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Abstract

Powerful formalisms for abstract argumentation have been proposed, among them abstract di-
alectical frameworks (ADFs) that allow for a succinct and flexible specification of the relationship
between arguments and the GRAPPA framework which allows argumentation scenarios to be
represented as arbitrary edge-labeled graphs. The complexity of ADFs and GRAPPA is located
beyond NP and ranges up to the third level of the polynomial hierarchy. The combined com-
plexity of Answer Set Programming (ASP) exactly matches this complexity when programs are
restricted to predicates of bounded arity. In this paper, we exploit this coincidence and present
novel efficient translations from ADFs and GRAPPA to ASP. More specifically, we provide re-
ductions for the five main ADF semantics of admissible, complete, preferred, grounded, and
stable interpretations, and exemplify how these reductions need to be adapted for GRAPPA for
the admissible, complete, and preferred semantics.

KEYWORDS: ADFs, GRAPPA, encodings, ASP

1 Introduction

Argumentation is an active area of research with applications in legal reasoning (Bench-

Capon and Dunne 2005), decision making (Amgoud and Prade 2009), e-governance

(Cartwright and Atkinson 2009), and multi-agent systems (McBurney et al . 2012).

Dung’s argumentation frameworks (AFs) (Dung 1995) are widely used in argumenta-

tion. They focus entirely on conflict resolution among arguments, treating the latter as

abstract items without logical structure. Although AFs are quite popular, various gen-

eralizations aiming for easier and more natural representations have been proposed; see

Brewka et al . (2014) for an overview.
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We focus on two such generalizations, namely ADFs (Brewka and Woltran 2010;

Brewka et al . 2013) and GRAPPA (Brewka and Woltran 2014), which are expressive

enough to capture many of the other available frameworks; see also the recent handbook

article Brewka et al . (2018) which surveys both formalisms. Reasoning in ADFs spans

the first three levels of the polynomial hierarchy (Strass and Wallner 2015). These results

carry over to GRAPPA (Brewka and Woltran 2014). ADFs, in particular, have received

increasing attention recently, see for example, Gaggl and Strass (2014); Booth (2015) in-

cluding also practical applications in fields such as legal reasoning (Al-Abdulkarim et al .

2016; Atkinson and Bench-Capon 2018), text exploration (Cabrio and Villata 2016), or

discourse analysis (Neugebauer 2018).

Two approaches to implement ADF reasoning have been proposed in the literature.

QADF (Diller et al . 2014, 2015) encodes problems as quantified Boolean formulas (QBFs)

such that a single call of a QBF solver delivers the result. The DIAMOND family of sys-

tems (Ellmauthaler and Strass 2014, 2016; Strass and Ellmauthaler 2017), on the other

hand, employ Answer Set Programming (ASP). Since the DIAMOND systems rely on static

encodings, that is, the encoding does not change for different framework instances, this

approach is limited by the data complexity of ASP (which only reaches the second level

of the polynomial hierarchy (Eiter and Gottlob 1995; Eiter et al . 1997)). Therefore, the

preferred semantics in particular (which comprises the hardest problems for ADFs and

GRAPPA) needs a more complicated treatment involving two consecutive calls to ASP

solvers with a possibly exponential blowup for the input of the second call. A GRAPPA

interface has been added to DIAMOND (Berthold 2016), but we are not aware of any systems

for GRAPPA not employing a translation to ADFs as an intermediate step.

In this paper, we introduce a new method for implementing reasoning tasks related to

both ADFs and GRAPPA such that even the hardest among the problems are treated

with a single call to an ASP solver (and avoiding any exponential blowup in data or

program size). The reason for choosing ASP is that the rich syntax of GRAPPA is

captured much more easily by ASP than by other formalisms like QBFs. Our approach

makes use of the fact that the combined complexity of ASP for programs with predicates of

bounded arity (Eiter et al . 2007) exactly matches the complexity of ADFs and GRAPPA.

This approach is called dynamic, because the encodings are generated individually for

every instance. This allows to generate rules of arbitrary length that can take care of NP-

hard subtasks themselves. This particular method has been advocated in Bichler et al .

(2016b) in combination with tools that decompose such long rules whenever possible in

order to avoid huge groundings (Bichler et al . 2016a). To the best of our knowledge, our

work is the first to apply this technique in the field of argumentation.

More specifically, we provide encodings for the admissible, complete, preferred,

grounded, and stable semantics for ADFs and discuss how such encodings can be adapted

to GRAPPA. Depending on the semantics (and their complexity) the encodings yield nor-

mal or, in the case of preferred semantics, disjunctive programs. We specify the encodings

in a modular way, which makes our approach amenable for extensions to other seman-

tics. We further provide some details about the resulting system YADF (“Y” standing for

dYnamic) which is publicly available at https://www.dbai.tuwien.ac.at/proj/adf/

yadf/. Finally, we give an overview of recent empirical evaluations, including our own,

comparing the performance of YADF with the other main existing ADF systems.
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This paper is an extended version of Brewka et al . (2017), which did not contain the en-

codings for the grounded and stable semantics. In addition, we provide some prototypical

proofs for the correctness of the encodings. We also update the discussion on empirical

evaluations. The paper is based on (Section 3.2 of) the second author’s thesis (Diller

2019).

2 Background

ADFs. An ADF is a directed graph whose nodes represent statements. The links rep-

resent dependencies: the acceptance status of a node s only depends on the acceptance

status of its parents (denoted par(s); often also with a subscript as in parD(s) to make

the reference to the ADF D explicit), that is, the nodes with a direct link to s. In ad-

dition, each node s has an associated acceptance condition Cs specifying the conditions

under which s is acceptable.

It is convenient to represent the acceptance conditions as a collection C = {ϕs}s∈S of

propositional formulas. This leads to the logical representation of ADFs we will use in

this paper where an ADF D is a pair (S,C) with the set of links L implicitly given as

(a, b) ∈ L iff a appears in ϕb.

Semantics assign to ADFs a collection of (three-valued) interpretations, that is, map-

pings of the statements to truth values {1, 0,u}, denoting true, false, and undecided,

respectively. The three truth values are partially ordered by ≤i according to their infor-

mation content: we have u <i 1 and u <i 0 and no other pair in <i. The information

ordering ≤i extends in a straightforward way to interpretations v1, v2 over S in that

v1 ≤i v2 iff v1(s) ≤i v2(s) for all s ∈ S.

An interpretation v is two-valued if all statements are mapped to 1 or 0. For inter-

pretations v and w, we say that w extends v iff v ≤i w. We denote by [v]2 the set of all

completions of v, that is, two-valued interpretations that extend v.

For an ADF D = (S,C), s ∈ S and an interpretation v, the characteristic function

ΓD(v) = v′ is given by

v′(s) =

⎧⎪⎪⎨
⎪⎪⎩
1 if w(ϕs) = 1 for all w ∈ [v]2

0 if w(ϕs) = 0 for all w ∈ [v]2

u otherwise.

That is, the operator returns an interpretation mapping a statement s to 1 (resp. 0) iff

all two-valued interpretations extending v evaluate ϕs to true (resp. false). Intuitively,

ΓD checks which truth values can be justified based on the information in v and the

acceptance conditions. Note that ΓD is defined on three-valued interpretations, while we

evaluate acceptance conditions under their two-valued completions.

Given an ADF D = (S, {ϕs}s∈S), an interpretation v is admissible w.r.t. D if v ≤i
ΓD(v); it is complete w.r.t. D if v = ΓD(v); it is preferred w.r.t. D if v is maximal

admissible w.r.t. ≤i. An interpretation v is the (unique) grounded interpretation w.r.t.

D if v is complete and there is no other complete interpretation w for which w <i v.

Turning to semantics returning two-valued interpretations, a two-valued interpretation

v is a model of D if v(s) = v(ϕs) for every s ∈ S. The definition of the stable semantics for
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Table 1. All admissible interpretations of the ADF from Figure 1. The rightmost

column shows further semantics the interpretations belong to

a b c

v1 u u u adm
v2 u 0 u adm
v3 u 1 u adm
v4 1 1 u adm
v5 u 1 1 adm
v6 1 u u adm, com, grd
v7 1 0 u adm, com, prf
v8 1 1 1 adm, com, prf, mod

a

b b

b

b

c

c b

Fig. 1. ADF example.

ADFs is inspired by the stable semantics for logic programs, its purpose being to disallow

cyclic support within a model. First of all, in order to be a stable model of D, v needs

to be a model of D. Secondly, Ev = {s ∈ S | v(s) = 1} must equal the statements set to

true in the grounded interpretation of the reduced ADF Dv = (Ev, {ϕvs}s∈Ev
), where for

s ∈ Ev we set ϕvs := ϕs[b/⊥ : v(b) = 0]. If v �Ev
is the interpretation v projected on Ev,

that is, v �Ev
(s) = v(s) for s ∈ Ev and undefined otherwise, then the latter amounts to

the fact that v �Ev
be the grounded interpretation of Dv.

As shown in Brewka et al . (2013), these semantics generalize the corresponding no-

tions defined for AFs. For σ ∈ {adm, com, prf, grd,mod, stb}, σ(D) denotes the set of all

admissible (resp. complete, preferred, grounded, model, stable) interpretations w.r.t. D.

Example 1

In Figure 1, we see an example ADF D = ({a, b, c}, C) with the acceptance conditions

C given by ϕa = b ∨ ¬b, ϕb = b, and ϕc = c → b. The acceptance conditions are shown

below the statements in the figure.

The admissible interpretations of D are shown in Table 1. Moreover, the rightmost

column shows further semantics the interpretations belong to. For instance, the inter-

pretation v8 mapping each statement to true is admissible, complete, and preferred in

D and a model of D. The only model of D is v8, with the reduct of this model being

Dv8 = D. The grounded interpretation of D is v6, which is different from v8. Therefore,

v8 is not a stable model. In fact, D does not have a stable model. �

GRAPPA. ADFs are particularly useful as target formalism of translations from graph-

based approaches. This raises the question whether an ADF style semantics can be di-

rectly defined for arbitrary labeled graphs, thus circumventing the need for any transla-

tions. GRAPPA (Brewka and Woltran 2014) fulfills exactly that goal.
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GRAPPA allows argumentation scenarios to be defined using arbitrary directed edge-

labeled graphs. The nodes in S represent statements, as before. Labels of links, which may

be chosen as needed, describe the type of relationship between a node and its parents. As

for ADFs, each node has its own acceptance condition, and the semantics of a graph is

defined in terms of three-valued interpretations. The major difference is that acceptance

conditions are no longer specified in terms of the acceptance status of the parents of a

node, but on the labels of its active incoming links, where a link is active if its source

node is true and a label is active if it is the label of an active link. More precisely, since

it can make an important difference whether a specific label appears once or more often

on active links, the acceptance condition depends on the multiset of active labels of a

node, that is, an acceptance condition is a function of the form (L→ N) → {1, 0}, where
L is the set of all labels.

GRAPPA acceptance functions are specified using acceptance patterns over a set of

labels L defined as follows:

• A term over L is of the form #(l), #t(l) (with l ∈ L), or min, mint, max, maxt,

sum, sumt, count, countt.

• A basic acceptance pattern (over L) is of the form a1t1 + · · ·+ antnRa, where the

ti are terms over L, the ais and a are integers and R ∈ {<,≤,=, 	=,≥, >}.
• An acceptance pattern (over L) is a basic acceptance pattern or a Boolean combi-

nation of acceptance patterns.

A GRAPPA instance is a tuple G = (S,E,L, λ, α) where S is a set of statements, E a

set of edges, L a set of labels, λ an assignment of labels to edges, and α an assignment

of acceptance patterns over L to nodes.

For a multiset of labels m : L→ N and s ∈ S, the value function valms is:

valms (#l) = m(l)

valms (#tl) = |{(e, s) ∈ E | λ((e, s)) = l}|
valms (min) = min{l ∈ L | m(l) > 0}
valms (mint) = min{λ((e, s)) | (e, s) ∈ E}
valms (max) = max{l ∈ L | m(l) > 0}
valms (maxt) = max{λ((e, s)) | (e, s) ∈ E}
valms (sum) =

∑
l∈Lm(l)

valms (sumt) =
∑

(e,s)∈E λ((e, s))

valms (count) = |{l | m(l) > 0}|
valms (countt) = |{λ((e, s)) | (e, s) ∈ E}|

min(t),max(t), sum(t) are undefined in case of non-numerical labels. For ∅, they yield the

neutral element of the corresponding operation, that is, valms (sum) = valms (sumt) = 0,

valms (min) = valms (mint) = ∞, and valms (max) = valms (maxt) = −∞. Let m and s be

as before. For a basic acceptance pattern α = a1t1 + · · · + antnR we define α(m, s) = 1

if
∑n
i=1

(
ai val

m
s (ti)

)
R a, while α(m, s) = 0 otherwise. The extension to the evaluation

of Boolean combinations is as usual.

The characteristic function ΓG for a GRAPPA instance G, as is the case for the char-

acteristic function for ADFs, takes a three-valued interpretation v and produces a new
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one v′. Again v′ is constructed by considering all two-valued completions w of v, picking

a classical truth value only if all extensions produce the same result. But this time, an

intermediate step is needed to determine the truth value of a node s: one first has to

determine the multiset of active labels of s generated by w. The acceptance function then

takes this multiset as argument and produces the truth value induced by w.

Let v be a two-valued interpretation. The multiset of active labels of s ∈ S in G under

v, mv
s , is defined as

mv
s(l) = |{(p, s) ∈ E | v(p) = 1, λ((p, s)) = l}|,

for each l ∈ L. Then the characteristic function ΓG(v) = v′ for a GRAPPA instance G is

given by

v′(s) =

⎧⎪⎪⎨
⎪⎪⎩
1 if α(s)(mw

s , s) = 1 for all w ∈ [v]2

0 if α(s)(mw
s , s) = 0 for all w ∈ [v]2

u otherwise.

With this new characteristic function, the semantics of a graph G can be defined as for

ADFs, that is, an interpretation v is admissible w.r.t. G if v ≤i ΓG(v); it is complete

w.r.t. G if v = ΓG(v); it is preferred w.r.t. G if v is maximal admissible w.r.t. ≤i. As
before, σ(G) (σ ∈ {adm, com, prf}) denotes the set of all respective interpretations.

