x and an edge of P 2 incident to y, then the remaining paths 
together with P 3 form the required path for (iii). The proof of (iv) is similar 
to the proof where G is not necessarily simple. 

5. Remarks. 
1. I t should be possible to find smaller bounds for the path number of 

3-valent 3-polyhedral graphs. Some results have been obtained by Brown (2), 
but so far no good upper bounds have been found. 
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2. Theorem l does not hold for unbounded polyhedra. For each k, one can 
construct a 3-polyhedron P whose graph is a &-tree. (By the graph of P , we 
mean the graph consisting of vertices and bounded edges of P.) 

3. What is the largest n such that every 3-valent 3-polyhedral graph can 
be covered by a disjoint collection of simple paths of length >n? 

4. How does the number of disjoint simple circuits necessary to cover a 
3-polyhedral graph depend on the number of vertices of the graph? 

5. The following is an unpublished result of Grunbaum: 

For every k there is a ^-polyhedral graph that cannot be covered by a k-tree. 

Proof. Let Giv) be the poly tope obtained by adding pyramidal caps to each 
face of a cyclic 4-polytope with v vertices. In G(y) there are v(v — 3)/2 new 
vertices. Thus if T is a fe-tree that covers G(v), then T has at least v(v — 3)/2 
edges incident to the new vertices. But the other end points of these edges are 
old vertices. Therefore we must have kv > v(v — 3)/2, and v < 2k + 3. 
Taking v greater than this yields a G(v) not coverable by any &-tree. 
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