Example 2

Consider the GRAPPA instance G with S = {a, b, c}, E = {(a, b), (b, b), (c, b), (b, c)}, L =

{+, -}, all edges being labeled with + except (b, b) with -, and the acceptance condition

#t(+)−#(+) = 0∧#(-) = 0 (i.e. all +-links must be active and no --link is active) for each

statement. The following interpretations are admissible w.r.t.G: v1 = {a→u, b→u, c→u},
v2 = {a→u, b→0, c→0}, v3 = {a→1, b→u, c→u}, v4 = {a→1, b→0, c→0}. Moreover,

com(G) = {v3, v4} and prf(G) = {v4}. �

ASP. In ASP (Leone et al . 2006; Brewka et al . 2011), problems are described using logic

programs, which are sets of rules of the form

a1 ∨ . . . ∨ an:-b1, . . . , bk, not bk+1, . . . , not bm.

Here each ai (1 ≤ i ≤ n) and bj (1 ≤ j ≤ m) is a ground atom. The symbol not stands

for default negation. We call a rule a fact if n = 0. An (input) database is a set of facts. A

rule r is normal if n ≤ 1 and a constraint if n = 0. B(r) denotes the body of a rule and

H(r) the head. A program is a finite set of disjunctive rules. If each rule in a program is

normal we call the program normal, otherwise the program is disjunctive.

Each logic program π induces a collection of so-called answer sets, denoted as AS(π),

which are distinguished models of the program determined by the answer set semantics.

The answer sets of a program π are the subset minimal models satisfying the Gelfond–

Lifschitz reduct πI of π; see Gelfond and Lifschitz (1991) for details.

For non-ground programs, which we use here, rules with variables are viewed as short-

hand for the set of their ground instances. We denote by Gr(π) the ground instance

of a program π. Modern ASP solvers offer further additional language features such as

built-in arithmetics and aggregates which we make use of in our encodings (we refer to

Gebser et al . (2015) for an explanation).
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Table 2. Complexity results for ADFs, GRAPPA, and ASP

ADF and GRAPPA ASP-bounded arity

adm com prf grd stb normal disjunctive

cred ΣP
2 ΣP

2 ΣP
2 coNP ΣP

2 ΣP
2 ΣP

3

skept trivial coNP ΠP
3 coNP ΠP

2 ΠP
2 ΠP

3

Complexity. The complexity results that are central for our work are given in Table 2.

Here credulous reasoning means deciding whether a statement (resp. atom) is true in

at least one interpretation (resp. answer set) of the respective type, skeptical reasoning

whether it is true in all such interpretations (resp. answer sets).

The results for ADFs (Strass and Wallner 2015) carry over to GRAPPA, as argued

in Brewka and Woltran (2014). The results for normal and disjunctive ASP programs

we use here refer to the combined complexity for non-ground programs of bounded

predicate arity (i.e. there exists a constant n ∈ N such that the arity of every predicate

occurring in the program is smaller than n) and are due to Eiter et al . (2007). We recall

that the combined complexity of arbitrary programs is much higher (NEXP-hard, see

e.g. Eiter et al . (1997)), while data complexity (i.e. the ASP program is assumed to

be static and only the database of the program is changing) is one level lower in the

polynomial hierarchy (follows from Eiter and Gottlob (1995)).

These results indicate that there exist efficient translations to non-ground normal pro-

grams of bounded arity for credulous reasoning w.r.t. the admissible, complete, preferred,

and stable semantics; skeptical reasoning for the stable semantics can be reduced to skep-

tical reasoning for normal programs. Skeptical preferred reasoning needs to be treated

with disjunctive programs. We provide such reductions in what follows.

3 ADF encodings

We construct ASP encodings πσ for the semantics σ ∈ {adm, com, prf, grd, stb} such that

there is a correspondence between the σ interpretations of an ADF D = (S,C) and the

answer sets of πσ(D) (the encoding function πσ applied to D). More precisely, we will

use atoms asg(s, x) with s ∈ S, x ∈ {1, 0,u} to represent ADF interpretations in our

encodings. An interpretation v of D and a set of ground atoms (interpretation of an ASP

program) I correspond to each other, v ∼= I, whenever for every s ∈ S, v(s) = x iff

asg(s, x) ∈ I. We overload ∼= to get the correspondence between sets of interpretations

and sets of answer sets we aim for.

Definition 1

Given a set of (ADF) interpretations V and a collection of sets of ground atoms (ASP

interpretations) I , we say that V and I correspond, V ∼= I , if

1. for every v ∈ V , there is an I ∈ I s.t. v ∼= I;

2. for every I ∈ I , there is a v ∈ V s.t. v ∼= I.

Having encodings πσ for σ ∈ {adm, com, prf, grd, stb} for which σ(D) ∼= AS(πσ(D))

for any ADF D allows to enumerate the σ interpretations of an ADF D by reading the
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ADF interpretations that correspond (via ∼=) to each I ∈ AS(πσ(D)) off the predicates

asg(s, x) ∈ I (s ∈ S, x ∈ {1, 0,u}). Results for credulous and skeptical reasoning for each

of the semantics are obtained via the homonymous ASP reasoning tasks applied on our

encodings.

3.1 Encoding for the admissible semantics

In the course of presenting our dynamic ASP encodings for the admissible semantics,

we introduce several elements we will make use of throughout Section 3. Among these

is that all encodings will assume a simple set of facts indicating the statements of the

input ADF D = (S, {ϕS}s∈S):
πarg(D) := {arg(s). | s ∈ S}.

Also, several of the encodings will need facts for encoding the possible truth values that

can be assigned to a statement s by a completion of an interpretation mapping s to u,

1, and 0, respectively:

πlt := {lt(u, 0). lt(u, 1). lt(1, 1). lt(0, 0).}.
Here, for instance, the atoms lt(u, 0) and lt(u, 1) together express that if an ADF inter-

pretation maps a statement to the truth value u then a completion (of the interpretation

in question) can map the same statement to the truth values 0 or 1. Note, in particular,

that lt(u,u) 	∈ πlt since completions can map a statement only to the truth value 0 or 1.

All of our encodings, including the one for the admissible semantics, follow the guess

& check methodology that is at the heart of the ASP paradigm (Janhunen and Niemelä

2016). Here, parts of a program delineate candidates for a solution to a problem. These

are often referred to as “guesses”. Other parts of the program, the “constraints”, then

check whether the guessed candidates are indeed solutions. In the case of the encodings

for ADFs, the guessing part of the programs outline possible assignments of truth values

to the statements, that is, an ADF interpretation. For the three-valued semantics, as the

admissible semantics, the rules are as follows:

πguess := {asg(S, 0):-not asg(S, 1),not asg(S,u), arg(S).
asg(S, 1):-not asg(S,u),not asg(S, 0), arg(S).

asg(S,u):-not asg(S, 0),not asg(S, 1), arg(S).}.
We follow Bichler et al . (2016b) in encoding NP-checks in large non-ground rules

having bodies with predicates of bounded arity. In particular, in all our encodings, we

will need rules encoding the semantic evaluation of propositional formulas, for example,

the evaluation of the acceptance conditions by completions of an interpretation. Given

a propositional formula φ, for this, we introduce the function Ω. For assignments of

truth values (1 and 0) to the propositional variables in φ, Ω(φ) gives us a set of atoms

corresponding to the propagation of the truth values to the subformulas of φ in accordance

with the semantics of classical propositional logic. The atoms make use of ASP variables

Vψ where ψ is a subformula of φ. The variables Vp, where p is a propositional variable

occurring in φ, can be used by other parts of ASP rules employing the atoms in Ω(φ) for

purposes of assigning intended truth values to the propositional variables in φ.
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For the definition of the atoms Ω(φ), we rely on the ASP built-in arithmetic functions &

(bitwise AND), ? (bitwise OR), and - (subtraction). We also use the built-in comparison

predicate =. Let φ be a propositional formula over a set of propositional variables P ;

then the set of atoms in question is defined as

Ω(φ) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ω(φ1) ∪ Ω(φ2) ∪ {Vφ = Vφ1
&Vφ2

} if φ = φ1 ∧ φ2
Ω(φ1) ∪ Ω(φ2) ∪ {Vφ = Vφ1

?Vφ2
} if φ = φ1 ∨ φ2

Ω(ψ) ∪ {Vφ = 1-Vψ} if φ = ¬ψ
∅ if φ = p ∈ P

where Vφ, Vφ1
Vφ2

, and Vψ are variables representing the subformulas of φ.

Our encoding for the admissible semantics, πadm, is based on the fact that an inter-

pretation v for an ADF D is admissible iff for every s ∈ S, it is the case that

• if v(s) = 1 then there is no w ∈ [v]2 s.t. w(ϕs) = 0,

• if v(s) = 0 then there is no w ∈ [v]2 s.t. w(ϕs) = 1.

This is a simple consequence of the definition of the admissible semantics. Any w ∈ [v]2
which contradicts this simple observation (e.g. v(s) = 1 and w(ϕs) = 0) is a “counter-

model” to v being an admissible interpretation. The constraining part of our encoding for

the admissible semantics essentially disallows guessed assignments of truth values to the

statements of an ADF corresponding to ADF interpretations which have counter-models

to them being admissible.

To encode the constraints of our encoding, we need auxiliary rules firing when the

guessed assignments have counter-models to them being admissible. These rules, two for

each s ∈ S, make use of bodies ωs where Ω(ϕs) is employed to evaluate the acceptance

conditions by the completions. The latter is obtained by setting variables Vt for t ∈
parD(s) with the adequate truth values using the predicates asg and lt defined in πguess
and πlt:

ωs := {asg(t, Yt), lt(Yt, Vt) | t ∈ parD(s)} ∪ Ω(ϕs).

The two rules for every statement s ∈ S have heads sat(s) and inv(s) that fire in case

there is some completion of the interpretation corresponding to the assignments guessed

in the program fragment πguess such that the acceptance condition ϕs evaluates to 1 and

0, respectively:

πsat(D) := {sat(s):-ωs, Vϕs
= 1.

inv(s):-ωs, Vϕs
= 0. | s ∈ S}.

Here for an ADF interpretation v “guessed” via the fragment πguess (and encoded using

the predicate “asg”) and a s ∈ S, sat(s) is derived whenever v(s) = 0 and there is a

w ∈ [v]2 for which w(φs) = 1. On the other hand, inv(s) is derived whenever v(s) = 1

and there is a w ∈ [v]2 for which w(φs) = 0. The atoms using predicates “asg” and “lt”

in ωs are used to encode possible assignments a completion w ∈ [v]2 can take, while the

atoms in Ω(ϕs) propagate such assignments to ϕs in accordance with the semantics of

classical propositional logic by making use of ASP built-ins and auxiliary variables Vψ
for every subformula ψ of ϕs.

The encoding for the admissible semantics now results from compounding the pro-

gram fragments πarg(D), πlt, πguess, and πsat(D) together with ASP constraints which
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filter out guessed assignments of statements to truth values (via πguess) corresponding to

interpretations of D having counter-models to being admissible:

πadm(D) := πarg(D) ∪ πlt ∪ πguess ∪ πsat(D) ∪
{:-arg(S), asg(S, 1), inv(S). :-arg(S), asg(S, 0), sat(S).}.

For instance, the last constraint in πadm(D) disallows guessed interpretations v for which

there is a s ∈ S and w ∈ [v]2 such that v(s) = 0 and w(ϕs) = 1.

Proposition 1 formally states that πadm is an adequate encoding function. For the

proof, which is prototypical for most of the proofs of correctness in this work, we use the

notation

Ip := {p(t1, . . . , tn) ∈ I}.
For an ASP interpretation I (set of ground atoms), Ip represents I projected onto the

predicate p (with arity n).

Proposition 1

For every ADF D it holds that adm(D) ∼= AS(πadm(D)).

Proof

Let D = (S, {ϕS}s∈S) be an ADF and v ∈ adm(D). Let also

I := {arg(s) | s ∈ S} ∪
{lt(u, 0), lt(u, 1), lt(1, 1), lt(0, 0)} ∪
{asg(s, x) | s ∈ S, v(s) = x} ∪
{sat(s) | if there is a w ∈ [v]2 s.t. w(φs) = 1} ∪
{inv(s) | if there is a w ∈ [v]2 s.t. w(φs) = 0},

be a set of ground atoms (such that v ∼= I). We prove now that I ∈ AS(πadm(D)).

We start by proving that I satisfies πadm(D)I . First note that I satisfies πarg(D)I =

πarg(D) as well as πIlt = πlt since all the atoms making up the facts in these two modules

are in I (first two lines of the definition of I). I also satisfies

πIguess = {asg(s, x):-arg(s). | s ∈ S,

asg(s, y) 	∈ I, asg(s, z) 	∈ I, x ∈ {1, 0,u}, y, z ∈ ({1, 0,u} \ {x})},
since, first of all, arg(s) ∈ I iff s ∈ S by the first line of the definition of I (and the fact that

the predicate arg does not appear in the head of any rules other than πarg(D)I = πarg(D)).

Secondly, for any s ∈ S, asg(s, x) ∈ I whenever asg(s, y) 	∈ I and asg(s, z) 	∈ I for

x ∈ {1, 0,u} and y, z ∈ ({1, 0,u}\{x}) by the fact that v ∼= I (third line of the definition

of I).

Now consider the rule r ∈ πsat(D) with H(r) = sat(S) and a substitution θ s.t.

θr ∈ πsat(D)I . This means that θr is of the form

sat(s):-θωs, θ(Vϕs
= 1),

with

θωs = {asg(t, yt), lt(yt, vt) | t ∈ parD(s)} ∪ θΩ(ϕs),
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and where θ(Yt) = yt, θ(Vt) = vt. If B(θr) ∈ I, it must be the case that yt ∈ {1, 0,u},
vt ∈ {0, 1} for t ∈ parD(s) and θΩ(ϕs) ∈ I. Now it should be easy for the reader to see

that from the fact that {asg(t, yt), lt(yt, vt) | t ∈ parD(s)} ⊆ I and v ∼= I it is the case that

w ∈ [v]2 for the ADF interpretation w defined as w(t) = vt for every t ∈ parD(s). It is also

simple to establish that θΩ(ϕs) ∈ I and θ(Vϕs
= 1) ∈ I imply that w(ϕs) = 1. Hence, by

the fourth line of the definition of I we have sat(s) ∈ I, that is, I satisfies θr. In the same

manner, by the fifth line of the definition of I it follows that I satisfies any grounding

θr ∈ πsat(D)I for the rule r s.t. H(r) = inv(S). In conclusion, I satisfies πsat(D)I .

Let us turn now to a ground instance r ∈ πadm(D)I

:-arg(s), asg(s, 0), sat(s).

of the constraint

:-arg(S), asg(S, 0), sat(S).

∈ πadm(D). By the fourth line of the definition of I, sat(s) ∈ I iff there is a w ∈ [v]2
s.t. w(ϕs) = 1. But then by the fact that v ∈ adm(D) and v ∼= I, asg(s, 0) 	∈ I, that is,

r cannot be satisfied by I. In the same manner also any ground instance in πadm(D)I

of the constraint

:-arg(S), asg(S, 1), inv(S).

cannot be satisfied by I.

We have established that I satisfies πadm(D)I . We continue our proof of

I ∈ AS(πadm(D)) by now showing that there is no I ′ ⊂ I that satisfies πadm(D)I .

In effect, consider any other I ′ that satisfies πadm(D)I . Note first of all that then

I ′arg ⊇ Iarg and I ′lt ⊇ Ilt because both I ′ and I satisfy πarg(D)I as well as πIlt. Hence,

also I ′asg ⊇ Iasg because I ′ satisfies πIguess (see the proof of I satisfies πadm(D)I for the

structure of πIguess) and I ′arg ⊇ Iarg, that is, B(r) ⊆ I ′ for every r ∈ πIguess. But then,

since I ′arg ⊇ Iarg and I ′asg ⊇ Iasg, and I ′ satisfies all the comparison predicates with

arithmetic functions that I does by definition, I ′ satisfies all the rules in πsat(D)I that

I does (see again the proof of I satisfies πadm(D)I for the form of such rules). Hence,

also I ′sat ⊇ Isat and I
′
inv ⊇ Iinv. In conclusion, I ′ ⊇ I.

Since I ′ was general, we derive that there is no I ′ ⊂ I that satisfies πadm(D)I .

Together with the fact that I satisfies πadm(D)I , we have that I ∈ AS(πadm(D)).

We now turn to proving that for any I ∈ AS(πadm(D)), it holds that v ∈ adm(D) for

v ∼= I. Note first that for such an I, since I satisfies πarg(D)I = πarg(D) as well as

πIguess = {asg(s, x):-arg(s). | s ∈ S,

asg(s, y) 	∈ I, asg(s, z) 	∈ I, x ∈ {1, 0,u}, y, z ∈ ({1, 0,u} \ {x})},
for every s ∈ S there is a x ∈ {1, 0,u} such that asg(s, x) ∈ I. Also, asg(s, x) ∈ I

whenever asg(s, y) 	∈ I and asg(s, z) 	∈ I for y, z ∈ ({1, 0,u} \ {x}). That is, v s.t. v ∼= I

is well defined.

Now assume that v 	∈ adm(D). Then there are s ∈ S, w ∈ [v]2 for which either i)

v(s) = 1 and w(ϕs) = 0 or ii) v(s) = 0 and w(ϕs) = 1. Let us consider the case i). In

that case, consider a substitution θ for the rule r ∈ πsat(D)

inv(s):-Ωs, Vϕs
= 0.
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where

Ωs = {asg(t, Yt), lt(Yt, Vt) | t ∈ parD(s)} ∪ Ω(ϕs).

The substitution θ is defined as θ(Yt) = v(t) and θ(Vt) = w(t) for every t ∈ parD(s).

Since v ∼= I, we have that asg(t, θ(Yt)) ∈ I for every t ∈ parD(s). Also lt(θ(Yt), θ(Vt)) ∈ I,

since I satisfies πIlt.

Now, by definition θΩ(ϕs) ⊆ I and from w(ϕs) = 0, it is easy to see that it follows

that also θ(Vϕs
= 0) ∈ I, that is, θr ∈ πsat(D)I and B(θr) ⊆ I. This means that also

inv(s) ∈ I. As a consequence, we have that B(r′) ⊆ I for the constraint r′

:-arg(s), asg(s, 1), inv(s).

in πadm(D)I . This is a contradiction to I ∈ AS(πadm(D)). From the case ii) v(s) = 0

and w(ϕs) = 1, a contradiction can be derived in analogous manner. Hence, v ∈ adm(D)

must be the case.

Example 3

Considering the ADF D from Example 1, πadm(D) (as implemented by our system YADF

with minor formatting for purposes of readability; see Section 5) looks as follows:

arg(a).

arg(b).

arg(c).

leq(u,0).

leq(u,1).

leq(0,0).

leq(1,1).

asg(S,u) :- arg(S),not asg(S,0),not asg(S,1).

asg(S,0) :- arg(S),not asg(S,1),not asg(S,u).

asg(S,1) :- arg(S),not asg(S,u),not asg(S,0).

sat(a) :- asg(b,Y0),leq(Y0,V0),V1=1-V0,V2=V1?V0,V2=1.

sat(b) :- asg(b,Y0),leq(Y0,V0),V0=1.

sat(c) :- asg(c,Y0),leq(Y0,V0),asg(b,Y1),leq(Y1,V1),

V3=1,V3=V2?V1,V2=1-V0.

inv(a) :- asg(b,Y0),leq(Y0,V0),V1=1-V0,V2=V1?V0,V2=0.

inv(b) :- asg(b,Y0),leq(Y0,V0),V0=0.

inv(c) :- asg(c,Y0),leq(Y0,V0),asg(b,Y1),leq(Y1,V1),

V3=V2?V1,V3=0,V2=1-V0.

:- arg(S),asg(S,1),inv(S).

:- arg(S),asg(S,0),sat(S).

A possible output of an ASP solver (the current one is the simplified output of clingo

version 4.5.4) given this instance looks as follows (only showing asg, sat, and inv predi-

cates):

Answer: 1

asg(c,u) asg(b,0) asg(a,u) sat(c) sat(a) inv(c) inv(b)
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Answer: 2

asg(c,u) asg(b,0) asg(a,1) sat(c) sat(a) inv(c) inv(b)

Answer: 3

asg(c,u) asg(b,1) asg(a,u) sat(b) sat(c) sat(a)

Answer: 4

asg(c,u) asg(b,1) asg(a,1) sat(b) sat(c) sat(a)

Answer: 5

asg(c,u) asg(b,u) asg(a,1) sat(b) sat(c) sat(a) inv(c) inv(b)

Answer: 6

asg(c,u) asg(b,u) asg(a,u) sat(b) sat(c) sat(a) inv(c) inv(b)

Answer: 7

asg(c,1) asg(b,1) asg(a,u) sat(b) sat(c) sat(a)

Answer: 8

asg(c,1) asg(b,1) asg(a,1) sat(b) sat(c) sat(a)

SATISFIABLE

�
The encoding πadm allows to enumerate the admissible interpretations of an ADF D

from the answer sets of πadm(D) (as explained in the opening paragraphs of Section 3).

Skeptical reasoning for the admissible semantics is trivial (as the interpretation mapping

every statement to u is always admissible), but note that via credulous reasoning for

ASP programs we directly obtain results for credulous reasoning w.r.t. the admissible

semantics from πadm(D) (for any ADF D). The latter translation and thus the encoding

πadm are adequate from the point of view of the complexity (see Table 2) as πadm(D)

is a normal logic program for any ADF D. Also, given our recursive definition of the

evaluation of the acceptance conditions within ASP rules, the arity of predicates in our

encodings are bounded (in fact, the maximum arity of predicates is 2).

3.2 Encoding for the complete semantics

For the ASP encoding of the complete semantics, we only need to add two constraints

to the encoding of the admissible semantics. These express a further condition that an

interpretation v for an ADF D = (S, {ϕS}s∈S) has to fulfill to be complete, in addi-

tion to not having counter-models for being an admissible interpretation as expressed in

Section 3.1. The condition in question is that for every s ∈ S:

• if v(s) = u, then there are w1, w2 ∈ [v]2 s.t. w1(ϕs) = 0 and w2(ϕs) = 1.

Expressing this condition in the form of constraints gives us the encoding

πcom(D) := πadm(D) ∪
{:-arg(S), asg(S,u),not inv(S).
:-arg(S), asg(S,u),not sat(S).}.

Proposition 2

For every ADF D, it holds that com(D) ∼= AS(πcom(D)).
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Proof

(sketch) The proof extends that of Proposition 1. Only the additional constraints used in

the encoding for the complete semantics (w.r.t. the encoding for the admissible semantics)

need to be accounted for.

The encoding πcom allows to enumerate the complete interpretations of an ADF D

by applying the encoding on D (πcom(D)) and considering AS(πcom(D)). Since credu-

lous acceptance for the complete semantics is equivalent to credulous acceptance for the

admissible semantics, we obtain a complexity adequate means of computing credulous ac-

ceptance for the complete semantics via applying credulous (ASP) reasoning on πadm(D)

(πadm being the encoding presented in Section 3.1). Applying credulous reasoning on

πcom(D) is nevertheless also an option1.

3.3 Saturation encoding for the preferred semantics

For the encoding of the preferred semantics, we make use of the saturation technique

(Eiter and Gottlob 1995); see Charwat et al . (2015) for its use in computing the preferred

extensions of Dung AFs. The saturation technique allows checking that a property holds

for a set of guesses within a disjunctive ASP program, by generating a unique “saturated”

guess that “verifies” the property for any such guess. Existence of a non-saturated guess

hence implies that the property of interest does not hold for the guess in question.

In the encoding of the preferred semantics for an ADF D, we extend πadm(D) by

making use of the saturation technique to verify that all interpretations of D that are

greater w.r.t. ≤i than the interpretation determined by the assignments guessed in the

program fragment πguess are either identical to the interpretation in question or not

admissible. As a consequence, the relevant interpretation must be preferred according to

the definition of this semantics for ADFs.

The module πguess2 amounts to “making a second guess” (indicated by the predicate

asg2) extending the “first guess” (asg) from πguess:

πguess2 := {asg2(S, 0):-asg(S, 0).
asg2(S, 1):-asg(S, 1).

asg2(S, 1) ∨ asg2(S, 0) ∨ asg2(S,u):-asg(S,u).}.
Note that the first two rules express that if an ADF interpretation v corresponding to the

“first guess” (captured via the predicate asg) maps a statement to either 0 or 1 then so

does a interpretation v′ corresponding to the “second guess” (captured via the predicate

asg2). The last rule, on the other hand, indicates that if the first guess maps a statement

to u then the second guess can map the statement to either of the truth values u, 0, or 1.

Thus, v′ ≥i v is guaranteed.

The fragment πsat2(D) will allow us to check whether the second guess obtained from

πguess2 is admissible:

πsat2(D) := {sat2(s):-ω2s, Vϕs
= 1.

inv2(s):-ω2s, Vϕs
= 0. | s ∈ S}

1 Which may in fact (because of redundancy) be more efficient in practice.
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with

ω2s := {asg2(t, Yt), lt(Yt, Vt) | t ∈ parD(s)} ∪ Ω(ϕs).

The only difference between the fragment πsat2(D) and the fragment πsat(D) that we

introduced in Section 3.1 is that we now evaluate acceptance conditions w.r.t. completions

of the second guess given via the predicate asg2.

The following program fragment guarantees that the atom saturate is derived whenever

the second guess (computed via πguess2) is either identical (first rule of πcheck(D)) to

the first guess (computed via the module πguess) or is not admissible (last two rules of

πcheck(D)). We will say that in this case, the second guess is not a counterexample to

the first guess corresponding to a preferred interpretation of D. We here assume that the

statements S of D are numbered, that is, S = {s1, . . . , sk} for a k ≥ 1:

πcheck(D) := {saturate:-asg(s1, X1), asg2(s1, X1), . . .

asg(sk, Xk), asg2(sk, Xk).

saturate:-asg2(S, 1), inv2(S).

saturate:-asg2(S, 0), sat2(S).}.
The module πsaturate now assures that whenever the atom saturate is derived, first of

all asg2(s, 0), asg2(s, 1), and asg2(s,u) are derived for every s ∈ S for which asg(s,u)

has been derived. Also, sat2(s) and inv2(s) are derived for every s ∈ S:

πsaturate := {asg2(S, 0):-asg(S,u), saturate.
asg2(S, 1):-asg(S,u), saturate.

asg2(S,u):-asg(S,u), saturate.

sat2(S):-arg(S), saturate.

inv2(S):-arg(S), saturate.}.
The effect of this fragment is that whenever all the “second guesses” (computed via

πguess2) are not counterexamples to the first guess (computed via πguess) corresponding

to a preferred interpretation of D, then all the answer sets will be saturated on the pred-

icates asg2, sat2, and inv2, that is, the same ground instances of these predicates will

be included in any answer set. Thus, all answer sets (corresponding to the ADF inter-

pretation determined by the first guess) will be indistinguishable on the new predicates

used for the encoding of the preferred interpretation; meaning: those not in πadm(D).

On the other hand, were there to be a counterexample to the first guess corresponding

to a preferred interpretation of D, then a non-saturated and hence smaller (w.r.t ⊆)

answer set could be derived. We disallow the latter by adding to the program fragments

πadm(D), πguess2, πsat2(D), πcheck(D), πsaturate, a constraint filtering out precisely such

answer sets. The latter being those for which the atom saturate is not derived. We thus

arrive at the following encoding for the preferred semantics:

πprf(D) := πadm(D) ∪ πguess2 ∪ πsat2(D) ∪
πcheck(D) ∪ πsaturate ∪ {:-not saturate.}.
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Proposition 3

For every ADF D, it holds that prf(D) ∼= AS(πprf(D)).

Proof

Let D = (S, {ϕS}s∈S) be an ADF and v ∈ prf(D). Let also

I ′ := I ∪ {asg2(s, 1) | s ∈ S, v(s) = 1} ∪ {asg2(s, 0) | s ∈ S, v(s) = 0} ∪ I�,
be a set of ground atoms where I is defined as in the “only if” direction of the proof

of Proposition 1 (hence, v ∼= I ′). Moreover, I� is the set of ground atoms forming the

“saturation” of the predicates asg2, sat2, inv2, saturate (asg2 is saturated only for s ∈ S

s.t. v(s) = u) defined as

I� := {asg2(s, x) | s ∈ S, x ∈ {1, 0,u}, v(s) = u} ∪
{sat2(s) | s ∈ S} ∪
{inv2(s) | s ∈ S} ∪
{saturate}.

Note first that since none of the predicates occurring in I ′ \ I appear in πadm(D), we

have that πadm(D)I
′
= πadm(D)I . As thus also all of the atoms appearing in πadm(D)I

′

that are in I ′ are those which are in I, we have that I ′ and I satisfy the bodies and heads

of the same rules in πadm(D)I
′
. By the proof of the “only if” direction of Proposition 1

(i.e. that I satisfies πadm(D)I = πadm(D)I
′
), it then follows that I ′ satisfies πadm(D)I

′
.

I ′ also satisfies each of πsat2(D)I
′
= Gr(πsat2(D)), πcheck(D)I

′
= Gr(πcheck(D)) as the

heads of all possible ground instances of the rules of each of the modules πsat2(D) and

πcheck(D) are contained in I� ⊂ I ′. Moreover, I ′ satisfies all groundings of the first two

rules of πguess2 (that are in πI
′

guess2 = Gr(πguess2)) as both asg(s, x) ∈ I ′ and asg2(s, x) ∈
I ′ whenever v(s) = x for x ∈ {1, 0}. I ′ also satisfies all groundings of the third rule of

πguess2 as whenever asg(s, u) ∈ I ′ this means that v(s) = u and then asg2(s, x) ∈ I� ⊂ I ′

for every x ∈ {1, 0,u}. For the same reason, I ′ also satisfies all possible groundings of

the first three rules of πsaturate (contained in πI
′

saturate = Gr(πsaturate)). Furthermore, I ′

satisfies all possible groundings of the last two rules of πsaturate since whenever arg(s) ∈ I ′

this means that s ∈ S and then sat2(s) ∈ I� ⊂ I ′ as well as inv2(s) ∈ I� ⊂ I ′. Finally,
since saturate ∈ I� ⊂ I ′ the constraint

:-not saturate.

is deleted from πprf(D) when forming the reduct πprf(D)I
′
. We thus have that I ′ satisfies

all of the rules in πprf(D)I
′
; hence, I ′ satisfies πprf(D)I

′
.

Consider now that there is a I ′′ ⊂ I ′ that satisfies πprf(D)I
′
. Since I ′′ satisfies

πadm(D)I
′
= πadm(D)I , we have by the argument in the “only if” direction of the proof

of Proposition 1 that I ⊆ I ′′. Note that then asg(s, x) ∈ I ′′ for every s ∈ S s.t. v(s) = x

for x ∈ {1, 0}. On the other hand, I ′′ satisfies the groundings of the first two rules in

πguess2 (since πI
′

guess2 = Gr(πguess2)). It hence follows that also asg2(s, x) ∈ I ′′ for every
s ∈ S s.t. v(s) = x for x ∈ {1, 0}. Moreover, since I ′′ satisfies the groundings of the last

rule in πguess2 and {asg(s,u) | s ∈ S, v(s) = u} ⊂ I ⊂ I ′′, it must be the case that there
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is some x ∈ {u, 1, 0} s.t. asg2(s, x) ∈ I ′′ for every s ∈ S s.t. v(s) = u. We thus have that

there is an ADF interpretation v′ ≥i v s.t. there is an atom asg2(s, x) ∈ I ′′ whenever
v′(s) = x.

Assume now that saturate 	∈ I ′′. Since I ′′ satisfies πI
′

saturate = Gr(πsaturate), this means

that B(r) 	⊂ I ′′ for every r ∈ Gr(πsaturate). Hence, in particular, B(r) 	⊂ I ′′ for the rule r

saturate:-asg(s1, v(s1)), asg2(s1, v
′(s1)), . . .

asg(sk, v(sk)), asg2(sk, v
′(sk)).

This amounts to v 	= v′ and, hence, v <i v′. Also, B(r) 	⊂ I ′′ for the rule r

saturate:-asg2(s, 1), inv2(s).

for every s ∈ S. This amounts to (since I ′′ satisfies πsat2(D)I
′
= Gr(πsat2(D)); see proof

of Proposition 1) there not being any s ∈ S and w ∈ [v′]2 for which v′(s) = 1 and

w(s) = 0. In the same manner, the fact that B(r) 	⊂ I ′′ for the rule r

saturate:-asg2(s, 0), sat2(s).

for every s ∈ S means that there is no s ∈ S and w ∈ [v′]2 for which v′(s) = 0 and

w(s) = 1. But then v′ ∈ adm(D) which, together with the fact that v <i v
′, is a

contradiction to v ∈ prf(D).

On the other hand if saturate ∈ I ′′, since I ′′ satisfies all possible groundings of the

first three rules of πsaturate (as πI
′

saturate = Gr(πsaturate)), it would be the case that

whenever asg(s,u) ∈ I ′′ and hence v(s) = u (since I ⊂ I ′′) also asg2(s, x) ∈ I ′′ for every
x ∈ {u, 0, 1}. Moreover, if saturate ∈ I ′′, since I ′′ satisfies all possible groundings of the

last two rules of πsaturate, it would also follow that sat(s) ∈ I ′′ as well as inv(s) ∈ I ′′ for
every s ∈ S. This means that if saturate ∈ I ′′, then I ′ ⊆ I ′′. This is a contradiction to

our assumption that I ′′ ⊂ I ′. In conclusion, there is no I ′′ ⊂ I ′ that satisfies πprf(D)I
′
.

Therefore, I ′ ∈ AS(πprf(D)).

We turn now to proving that for any I ∈ AS(πprf(D)), it holds that v ∈ prf(D) for

v ∼= I. Note first of all that since I satisfies πadm(D)I by the proof of the “if” direction

of Proposition 1, we obtain that v is well defined and, moreover, v ∈ adm(D).

Since v ∈ adm(D), v 	∈ prf(D) would mean that there is a v′ ∈ adm(D) s.t. v′ >i v.
Now, notice first of all that since I ∈ AS(πprf(D)), saturate ∈ I since otherwise the

constraint

:-not saturate.

would not be deleted from πprf(D) (as must be the case) when forming the reduct πprf(D)I

and hence πprf(D) would have no answer set. We know from the proof of the “only if”

direction of Proposition 3 that from saturate ∈ I it then follows that I� ⊆ I where

I� = {asg2(s, x) | s ∈ S, x ∈ {1, 0,u}, v(s) = u} ∪
{sat2(s) | s ∈ S} ∪
{inv2(s) | s ∈ S} ∪
{saturate}.
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Now let us define

I ′ := ∪p∈{arg,lt,asg,sat,inv} Ip ∪ {asg2(s, v′(s)) | s ∈ S} ∪
{sat2(s) | s ∈ S, there is a w ∈ [v′]2 s.t. w(ϕs) = 1} ∪
{inv2(s) | s ∈ S, there is a w ∈ [v′]2 s.t. w(ϕs) = 1}

for which by construction (and v′ >i v) I ′ ⊂ I holds. Notice first of all that since all

negative atoms of πprf(D) occur in πadm(D) ∪ {:-not saturate.}, we have that

πprf(D)I = πadm(D)I ∪Gr(πguess2) ∪Gr(πsat2(D)) ∪Gr(πcheck(D)) ∪Gr(πsaturate).
Now, since I and I ′ are the same when considering the atoms occurring in πadm(D)I

(meaning: ∪p∈{arg,lt,asg,sat,inv}Ip ⊂ I ′) and I satisfies πadm(D)I so does I ′. Moreover,

since v′ >i v by construction asg2(s, x) ∈ I ′ whenever asg(s, x) ∈ I for x ∈ {1, 0} and

there is a y ∈ {u, 1, 0} s.t. asg2(s, y) ∈ I ′ whenever asg(s,u) ∈ I. Hence, I ′ also satisfies

πIguess2 = Gr(πguess2).

Using analogous arguments as in the “only if” direction of the proof of Proposition 1,

from the fact that asg2(s, x) ∈ I ′ iff v′(s) = x (for s ∈ S and x ∈ {1, 0,u}) and the

definition for when sat2(s) and inv2(s) are in I ′, it follows that v′ satisfies πIsat2 =

Gr(πsat2). We have also seen in the proof of the “only if” direction of Proposition 3

that v′ 	= v and v′ ∈ adm(D) implies that I ′ does not satisfy the body of any of the

rules in πcheck(D)I = Gr(πcheck(D)). Finally, since saturate 	∈ I ′ it is also the case that

I ′ satisfies πIsaturate = Gr(πsaturate). In conclusion, we have that I ′ satisfies πprf(D)I

and I ′ ⊂ I which contradicts I ∈ AS(πprf(D))). Hence, there cannot be a v′ >i v s.t.

v′ ∈ adm(D) and therefore v ∈ prf(D) must be the case.

Example 4

The encoding πprf(D) for the ADF D from Example 1 as implemented by our system

YADF looks as follows:

leq(u,0).

leq(u,1).

leq(0,0).

leq(1,1).

arg(a).

arg(b).

arg(c).

asg(S,u) :- arg(S),not asg(S,0),not asg(S,1).

asg(S,0) :- arg(S),not asg(S,1),not asg(S,u).

asg(S,1) :- arg(S),not asg(S,u),not asg(S,0).

sat(a) :- asg(b,Y0),leq(Y0,V0),V1=1-V0,V2=V1?V0,V2=1.

sat(b) :- asg(b,Y0),leq(Y0,V0),V0=1.

sat(c) :- asg(c,Y0),leq(Y0,V0),asg(b,Y1),leq(Y1,V1),

V3=1,V3=V2?V1,V2=1-V0.

inv(a) :- asg(b,Y0),leq(Y0,V0),V1=1-V0,V2=V1?V0,V2=0.

inv(c) :- asg(c,Y0),leq(Y0,V0),asg(b,Y1),leq(Y1,V1),

V3=V2?V1,V3=0,V2=1-V0.

inv(b) :- asg(b,Y0),leq(Y0,V0),V0=0.
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:- arg(S),asg(S,1),inv(S).

:- arg(S),asg(S,0),sat(S).

asg2(S,0) :- asg(S,0).

asg2(S,1) :- asg(S,1).

asg2(S,0)|asg2(S,1)|asg2(S,u) :- asg(S,u).

sat2(a) :- asg2(b,Y0),leq(Y0,V0),V1=1-V0,V2=V1?V0,V2=1.

sat2(b) :- asg2(b,Y0),leq(Y0,V0),V0=1.

sat2(c) :- asg2(c,Y0),leq(Y0,V0),asg2(b,Y1),leq(Y1,V1),

V3=1,V3=V2?V1,V2=1-V0.

inv2(b) :- asg2(b,Y0),leq(Y0,V0),V0=0.

inv2(c) :- asg2(c,Y0),leq(Y0,V0),asg2(b,Y1),leq(Y1,V1),

V3=V2?V1,V3=0,V2=1-V0.

inv2(a) :- asg2(b,Y0),leq(Y0,V0),V1=1-V0,V2=V1?V0,V2=0.

saturate :- asg(c,X0),asg2(c,X0),asg(b,X1),asg2(b,X1),

asg(a,X2),asg2(a,X2).

saturate :- arg(S),asg2(S,0),sat2(S).

saturate :- arg(S),asg2(S,1),inv2(S).

asg2(S,u) :- asg(S,u),saturate.

asg2(S,0) :- asg(S,u),saturate.

asg2(S,1) :- asg(S,u),saturate.

sat2(S) :- arg(S),saturate.

inv2(S) :- arg(S),saturate.

:- not saturate.

An output of an ASP solver given this instance looks as follows (only showing asg and

saturate predicates):

Answer: 1

asg(c,u) asg(b,0) asg(a,1) saturate

Answer: 2

asg(c,1) asg(b,1) asg(a,1) saturate

SATISFIABLE

�
Note that πprf, in addition to providing a means of enumerating the preferred inter-

pretations of any ADF, also gives us a complexity adequate means of deciding skeptical

acceptance problems. The latter via skeptical reasoning of ASP disjunctive programs with

predicates of bounded arity (see Table 2). Credulous reasoning for the preferred seman-

tics is equivalent to credulous reasoning for the admissible semantics; applying credulous

reasoning on the encoding given in Section 3.1 hence provides a means of computation

at the right level of complexity for this reasoning task.

3.4 Encoding for the grounded semantics

Our encoding for the grounded semantics is based on the fact that (see Strass and Wallner

(2015)) v ∈ grd(D) for an interpretation v and an ADF D = (S, {φs}s∈S) iff v is the

(unique) ≤i-minimal interpretation satisfying
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• for each s ∈ S such that v(s) = 1, there exists an interpretation w ∈ [v]2 for which

w(φs) = 1,

• for each s ∈ S such that v(s) = 0, there exists an interpretation w ∈ [v]2 for which

w(φs) = 0, and

• for each s ∈ S such that v(s) = u, there exist interpretations w1 ∈ [v]2 and w2 ∈ [v]2
such that w1(φs) = 1 and w2(φs) = 0.

We say that an interpretation v for the ADF D that satisfies exactly one of the above

for a specific s ∈ S (e.g. v(s) = 1 and there exists an interpretation w ∈ [v]2 for which

w(φs) = 1), that it satisfies the properties for being a candidate for being the grounded

interpretation w.r.t. s. The completion w, or alternatively the completions w1 and w2,

verify this fact for v and s. If v satisfies the properties w.r.t. every s ∈ S, then v is a

candidate for being the grounded interpretation of D. An interpretation v′ <i v that is

also a candidate for being the grounded interpretation is a counter-model (alternatively,

counterexample) to v being the right candidate (for being the grounded interpretation).

Our encoding for the grounded semantics essentially consists first of all, once more in

the guessing part πguess where we guess assignments of truth values to the statements

of the ADF of interest D. This corresponds to guessing an interpretation v for D.

Constraints in our encoding filter out guessed interpretations which either are not

candidates to being the grounded interpretation or which have counter-models to being

the right candidate. These constraints rely on the rules in πsat(D) defined in Section 3.1

and rules defining when an interpretation has a counter-model to being the right

candidate, respectively.

We start with a few facts needed for our encoding. First of all, we use facts analogous

to those in πlt defined in Section 3.1 for encoding the truth values a possible counter-

model to the interpretation guessed via πguess (being the right candidate for the grounded

interpretation) can assign to the statements. Here, we also need an additional argument

(the first argument of the predicate lne) allowing us to check whether the interpretation

in question is distinct from the one determined by the predicate asg:

πlne := {lne(1,u, 1). lne(1,u, 0).} ∪
{lne(0, 1, 1). lne(0, 0, 0). lne(0,u,u).}.

Given a candidate for the grounded interpretation v determined by the atoms asg, for

instance, the two first facts in πlne express (using the last two arguments of the predicate

lne) that if for a statement s, v(s) = x with x ∈ {1, 0}, then a counter-model v′ to v being
the right candidate (for the grounded interpretation) can map s to the truth value u.

Moreover, the first argument of the alluded to facts indicates that in this case v′(s) 	= v(s).

Secondly, we need a set of facts for checking whether an interpretation satisfies the

properties required for candidates to being the grounded interpretation mentioned at the

beginning of this section. Specifically, given a statement s of the ADF D, prop(z1, z2, z3)

can be used to check whether the correct relationship between z1 = v(s), z2 = w1(ϕs),

and z3 = w2(ϕs) holds for an interpretation v for D, and w1, w2 ∈ [v]2 (e.g. that if

v(s) = u then there must be w1 ∈ [v]2, w2 ∈ [v]2 s.t. w1(ϕs) = 1 and w2(ϕs) = 0).

In particular, note that w1 = w2 is possible and hence prop(x, y, z) can also be used to

check the properties for when v(s) = x and x ∈ {1, 0} (first two facts in πprop):

πprop := {prop(1, 1, 1). prop(0, 0, 0). prop(u, 0, 1).}.
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The following module consists of constraints checking whether the interpretation cor-

responding to the assignments guessed via πguess is a candidate (hence the use of the

identifier “ca”) for being the grounded interpretation:

πca(D) := {:-arg(S), asg(S, 1),not sat(S). :-arg(S), asg(S, 0),not inv(S).} ∪
{:-arg(S), asg(S,u),not inv(S). :-arg(S), asg(S,u),not sat(S).}.

The module πca(D) assumes, as we stated earlier, that the rules in πsat(D) (and thus

the facts in πlt) defined in Section 3.1 are also part of the encoding for the grounded

semantics. For instance, the first constraint then checks that there is no s ∈ S for which

it holds that v(s) = 1 but there is no w ∈ [v]2 for which w(ϕs) = 1 for the interpretation

v guessed via the atoms constructed with the predicate asg.

Now, note that, since, as we explained before, the grounded interpretation is the min-

imal (w.r.t. ≤i) of the interpretations that are candidates for being the grounded inter-

pretation, this interpretation can be obtained via choosing the minimal interpretation

w.r.t. ≤i from all interpretations that correspond to some answer set of the encoding

πca-grd(D) := πarg(D) ∪ πlt ∪ πguess ∪ πsat(D) ∪ πca(D);

that is, what essentially boils down to a skeptical acceptance problem for πca-grd(D).

In order to obtain an encoding not requiring (in the worst case) processing of all

answer sets, we need a rule defining when an interpretation is a counter-model to the

interpretation determined via the predicate asg being the right candidate. For this, we

will need to make repeated use of the function Ω defined in Section 3.1 within a single

rule. We therefore first of all make the symbol ranging over the ASP variables represent-

ing subformulas of a propositional formula φ within Ω(φ) an explicit parameter of the

function. This is straightforward, but for completeness we give the full definition of our

parametrized version of the function Ω. Here φ is once more a propositional formula built

from propositional variables in a set P , while now V is an arbitrary (meta-) symbol used

to refer to the variables introduced by the function:

ΩV (φ) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ΩV (φ1) ∪ ΩV (φ2) ∪ {Vφ = Vφ1
&Vφ2

} if φ = φ1 ∧ φ2
ΩV (φ1) ∪ ΩV (φ2) ∪ {Vφ = Vφ1

?Vφ2
} if φ = φ1 ∨ φ2

ΩV (ψ) ∪ {Vφ = 1-Vψ} if φ = ¬ψ
∅ if φ = p ∈ P.

Again, Vφ, Vφ1
Vφ2

, and Vψ are variables representing the subformulas of φ. From now

on, whenever we introduce sets ΩV1(φ1) and ΩV2(φ2) for possibly identical formulas

φ1 and φ2 but distinct symbols V1 and V2, we implicitly also assume that then

ΩV1(φ1) ∩ ΩV2(φ2) = ∅.
Our rule for defining counter-models to an interpretation being the right candidate for

the grounded interpretation requires first of all a part for “generating” an interpretation

less informative (w.r.t ≤i) and distinct from the interpretation determined by πguess,

that is, a candidate counter-model. For this, we use the atoms

λD := {asg(s,Xs), lne(Es, Ys, Xs) | s ∈ S} ∪ ΩE(∨s∈Ss) ∪ {E∨s∈Ss = 1}.
Here, given an interpretation v determined by the atoms asg(s,Xs) (s ∈ S), the atoms

lne(Es, Ys, Xs) are used to generate an assignment of truth values to the statements (via
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argument Ys) corresponding to an interpretation v′ ≤i v. Then ΩE(∨s∈Ss)∪{E∨s∈Ss = 1}
are used (via the arguments Es of the atoms lne(Es, Ys, Xs)) to check that there is a

s ∈ S for which v′(s) 	= v(s) and hence in fact v′ <i v. Thus, if v is a candidate for the

grounded interpretation, then v′ is a candidate counter-model for v being the grounded

interpretation.

We now introduce the following set of atoms to check whether the candidate counter-

model is indeed a counter-model to the interpretation determined by asg being the

grounded interpretation. We need to check the properties candidates for being the

grounded interpretation need to satisfy for each of the statements s of the ADF of interest

D; therefore, the need for having sets of atoms κs,D defined for every statement s:

κs,D :={lt(Yt, V (t,s),1) | t ∈ parD(s)} ∪ ΩV
(t,s),1

(ϕs) ∪
{lt(Yt, V (t,s),2) | t ∈ parD(s)} ∪ ΩV

(t,s),2

(ϕs) ∪
{prop(Ys, V (t,s),1

ϕs
, V (t,s),2
ϕs

)}.
Note here the use of the predicate lt (defined via the module πlt from Section 3.1) for

generating assignments to statements corresponding to completions. The first two lines

of the definition of κs,D are used for generating completions w1, w2 ∈ [v′]2 of an inter-

pretation v′ and the outcome of the evaluation of ϕs by the completions. Then the third

line is used to check that w1, w2 verify that v′ is a candidate for being the grounded

interpretation (and hence a counter-model for a v >i v
′ being the right candidate for the

grounded interpretation).

Putting all the above together, we have quite a large rule defining when a candidate

counter-model is indeed a counter-model to the interpretation determined by πguess being

the right candidate for the grounded interpretation:

πcm(D) := {cm:-λD ∪
⋃
s∈S

κs,D}.

The following is then an encoding allowing to compute the grounded interpretation for

the ADF D in one go:

πgrd(D) := πarg(D) ∪ πlt ∪ πlne ∪ πprop ∪ πguess ∪ πsat(D) ∪ πca(D) ∪ πcm(D) ∪ {:-cm.}.
Note, in particular, the constraint {:-cm.} disallowing interpretations having a counter-

model to them being the right candidate for the grounded interpretation.

Proposition 4

For every ADF D, it holds that grd(D) ∼= AS(πgrd(D)),

Proof

(sketch) The proof is similar to that of Proposition 5. Indeed note that πstb(D) (defined

in Section 3.5) essentially builds on πgrd(D), the main difference being the slightly more

complex versions of πlt, πlne, πprop, πcm(D) and the use of πmodel(D) (see Section 3.5)

rather than πca(D) (and πsat(D)).

We do not obtain complexity sensitive means of deciding credulous and skeptical rea-

soning w.r.t. the grounded semantics via the encoding πgrd. Nevertheless, the encoding

offers an alternative strategy to deriving the grounded interpretation of an ADF to that

of the static encodings at the basis of the DIAMOND family of systems mentioned in the
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introduction to this work. Also, the encoding forms the basis of the complexity ade-

quate (w.r.t. the reasoning problems) encoding for the stable semantics we present in

Section 3.5.

3.5 Encoding for the stable semantics

As already indicated and is to be expected given the definition of this semantics, our

encoding for the stable semantics is based on the encoding for the grounded semantics.

Nevertheless, some modifications are required. First of all, we need to guess assignments

to statements of an ADF D corresponding to a two-valued rather than a three-valued

interpretation v for D. Secondly, we need to check that v is a model of D. Third, we

need to ensure that v assigns the truth value 1 to the same statements as the grounded

interpretation of the reduct of Dv (i.e. v �Ev
= grd(Dv)) rather than D simpliciter.

To start, we slightly modify some facts used in previous encodings. Our encoding once

more follows the guess & check methodology and there will therefore be a part used to

guess a candidate v for being the stable interpretation of our ADF of interest D. We will

then need a modified version of πlt (defined in Section 3.1) to set the right truth values

for completions of a candidate counter-model v′ to v (actually v �Ev
) being the right

candidate for the grounded interpretation (as explained in Section 3.4) of the reduct Dv:

π′
lt := {lt2(1,u, 0). lt2(1,u, 1). lt2(1, 0, 0). lt2(1, 1, 1).} ∪

{lt2(0,u, 0). lt2(0, 0, 0). lt2(0, 1, 0).}.
The first four facts in π′

lt are as to those in πlt. The only difference is in the first

argument which we use to encode the assignment of a truth value to a statement s by

a guessed candidate for the grounded interpretation v of the reduct Dv. The other two

values express possible values a completion w of a candidate counter-model v′ to v (being

the right candidate for the grounded interpretation of Dv) can assign to the statement

s. For instance, lt2(1,u, 0) expresses that if v(s) = 1 and v′(s) = u then one of the two

possible assignments of a truth value to s by w ∈ [v′]2 is w(s) = 0. The three last facts

in π′
lt now indicate possible assignments of truth values to a statement s by a w ∈ [v′]2

when v(s) = 0. In order to simulate the evaluation of the acceptance conditions of the

reduct Dv by the completions of v′ in other parts of our encoding, we enforce that in this

case w(s) = 0 whatever the value of v′(s). This amounts to replacing each statement s

for which v(s) = 0 within an acceptance condition ϕs′ in which the statement s occurs

by ⊥ as is required by the definition of the reduct.

The module πlne defined in Section 3.4 also needs to be modified (by one fact) to

account for the fact that a counter-model v′ to an interpretation v being the right

candidate for satisfying v �Ev
= grd(Dv) must be distinct from v on the statements

assigned the truth value 1 (i.e. there must be at least one statement s to which v assigns

the truth value 1 and v′ the truth value u):

π′
lne := {lne(1,u, 1). lne(0,u, 0).} ∪

{lne(0, 1, 1). lne(0, 0, 0). lne(0,u,u).}.
The difference of π′

lne w.r.t πlne is thus in the second fact “lne(0,u, 0).” where the first

argument in the corresponding fact in πlne is 1 rather than 0.
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We also need to modify πprop defined in Section 3.4 adding an extra-argument (again,

the first one) to indicate whether the property required per statement of an ADF for

candidates for the grounded interpretation is verified or not:

π′
prop := {prop2(1, 1, 1, 1). prop2(1, 0, 0, 0). prop2(1,u, 0, 1). prop2(1,u, 1, 0).} ∪

{prop2(0, 1, 0, 1). prop2(0, 1, 1, 0). prop2(0, 1, 0, 0).} ∪
{prop2(0, 0, 0, 1). prop2(0, 0, 1, 0). prop2(0, 0, 1, 1).} ∪
{prop2(0,u, 0, 0). prop2(0,u, 1, 1).}.

Here for an ADF of interest (in our encoding, the reduct Dv of the interpretation v

guessed to be stable), we list all possible combinations of truth values of v(s), w1(ϕs),

w2(ϕs) for w1, w2 ∈ [v]2 (three last arguments in the facts) and indicate (first argument

in the facts) whether the combination in question makes w1, w2 witnesses of v being a

candidate for the grounded interpretation w.r.t. the statement s (as explained in Sec-

tion 3.4). For instance, prop2(1, 0, 0, 0) indicates that w1(φs) = w2(φs) = 0 makes w1, w2

witnesses of v being a candidate (w.r.t. s) when v(s) = 0.

As already indicated, also our encoding for the stable semantics builds on a module

guessing possible assignments to the statements of the ADF D. We only need to slightly

modify πguess as defined in Section 3.1 to obtain a conjecture for the stable interpretation

corresponding to a two-valued rather than three-valued interpretation for D:

π′
guess := {asg(S, 0):-not asg(S, 1), arg(S).

asg(S, 1):-not asg(S, 0), arg(S).}.
In order to check that the guessed interpretation is a model of D, we again need to

evaluate the acceptance conditions of D but this time by the guessed interpretation. For

this, we make use of the following sets of atoms per statement s of D:

μs := {asg(t, Vt) | t ∈ parD(s)} ∪ Ω(ϕs).

Here, we again make use of the function Ω defined in Section 3.1 but this time to evaluate

the acceptance condition ϕs by the interpretation guessed to be stable (and thus a model)

of D via π′
guess.

The following are then constraints, one per statement, filtering out guesses that are

not models of D:

πmodel(D) := {:- asg(s, Vs), μs, Vs 	= Vϕs
. | s ∈ S}.

More to the point, the constraints filter out any guessed interpretation v (via π′
guess), for

which v(s) 	= v(φs) for some statement s.

Now, note that for any v ∈ mod(D), v �Ev
is a candidate to being the grounded

interpretation of the reduct Dv. The reason is first of all that [v �Ev
]2 = {v �Ev

} and,

hence, for any w ∈ [v �Ev
]2, w(ϕ

′
s) = v �Ev

(ϕ′
s) = v(ϕs) for the modified acceptance

conditions ϕ′
s = φs[b/⊥ : v(b) = 0] of Dv. As a consequence, clearly whenever v �Ev

(s) = x for x ∈ {1, 0} (in fact, x = 1) there is a w ∈ [v]2, namely w = v �Ev
, for which

w(ϕs) = x. In effect, the latter is the case by virtue of v ∈ mod(D) and hence v(ϕs) =

v �Ev
(ϕ′
s) = x whenever v(s) = x. Also, there are no statements for which v �Ev

(s) = u.

The consequence for our encoding for the stable semantics is that πmodel(D) suffices for
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checking whether our guessed interpretation, when projected on the statements to which

it assigns the truth value 1, is a candidate for being the grounded interpretation of Dv.

All that remains for our encoding of the stable semantics is therefore, as we have for

the encoding of the grounded semantics, a constraint filtering out guessed interpretations

which have counter-models to being the right candidate for being the grounded inter-

pretation of Dv. For this, we introduce a slightly modified version of πcm(D) (defined in

Section 3.4) accounting for the fact that we need to check for counter-models to v �Ev

being the right candidate for the reduct Dv rather than v and D. This means that com-

pletions of potential counter-models need to set any statement set to the truth value 0 by

v also to 0. To encode this, we use the predicate lt2 rather than lt in our modified version

κ′s,D of the set of atoms κs,D (from Section 3.4). Also, we need to check the properties

that candidates of the grounded interpretation need to satisfy only for statements s for

which v(s) = 1. To encode this, we make use of the predicate prop2 rather than prop and

add a corresponding check using ASP built-in Boolean arithmetic functions:

κ′s,D :={lt2(Xt, Yt, V
(t,s),1) | t ∈ parD(s)} ∪ ΩV

(t,s),1

(ϕs) ∪

{lt2(Xt, Yt, V
(t,s),2) | t ∈ parD(s)} ∪ ΩV

(t,s),2

(ϕs) ∪
{prop2(Ps, Ys, V (t,s),1

ϕs
, V (t,s),2
ϕs

)} ∪ {CXs = 1−Xs, Os = Ps?CXs, Os = 1}.
Our modified module π′

cm(D) of πcm(D) is then as follows:

π′
cm(D) := {cm:-λD ∪

⋃
s∈S

κ′s,D}.

Note that we here make use of the set of atoms λD as defined in Section 3.4, yet relying on

the definition of the predicate lne as given by the module π′
lne rather than πlne. Putting

everything together, the encoding for the stable semantics has the following form:

πstb(D) :=πarg(D) ∪ π′
lt ∪ π′

lne ∪ π′
prop ∪

π′
guess ∪ πmodel(D) ∪ π′

cm(D) ∪ {:-cm.}.

Proposition 5

For every ADF D, it holds that stb(D) ∼= AS(πstb(D)).

Proof

Let ADF be an ADF and v ∈ stb(D). Let also

I :=πarg(D) ∪ π′
lt ∪ π′

lne ∪ π′
prop ∪ {asg(s, x) | s ∈ S, v(s) = x}

be a set of ground atoms (such that v ∼= I). (We slightly abuse the notation here using,

for example, πarg(D) to refer to the set of atoms rather than the facts in the module.)

We prove now that I ∈ AS(πstb(D)).

We start by proving that I satisfies πstb(D)I . Note first that I satisfies each of

πarg(D)I = πarg(D), π′I
lt = π′

lt, π
′I
lne = π′

lne, π
′I
prop = π′

prop since all of the facts in

each of these modules are in I. I also satisfies

π′I
guess = {asg(s, x):-arg(s). | s ∈ S, asg(s, y) 	∈ I, x ∈ {1, 0}, y ∈ ({1, 0} {x})}

by the fact that v ∼= I.
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Assume now that I satisfies the body of some constraint in πmodel(D)I , that is, there is

a s ∈ S and a substitution θ s.t. asg(s, θ(Vs)) ∈ I, asg(t, θ(Vt)) ∈ I for each t ∈ parD(s),

θ(Ω(ϕs)) ∈ I, and θ(Vs 	= Vϕs
) ∈ I. This translates to v(s) 	= v(ϕs) which means v 	∈

mod(D) and contradicts v ∈ stb(D). Therefore, I does not satisfy any of the constraints

in πmodel(D)I .

Consider on the other hand that I satisfies the body of some rule in π′
cm(D)I . This

means that there is a substitution θ such that first of all asg(s, θ(Xs)) ∈ I as well as

lne(θ(Es), θ(Ys), θ(Xs)) ∈ I for every s ∈ S. Also θ(ΩE(∨s∈Ss)) ∈ I and θ(E∨s∈Ss =

1) ∈ I. All of this together means that v′(s) <i v(s) for the interpretation v′ defined
as v′(s) := θ(Ys). Moreover, since I satisfies π′

lt, there is an s ∈ S s.t. v(s) = 1 and

v′(s) = u. This means that also Ev 	= ∅ and v′ �Ev
(s) <i v �Ev

(s) where v �Ev
and

v′ �Ev
are interpretations of the reduct Dv.

Secondly, for every s ∈ S, we have that lt2(θ(Xt), θ(Yt), θ(V
(t,s),1)) ∈ I and it is

also the case that lt2(θ(Xt), θ(Yt), θ(V
(t,s),2)) ∈ I for every t ∈ parD(s). Consider the

interpretations wi for i ∈ {1, 2} defined as wi(t) = θ(V (t,s),i) for every t ∈ parD(s). Then

wi(t) ≥i v′(t) whenever v(t) = 1, but wi(t) = v(t) = 0 if v(t) = 0. This means that

wi(ϕs) = wi �Ev
(ϕ′
s) for ϕ′

s = ϕs[b/⊥ : v(b) = 0], and wi �Ev
∈ [v′ �Ev

]2. Now from

θ(ΩV
(t,s),1

(ϕs)) ∈ I for every t ∈ parD(s), θ(Ω
V (t,s),2

(ϕs)) ∈ I for every t ∈ parD(s),

and the fact that prop2(θ(Ps), θ(Ys), θ(V
(t,s),1
ϕs ), θ(V

(t,s),2
ϕs )) ∈ I we have that θ(Ps) =

1 whenever w1 �Ev
and w2 �Ev

verify that v′ �Ev
satisfies the properties for being a

candidate for the grounded interpretation of Dv w.r.t. s ∈ Ev. Otherwise, θ(Ps) = 0.

Moreover, from θ(CXs = 1 − Xs) ∈ I, θ(Os = Ps?CXs) ∈ I, and θ(Os = 1) ∈ I, it

follows that either θ(Ps) = 1 or θ(Xs) = v(s) = 0 for every s ∈ S.

In other words, whenever s ∈ Ev (remember: Ev 	= ∅), there are completions that verify

that v′ �Ev
satisfies the properties for being a candidate for the grounded interpretation

of Dv w.r.t. s. This means that v′ �Ev
is a counter-model to v �Ev

being the grounded

interpretation of Dv. This is a contradiction to v ∈ stb(D). Therefore, I does not satisfy

the body of any rule in π′
cm(D)I and, hence, satisfies π′

cm(D)I . Finally, since cm 	∈ I, I

does not satisfy the body of the constraint {:-cm.} ∈ πstb(D)I . In conclusion, I satisfies

πstb(D)I .

Now consider any other I ′ that satisfies πstb(D)I . Clearly, since I ′ satisfies all of the

facts in πstb(D)I , we have that πarg(D) ∪ π′
lt ∪ π′

lne ∪ π′
prop ⊆ I ′. But also because of the

form of π′I
guess (see above) and the fact that I ′ satisfies πarg(D)I , it must be the case that

{asg(s, x) | s ∈ S, v(s) = x} ⊂ I ′. This means that in addition to I satisfying πstb(D)I

there is also no I ′ ⊂ I that satisfies πstb(D)I ; that is, we have that I ∈ AS(πstb(D)).

We now turn to proving that for any I ∈ AS(πstb(D)), it holds that v ∈ stb(D) for

v ∼= I. Note first that for any such I, since I satisfies πarg(D)I = πarg(D) and π′I
guess, v

s.t. v ∼= I is well defined. Now assume that v 	∈ stb(D). Then either (i) v 	∈ mod(D) or

(ii) v ∈ mod(D) but v �Ev
	∈ grd(Dv).

In the first case, (i) there must be a s ∈ S s.t. v(s) 	= v(ϕs). Consider hence the

substitution θ defined as θ(Vs) = v(s) and θ(Vt) = v(t) for t ∈ parD(s). This substitution

is s.t. θ(B(r)) ⊆ I for the constraint in πmodel(D) corresponding to s. This would mean

that I does not satisfy πstb(D)I which is a contradiction. Therefore, v ∈ mod(D) which

also means that v �Ev
is a candidate for the grounded interpretation of Dv (as we argued

in detail while explaining our encoding πstb(D)).

Consider now the case (ii). Since v �Ev
is a candidate for the grounded interpretation

of Dv but v �Ev
	∈ grd(Dv) this means there is a counter-model v′ �Ev

for v �Ev
being
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the right candidate for the grounded interpretation of Dv. First define v′ to be s.t.

v′(s) = v′ �Ev
(s) for s ∈ Ev while v′(s) = v(s) for s 	∈ Ev. Define then the substitution

θ for which θ(Xs) = v(s) and θ(Ys) = v′(s) for every s ∈ S. Since v′ 	= v (because

v′ �Ev
	= v �Ev

), there must be an s ∈ Ev ⊆ S for which v(s) 	= v′(s). Set θ(Es) = 1 for all

such s ∈ S, but θ(Es) = 0 whenever v(s) = v′(s). We thus have that θ(ΩE(∨s∈Ss)) ∈ I

and E∨s∈Ss = 1 ∈ I. Hence, θ(λD) ∈ I.

Now, since v′ �Ev
is a counter-model to v �Ev

being the right candidate for the grounded

interpretation of Dv we have that for every s ∈ Ev there are completions ws,1 and ws,2 of

v′ �Ev
that are witnesses for v′ �Ev

satisfying the properties candidates for the grounded

interpretation need to satisfy w.r.t. s. Hence, we continue defining the substitution θ

s.t. θ(V (t,s),i) = ws,i(t) for every s ∈ Ev and t ∈ parD(s) ∩ Ev. On the other hand,

θ(V (t,s),i) = 0 for t ∈ parD(s) \ Ev. Also, θ(Ps) = 1 for every s ∈ Ev.

For s 	∈ Ev, we on the other hand define θ(V (t,s),i) = w(t) (i ∈ {1, 2}), t ∈ parD(s)∩Ev
for some arbitrary w ∈ [v′]2. On the other hand, θ(V (t,s),i) = 0 for t ∈ parD(s) \ Ev.
Also, θ(Ps) = 1 whenever v′(s) = w(ϕ′

s) (ϕ′
s = φs[b/⊥ : v(b) = 0]) and θ(Ps) = 0

otherwise. Then, we have that θ(ΩV
(t,s),i

(ϕs)) ∈ I for s ∈ S, t ∈ parD(s), (i ∈ {1, 2}).
Also, θ(CXs = 1 − Xs) ∈ I, θ(Os = Ps?CXs) ∈ I, and Os = 1 ∈ I for every s ∈ S

(θ(Ps) = 1 for s ∈ Ev, while θ(CXs) = 1 for s 	∈ Ev). That is, θ(κ′s,D) ∈ I for every

s ∈ S. Hence, since also θ(λD) ∈ I, we have that the body of a rule in π′
cm(D)I is satisfied

by I and, therefore, cm ∈ I. This means that the constraint :-cm. ∈ πstb(D)I is satisfied

by I which contradicts I ∈ AS(πstb(D)). Therefore, the case ii) is also not possible and

v ∈ stb(D) must be the case.

Example 5

The encoding πstb(D) for the ADF D from Example 1 as implemented by our system

YADF (we slightly condense the encoding by generating some facts using rules) looks as

follows:

arg(a).

arg(b).

arg(c).

val(u).

val(0).

val(1).

lt2(1,u,1).

lt2(1,u,0).

lt2(1,0,0).

lt2(1,1,1).

lt2(0,X,0) :- val(X).

lne(1,u,1).

lne(0,u,0).

lne(0,X,X):- val(X).

prop(1,1,1,1).

prop(1,0,0,0).

prop(1,u,1,0).

prop(1,u,0,1).

prop(0,X1,X2,X3) :- val(X1),val(X2),val(X3),not prop(1,X1,X2,X3).
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asg(S,1) :- arg(S),not asg(S,0).

asg(S,0) :- arg(S),not asg(S,1).

:- asg(b,V0),V0!=V0.

:- asg(a,V1),asg(b,V0),V3=V2?V0,V3!=V1,V2=1-V0.

:- asg(c,V0),asg(b,V1),V3=V2?V1,V3!=V0,V2=1-V0.

cm :- asg(c,X0),asg(b,X1),asg(a,X2),lne(E0,Y0,XO),lne(E1,Y1,X1),

lne(E2,Y2,X2),E20=E0?E1,E21=E2?E20,E21=1,lt2(X0,Y0,V1),

lt2(X1,Y1,V2),V4=V3?V2,V3=1-V1,lt2(X0,Y0,V5),lt2(X1,Y1,V6),

V7=1-V5,V8=V7?V6,prop(P0,Y0,V4,V8),CX0=1-X0,OR9=P0?CX0,OR9=1,

lt2(X1,Y1,V10),lt2(X1,Y1,V11),prop(P1,Y1,V10,V11),CX1=1-X1,

OR12=P1?CX1,OR12=1,lt2(X1,Y1,V13),V15=V14?V13,V14=1-V13,

lt2(X1,Y1,V16),V17=1-V16,V18=V17?V16,prop(P2,Y2,V15,V18),

CX2=1-X2,OR19=P2?CX2,OR19=1.

:- cm.

An output of an ASP solver given this instance looks as follows:

UNSATISFIABLE

and indicates that the ADF at hand does not possess any stable model. �
Concluding our presentation of dynamic encodings for ADFs, we note that also πstb,

in addition to giving us a means of computing the stable interpretations of any ADF,

provides us with a complexity-attuned mechanism to decide credulous and skeptical

reasoning tasks via the corresponding ASP reasoning tasks (see Table 2).

4 GRAPPA encodings

We now illustrate how to extend the methodology used in our construction of dynamic

encodings for ADFs to GRAPPA. For this purpose, we give ASP encodings for the

admissible, complete, and preferred semantics. Reflecting the relationship between ADFs

and GRAPPA, structurally the encodings are very similar to those for ADFs, the main

difference being in the encoding of the evaluation of the acceptance patterns.

Also for our encodings for GRAPPA, we make use of the correspondence ∼= between

three-valued interpretations (now for GRAPPA instances) and sets of ground atoms

(interpretations of ASP programs) defined via ASP atoms asg(s, x) for statements s and

x ∈ {1, 0,u}. Hence, we now strive for encodings πσ for σ ∈ {adm, com, prf} s.t. for every

GRAPPA instance G we get σ(G) ∼= AS(πσ(G)) (see Definition 1 for the formal meaning

of the latter overloaded use of ∼=). We will reuse several of the ASP fragments we defined

for ADFs. Formally, this amounts to extending the corresponding encoding functions to

also admit GRAPPA instances as arguments.

Throughout this section, let G = (S,E,L, λ, α) be a GRAPPA instance with

S = {s1, . . . , sk}. As already hinted at, the main difference between the encodings for

GRAPPA and ADFs is in the definition of the set of atoms Ω(φ) (first defined for ADFs in

Section 3.1) corresponding to the semantic evaluation of the acceptance conditions (now

patterns) associated with the statements. The recursive function representing the evalu-

ation of patterns needs a statement s as an additional parameter and for the encoding
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of the basic patterns is defined as Ωs(φ) :=

Ωs(φ1) ∪ Ωs(φ2) ∪ {Vφ = Vφ1
&Vφ2

} if φ = φ1 ∧ φ2
Ωs(φ1) ∪ Ωs(φ2) ∪ {Vφ = Vφ1

?Vφ2
} if φ = φ1 ∨ φ2

Ωs(ψ) ∪ {Vφ = 1− Vψ} if φ = ¬ψ
Ps(τ) ∪ {Vφ = #sum{1 : Vτ R̄a} } if φ = τRa.

The difference between Ωs and Ω (note the missing subscript s) as defined in Section 3

is in the last line where Ps(τ) ∪ {Vφ = #sum{1 : Vτ R̄a}} encodes the evaluation of a

basic pattern φ = τRa. Here, we make use of the ASP aggregate #sum as well as the

simple function R̄ := <= (resp. >=, !=) if R = ≤ (resp. ≥, 	=) and R̄ = R otherwise,

relating GRAPPA and ASP syntax for relational operators.

The function Ps(τ) on the other hand gives us a set of atoms corresponding to the

evaluation of a sum τ of terms:

Ps(τ) :=

{
Ps(χ) ∪ Ts(t) ∪ {Vτ = a ∗ Vt + Vχ} if τ = at+ χ

Ts(t) ∪ {Vτ = a ∗ Vt} if τ = at.

The definition of Ps in turn makes use of the function Ts(t) that returns an atom

representing a term t. Here, let s ∈ S be fixed and par(s) = {r1, . . . , rq}, lr = λ(r, s) for

r ∈ par(s), and par(s, l) = {r ∈ par(s) | lr = l}. In order to define atoms corresponding

to the evaluation of terms depending on the active labels (those without subscript t),

we use the ASP aggregates #sum, #min, #max, and #count, as well as variables Zr
corresponding to completions of the guessed assignment of statements r ∈ S. Atoms

corresponding to terms whose evaluation is independent of the active labels, on the other

hand, can be constructed based on the instance G only. We define Ts(t) as

{ Vt = #sum{Zri1 , ri1; . . . ;Zriw , riw} }
with {ri1 , . . . , riw} = par(s, l) if t = #l and par(s, l) 	= ∅
{ Vt = N } with N = |par(s, l)| if t = #tl

{ Vt = #min{lr1 : Zr1 = 1; . . . ;lrq : Zrq = 1} }
if t = min

{ Vt = N } with N = min{lr1 , . . . , lrq} if t = mint

{ Vt = #max{lr1 : Zr1 = 1; . . . ;lrq : Zrq = 1} } if t = max

{ Vt = N } with N = max{lr1 , . . . , lrq} if t = maxt

{ Vt = #sum{lr1 , r1 : Zr1 = 1; . . . ;lrq , rq : Zrq = 1} }
if t = sum and par(s) 	= ∅

{ Vt = N } with N = lr1 + . . .+ lrq if t = sumt

{ Vt = #count{lr1 : Zr1 = 1; . . . ;lrq : Zrq = 1} }
if t = count and par(s) 	= ∅

{ Vt = N } with N = |{lr | r ∈ par(s)}| if t = countt

{ Vt = 0} if t = #l and par(s, l) = ∅
or t = sum, t = count and par(s) = ∅.
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For instance, the first atom Vt = #sum{Zri1 , ri1; . . . ;Zriw , riw} corresponds to the

computation of valso(#l) when par(s, l) = {ri1 , . . . , riw} 	= ∅. Here, o = mz
s is the multiset

of active labels of s under z and the assignments of truth values to statements of the

ADF interpretation z are captured via the variables Zrij (1 ≤ j ≤ z). An assumption

of the encoding is that such variables Zrij take only values 1 or 0, thus corresponding

to two-valued interpretations (e.g. completions). This, as in the encodings for ADFs,

is taken care of in the rules in which the atoms Ωs occur (see the re-definition of the

modules πsat and πsat2 defined in Section 3 for GRAPPA instances below).

As pointed out earlier, the encodings for GRAPPA instances for σ ∈ {adm, com, prf}
differ from the corresponding ADF encodings only in the fragments handling the evalua-

tion of the acceptance patterns (under the completions of an interpretation). Hence, the

encodings πσ(G) for the GRAPPA instance G boil down to the programs

πadm(G) := π0(G) ∪ πguess ∪ π′
sat(G) ∪

{:-arg(S), asg(S, 1), inv(S). :-arg(S), asg(S, 0), sat(S).};
πcom(G) := πadm(G) ∪ {:-arg(S), asg(S,u),not inv(S).

:-arg(S), asg(S,u),not sat(S).};
πprf(G) := πadm(G) ∪ πguess2 ∪ π′

sat2(G) ∪ πcheck(G) ∪ πsaturate ∪
{:-not saturate.}.

Here, the difference to the encoding for ADF semantics is the use of the program

fragments

π′
sat(G) := {sat(s):-ωs, Vα(s) = 1.

inv(s):-ωs, Vα(s) = 0. | s ∈ S};
π′
sat2(G) := {sat2(s):-ω2s, Vα(s) = 1.

inv2(s):-ω2s, Vα(s) = 0. | s ∈ S}
where we make use of the shortcuts ωs and ω2s. In their definitions, we in turn use the

function Ωs(φ) returning the atoms for evaluating a GRAPPA acceptance function:

ωs := {asg(r, Yr), lt(Yr, Zr) | r ∈ par(s)} ∪ Ωs(α(s));

ω2s := {asg2(r, Yr), lt(Yr, Zr) | r ∈ par(s)} ∪ Ωs(α(s)).

Proposition 6

For σ ∈ {adm, com, prf}, it holds for every GRAPPA instanceG that σ(G) ∼= AS(πσ(G)).

Proof

(sketch) The proofs are exactly as those of Propositions 1, 2, and 3; they differ only in

the parts in which reference is made to the encoding of the evaluation of the acceptance

patterns.

Example 6

Consider the GRAPPA instance G with S = {a, b, c, d}, E = {(b, b), (a, c), (b, c), (b, d)},
L = {+,−}, λ((b, b)) = +, λ((a, c)) = +, λ((b, c)) = +, λ((b, d)) = −, π(s) = #t(+) −
#(+) = 0 ∧#(−) = 0 for every s ∈ S.

The encoding πadm(G) is as follows:
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arg(a). arg(b). arg(c). arg(d).

lt(u,0). lt(u,1). lt(0,0). lt(1,1).

asg(S,0) :- not asg(S,1), not asg(S,u), arg(S).

asg(S,1) :- not asg(S,u), not asg(S,0), arg(S).

asg(S,u) :- not asg(S,0), not asg(S,1), arg(S).

sat(a) :- Vbp1s2t = 0,Vbp1s2 = (-1)*Vbp1s2t,

Vbp1s1t = 0, Vbp1s1 = Vbp1s1t + Vbp1s2,

Vbp2s1t = 0, Vbp2s1 = Vbp2s1t,

Vbp1 = #sum{1: Vbp1s1 = 0},

Vbp2 = #sum{1: Vbp2s1 = 0}, Vp=Vbp1&Vbp2, Vp=1.

unsat(a) :- Vbp1s2t = 0,Vbp1s2 = (-1)*Vbp1s2t,

Vbp1s1t = 0, Vbp1s1 = Vbp1s1t + Vbp1s2,

Vbp2s1t = 0, Vbp2s1 = Vbp2s1t,

Vbp1 = #sum{1: Vbp1s1 = 0},

Vbp2 = #sum{1: Vbp2s1 = 0}, Vp=Vbp1&Vbp2, Vp=0.

sat(b) :- asg(b,Y_b),lt(Y_b,Z_b),

Vbp1s2t = #sum{Z_b,b},Vbp1s2 = (-1)*Vbp1s2t,

Vbp1s1t = 1, Vbp1s1 = Vbp1s1t + Vbp1s2,

Vbp2s1t = 0, Vbp2s1 = Vbp2s1t,

Vbp1 = #sum{1: Vbp1s1 = 0},

Vbp2 = #sum{1: Vbp2s1 = 0}, Vp=Vbp1&Vbp2, Vp=1.

unsat(b) :- asg(b,Y_b),lt(Y_b,Z_b),

Vbp1s2t = #sum{Z_b,b},Vbp1s2 = (-1)*Vbp1s2t,

Vbp1s1t = 1, Vbp1s1 = Vbp1s1t + Vbp1s2,

Vbp2s1t = 0, Vbp2s1 = Vbp2s1t,

Vbp1 = #sum{1: Vbp1s1 = 0},

Vbp2 = #sum{1: Vbp2s1 = 0}, Vp=Vbp1&Vbp2, Vp=0.

sat(c) :- asg(a,Y_a),lt(Y_a,Z_a),asg(b,Y_b),

lt(Y_b,Z_b),Vbp1s2t = #sum{Z_a,a;Z_b,b},

Vbp1s2 = (-1)*Vbp1s2t,Vbp1s1t = 2,

Vbp1s1 = Vbp1s1t + Vbp1s2, Vbp2s1t = 0,

Vbp2s1 = Vbp2s1t, Vbp1 = #sum{1: Vbp1s1 = 0},

Vbp2 = #sum{1: Vbp2s1 = 0}, Vp=Vbp1&Vbp2, Vp=1.

unsat(c) :- asg(a,Y_a),lt(Y_a,Z_a),asg(b,Y_b),

lt(Y_b,Z_b),Vbp1s2t = #sum{Z_a,a;Z_b,b},

Vbp1s2 = (-1)*Vbp1s2t,Vbp1s1t = 2,

Vbp1s1 = Vbp1s1t + Vbp1s2, Vbp2s1t = 0,

Vbp2s1 = Vbp2s1t, Vbp1 = #sum{1: Vbp1s1 = 0},

Vbp2 = #sum{1: Vbp2s1 = 0}, Vp=Vbp1&Vbp2, Vp=0.

sat(d) :- asg(b,Y_b),lt(Y_b,Z_b),

Vbp1s2t = 0,Vbp1s2 = (-1)*Vbp1s2t,

Vbp1s1t = 0, Vbp1s1 = Vbp1s1t + Vbp1s2,

Vbp2s1t = #sum{Z_b,b}, Vbp2s1 = Vbp2s1t,
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Vbp1 = #sum{1: Vbp1s1 = 0},

Vbp2 = #sum{1: Vbp2s1 = 0}, Vp=Vbp1&Vbp2, Vp=1.

unsat(d) :- asg(b,Y_b),lt(Y_b,Z_b),

Vbp1s2t = 0,Vbp1s2 = (-1)*Vbp1s2t,

Vbp1s1t = 0, Vbp1s1 = Vbp1s1t + Vbp1s2,

Vbp2s1t = #sum{Z_b,b}, Vbp2s1 = Vbp2s1t,

Vbp1 = #sum{1: Vbp1s1 = 0},

Vbp2 = #sum{1: Vbp2s1 = 0}, Vp=Vbp1&Vbp2, Vp=0.

:- arg(S), asg(S,1), unsat(S).

:- arg(S), asg(S,0), sat(S).

�

5 System and overview of experiments

We have implemented a system which, given an ADF, generates the encodings for the

ADF presented in this work. The system, YADF (“Y” for “dynamic”), is publicly available

(see the link provided in the introduction) and currently (version 0.1.1) supports the

admissible, complete, preferred, and stable semantics. It is implemented in Scala and

can, therefore, be run as a Java executable.

The input format for YADF is the input format that has become the standard for ADF

systems. Each statement x of the input ADF is encoded via the string s(x) (alternatively,

for legacy reasons, also statement(x) can be used). The acceptance condition F of x is

specified in prefix notation via ac(x, F ). For example, the acceptance conditions of the

ADF from Example 1 are encoded as follows:

s(a).

s(b).

s(c).

ac(a,or(neg(b),b)).

ac(b,b).

ac(c,imp(c,b)).

Note the period at the end of each line. Here or, imp, neg stand for ∨, →, ¬, respectively.
On the other hand and, c(v), and c(f) can be used for ∧, �, and ⊥.

A typical call of YADF (using a UNIX command line) looks as follows:

java -jar yadf_0.1.1.jar -adm -cred a filename | \

./path/to/lpopt | ./path/to/clingo

Here, we ask YADF for the encoding of credulous reasoning w.r.t. the admissible semantics

for the ADF specified in the file specified via filename and the statement a. As hinted at

in the introduction to this work, using the rule decomposition tool lpopt2 (Bichler et al .

2016a) is recommended for larger ADF instances. We have tested YADF using the ASP

2 https://www.dbai.tuwien.ac.at/research/project/lpopt/
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solver clingo (Gebser et al . 2018). We provide the complete usage (subject to change in

future versions) of YADF:

usage: yadf [options] inputfile

with options:

-h display this help

-adm compute the admissible interpretations

-com compute the complete interpretations

-prf compute the preferred interpretations

-stb compute the stable interpretations

-cred s check credulous acceptance of statement s

-scep s check sceptical acceptance of statement s

A generator for encodings for GRAPPA following the methodology outlined in this work is

also available as part of the system GrappaVis3. The focus of this system is on providing

graphical means of specifying and evaluating GRAPPA instances and it includes means of

generating static as well as dynamic encodings to ASP.

We reported on an empirical evaluation of the performance of YADF w.r.t. the main

alternative ADF systems available at that time in Brewka et al . (2017). The other ADF

systems we considered then are the static ASP-based system DIAMOND Ellmauthaler and

Strass (2014) (version 0.9) as well as the QBF-based system QADF Diller et al . (2014)

(version 0.3.2). In these experiments, we found YADF to be competitive for credulous

reasoning under the admissible semantics, while outperforming DIAMOND and QADF when

carrying out skeptical reasoning under the preferred semantics.

Since our experimental evaluation for AAAI’17, there have been two particularly note-

worthy experimental evaluations of ADF systems including our system YADF (Diller et al .

2018; Linsbichler et al . 2018). All of these evaluations build on the experimental setup

of Brewka et al . (2017); in particular, they also focus on credulous reasoning for the

admissible semantics as well as skeptical reasoning for the preferred semantics. Yet, the

experiments consider larger sets of (also larger) ADF instances4. Also, the more recent

experimental evaluations include the latest version of DIAMOND, goDIAMOND (Strass and

Ellmauthaler 2017), as well as a novel system for ADFs based on incremental SAT solv-

ing, k++ADF (presented in Linsbichler et al . (2018)). We give a brief overview of the setup

and results of the mentioned evaluations to then summarize what is currently known

about the performance of YADF vs. other existing ADF systems.

As already indicated, the experimental evaluations of Diller et al . (2018); Linsbichler

et al . (2018) build on the setup from Brewka et al . (2017). In particular, they make use of

the graph-based ADF generator we introduced in Brewka et al . (2017)5. This generator

takes any desired directed graph as input and generates an ADF inheriting the structure

of the graph. This means that the edges of the graph become links and the nodes become

3 https://www.dbai.tuwien.ac.at/proj/adf/grappavis/
4 The more recent experiments do not consider, on the other hand, ADFs generated via the grid-based
generator used in the experiments reported on in Ellmauthaler (2012); Diller et al . (2014) and that
we also considered in Brewka et al . (2017). Note, nevertheless, that the grid-based generator offers
less flexibility in generating ADFs than the graph-based generator used in subsequent experiments.

5 This generator underlies the subsequent version available at https://www.dbai.tuwien.ac.at/proj/
grappa/subadfgen/.
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statements of the resulting ADF. In the experiments in Diller et al . (2018); Linsbichler

et al . (2018), the generator was only modified to take an undirected rather than directed

graph as input (providing more flexibility). A probability controls whether an edge in the

input graph will result in a symmetric link in the ADF (in the experiments a probability

of 0.5 is used); in case of non-symmetric links, the direction of the link is chosen at

random.

For constructing the acceptance conditions of the ADFs, the graph-based generator

assigns each of the parents of a statement to one of five different groups (with equal

probability in the experiments). This assignment determines whether the parent partici-

pates in a subformula of the statement’s acceptance condition representing the notions of

attack, group-attack, support, or group-support familiar from argumentation. Also, the

parents can appear as literals connected by the exclusive-or connective (⊕; this, in order

to capture the full complexity of ADFs). More precisely, if for a statement s0, the parents

s1, . . . , sn are assigned to the group for attack, the corresponding subformula for these

parents in the acceptance condition of s0 has the form ¬s1 ∧ . . .∧¬sn. The subformulas

for group-attack, support, group-support, and the exclusive-or group on the other hand

have the form ¬s1 ∨ . . . ∨ ¬sn, s1 ∨ . . . ∨ sn, s1 ∧ . . . ∧ sn, and l1 ⊕ . . .⊕ ln, respectively.

In the last suformula, li (1 ≤ i ≤ n) is either si or ¬si with equal probability. Also,

for groups to which no parents are assigned, the corresponding subformulas are � or ⊥
with identical probability. To generate the final acceptance condition of a statement, the

subformulas for the different groups of parents of the statement are connected via ∧ or

∨; again, with equal probability.

In Diller et al . (2018) (extending the evaluations from Keshavarzi Zafarghandi (2017)),

the authors compare the performance of ADF systems on acyclic, being those whose

underlying graph is acyclic vs. non-acyclic ADFs (i.e. ADFs whose underlying graph is

not guaranteed to be acyclic). The combinations of ADF and back-end systems used are

as in Brewka et al . (2017), except that now also the system goDIAMOND (version 0.6.6) is

considered6. Thus, QADF is version 0.3.2 with the preprocessing tool bloqqer 035 (Heule

et al . 2015) and the QSAT solver DepQBF 4.0 (Lonsing and Biere 2010; Lonsing and

Egly 2017). YADF is version 0.1.0 with the rule decomposition tool lpopt version 2.0 and

the ASP solver clingo 4.4.0 (Gebser et al . 2018). Version 0.1.0 of YADF is identical to

version 0.1.1 except that it does not generate the encodings for the stable semantics. The

time-out set for the experiments reported on in Diller et al . (2018) is 600 s.

The main difference of the experimental setup used in Diller et al . (2018) w.r.t. that

of Brewka et al . (2017) is that now the benchmark set is generated from Dung AFs

interpreted as (undirected) graphs obtained from benchmarks used at the second inter-

national competition of argumentation (ICCMA’17) (Gaggl et al . 2018). These result

from encoding assumption-based argumentation problems into AFs (“ABA”) (Lehtonen

et al . 2017), encoding planning problems as AFs (“Planning”) (Cerutti et al . 2017), and

a data set of AFs generated from traffic networks (“Traffic”) (Diller 2017). Specifically,

based on preliminary experiments, for the experiments in Diller et al . (2018) 100 AFs

were selected at random from a subset of AFs having up to 150 arguments in the very

6 The reason for not using the other more recent versions of DIAMOND, versions 3.0.x implemented in
C++ (Ellmauthaler and Strass 2016), is the decrease in performance to previous versions of DIAMOND
documented in Strass and Ellmauthaler (2017).
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dense AFs in the “ABA” data set, and 100 AFs at random from a subset of AFs having

up to 300 arguments in each of the “Planning” and “Traffic” benchmarks. From the re-

sulting 300 AFs interpreted as undirected graphs, 300 acyclic and 300 non-acyclic ADFs

were generated using the graph-based ADF generator.

In the study reported on in Linsbichler et al . (2018), the authors generate reasoning

problems from the same set of ADFs used in Diller et al . (2018)7 but also consider the

new ADF system k++ADF they implement. The authors also make use of novel versions

for the back-end systems w.r.t. previous experiments. Thus, for goDIAMOND version 0.6.6

is still used but now with clingo 5.2.1. For QADF version 0.3.28 with bloqqer 037 and

DepQBF 6.03 is considered. Finally, for YADF version 0.1.0 is taken in account, but now

with lpopt 2.2 and clingo 5.2.1. The version of k++ADF was version 2018-07-06; the SAT

solver used is MiniSAT (Eén and Sörensson 2003) version 2.2.0. The variation of back-

end systems used in Linsbichler et al . (2018) w.r.t. previous experiments leads to some

variation in the results obtained, in particular for YADF9. For the experiments reported

on in Linsbichler et al . (2018), the time-out is also larger than for previous experiments:

1800 s.

We summarize the results obtained in the studies from Diller et al . (2018) and Lins-

bichler et al . (2018) in bullet-point fashion (we of course refer to the alluded works for

details). As already hinted at, these studies build on (and largely confirm the results

obtained in) previous studies, mainly that of Brewka et al . (2017). When making refer-

ence to Diller et al . (2018), we refer to the studies on the (possibly) non-acyclic ADF

instances since these can be compared to the study of Linsbichler et al . (2018) which

does not consider acyclic ADFs (nevertheless, some comments on the performance of

especially YADF on the acyclic instances follow). In the summary, when mentioning re-

sults for a particular solver, we use the best of the results for that solver obtained in

the different studies. Also, as a reminder to the reader, in this discussion when we refer

to the solvers k++ADF, goDIAMOND, YADF, and QADF, except if stated otherwise, these are

versions 2018-07-06, 0.6.6, 0.1.0, and 0.3.2, respectively. In particular, we again note that

YADF version 0.1.0 is identical to the newer version detailed in this work (0.1.1) for the

encodings considered in the experiments we allude to10.

• For credulous reasoning w.r.t. the admissible semantics each of k++ADF (when using

the link-information-sensitive variant ADM-K-BIP, rather than ADM-2), goDIAMOND,

7 The exact encodings used differ nevertheless because the choice of the statements whose acceptability
is checked may differ.

8 The paper mistakenly reports use of version 2.9.3 which does not exist (QADF version 0.3.2 is imple-
mented in version 2.9.3 of the programming language Scala).

9 Especially for the admissible semantics. For example, YADF has 47 and 21 time-outs on the “Traffic”
and “Planning” data sets, while in the study reported on in Diller et al . (2018) the time-outs were 2
and 0, respectively. We have determined (via tests carried out using the different versions of lpopt on
instances for which there were time-outs in the study from Linsbichler et al . (2018)) the cause of this
to be the use of lpopt version 2.2, which seems to have problems in generating the rule decompositions
of some of the encodings obtained via YADF in a timely manner; while versions previous to 2.2. (we
also tried 2.0 and 2.1) don’t have this issue.

10 We note also that there is meanwhile a newer version of QADF (see https://www.dbai.tuwien.ac.at/
proj/adf/qadf/) (version 0.4.0) which includes link-information-sensitive encodings (see Section 3.1.3
of Diller (2019)), but is otherwise (i.e. when not using the link-information-sensitive variants of the
encodings) identical to version 0.3.2 considered in the experiments reported on in Diller et al . (2018);
Linsbichler et al . (2018).
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and YADF (making use of lpopt version 2.0 as in the experiments from Brewka et al .

(2017); Diller et al . (2018)) have rather acceptable performance on the “Traffic”

and “Planning” data sets. (The same holds for DIAMOND version 0.9 on a small set of

ADFs generated from metro-networks (Brewka et al . 2017; Keshavarzi Zafarghandi

2017).) The order in which we mention the solvers reflects the improvement in

performance, with k++ADF being the clear “winner”. The system QADF (even in the

more advantageous configuration with bloqqer version 035 and DepQBF version

4.0 from Brewka et al . (2017); Diller et al . (2018)) on the other hand already

has quite a few time-outs on the “Traffic” and “Planning” instances. We remind

the reader that the “Traffic” and “Planning” data sets include ADFs with 10 to

300 statements resulting from the underlying graphs obtained from representing

transportation networks as AFs (Diller 2017) and encoding planning problems into

AFs (Cerutti et al . 2017), respectively.

— Thus, k++ADF (in the link-information-sensitive variant ADM-K-BIP) had 0

time-outs (1800 s) and 0.05 s mean running time, goDIAMOND 0 time-outs and

6.42 s mean running time in the experiments reported on in Linsbichler et al .

(2018) on the “Traffic” data set. YADF had two time-outs (600 s) and 5.68 s

mean running time (disregarding time-outs) in the experiments reported on

in Diller et al . (2018). The system k++ADF (implementing ADM-K-BIP) had 0

time-outs and 0.14 s mean running time, goDIAMOND 0 time-outs and 6.72 s

mean running time in the experiments reported on in Linsbichler et al . (2018)

on the “Planning” data set. YADF had 0 time-outs and 13.20 s mean running

time in the experiments reported on in Diller et al . (2018). QADF had 25

time-outs and 2.15 s mean running time on the “Traffic” instances and 59

time-outs and 14.63 s mean running time on the “Planning” instances (Diller

et al . 2018).

• For credulous reasoning w.r.t. the admissible semantics, but now on the “ABA”

data set; here all ADF systems have some time-outs, yet again the results for k++ADF

are the most promising. We remind the reader that the “ABA” data set consists

in 100 very dense ADFs having between 10 to 150 statements resulting from the

underlying graphs of encoding problems for assumption-based AFs to AF reasoning

problems (Lehtonen et al . 2017).

— Thus, k++ADF (now in the ADM-2 variant) had 12 time-outs (1800 s) and mean

running time of 16.12 s in the experiments of Linsbichler et al . (2018). In-

terestingly, for the “ABA” data set QADF (with bloqqer version 035 and

DepQBF version 4.0) gets “second-place” having 30 time-outs (600 s) and 8.15 s

mean running time in the experiments from Diller et al . (2018). The sys-

tem goDIAMOND has 52 time-outs and YADF 56 time-outs in the experiments

from Diller et al . (2018).

• For the preferred semantics, the performance of YADF and QADF (as well as version

0.9 of DIAMOND on ADFs resulting from traffic networks (Brewka et al . 2017; Ke-

shavarzi Zafarghandi 2017)) worsens considerably on the “Traffic” and “Planning”

problems (w.r.t. results for the admissible semantics), while k++ADF (particularly
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in the link-information-sensitive variant PRF-K-BIB-OPT, but not in the variant

PRF-3) and goDIAMOND have much better performance.

— Thus, YADF (lpopt version 2.0) has 36 time-outs on the “Traffic” instances

and 71 time-outs on the “Planning” instances in the study from Diller et al .

(2018). QADF has 80 and 100 time-outs on the “Traffic” and “Planning” bench-

marks (again, study from Diller et al . (2018)). On the other hand, goDIAMOND

has 0 time-outs on both data sets with 28.42 and 17.52 s mean running times

on the “Traffic” and “Planning” instances, respectively (Linsbichler et al .

2018). The system k++ADF (in the PRF-K-BIB-OPT variant) manages having

only one time-out on the “Traffic” instances and three on the “Planning”

instances with 17.18 and 11.14 s mean running time, respectively (Linsbichler

et al . 2018).

• All ADF systems also have time-outs when solving skeptical acceptance w.r.t the

preferred semantics on the “ABA” data set, with k++ADF in the PRF-K-BIB-OPT

variant having the least (16 time-outs (Linsbichler et al . 2018)) and QADF the most

(81 time-outs (Diller et al . 2018)).

— Thus, k++ADF in the PRF-K-BIB-OPT variant has 16 time-outs and 25.90 s

mean running time (Linsbichler et al . 2018), while QADF has 81 time-outs

(with 32.73 s running time on the remaining instances) (Diller et al . 2018).

YADF has 57 time-outs and 39.46 s mean running time, while goDIAMOND has

52 time-outs and 27.67 s mean running time (Diller et al . 2018).

To conclude, while our experiments from Brewka et al . (2017) (on the instances ob-

tained via the grid-based generator first used in Ellmauthaler (2012) and ADFs con-

structed from a limited set of traffic networks also used in subsequent experiments) sug-

gested YADF to be the best performing of the then considered systems (including DIAMOND

version 0.9 and QADF 0.3.2), this picture has changed with subsequent experiments (Diller

et al . 2018; Linsbichler et al . 2018) involving the new systems goDIAMOND and k++ADF

as well as more (and larger) data sets. In particular, the clearly overall best performing

approach for ADF systems seems to be, at current moment, the incremental SAT-based

approach implemented in the system k++ADF (despite the fact that even this system

still has quite a few time-outs for the preferred semantics on the ABA data set). But

even just considering ASP-based systems, while competitive for the admissible semantics,

YADF is clearly behind in performance w.r.t. goDIAMOND for the preferred semantics on

the “Traffic” and “Planning” data sets.

Some reason for nevertheless sticking to the dynamic ASP-based approach presented in

this work (vs. static encodings) is provided by the results on the performance of YADF on

the ABA data set (in the configurations from Diller et al . (2018)). Here, the constraint

built into goDIAMOND of not supporting ADFs with statements having more than 31

parents is reflected in the constant number of time-outs (52; and similar mean running

times: ca. 21 s for admissible, 27 s for preferred) on all reasoning tasks (admissible and

preferred) and for acyclic as well as non-acyclic instances (the latter in the experiments

from Diller et al . (2018)). Indeed, the constraint built into goDIAMOND of not supporting

ADFs with statements having more than 31 parents is due to the fact that this system
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(as previous versions of DIAMOND) needs to convert acceptance conditions of ADFs into

a Boolean function representation (with a potential exponential explosion), which our

dynamic encoding strategy allows to circumvent. Thus, while YADF still has many time-

outs (in fact, a few more than goDIAMOND) there is some (slight) improvement on the

acyclic instances: 54 time-outs with 7.38 s mean running time vs. 56 time-outs with

31.39 s mean running time for the admissible semantics and 54 time-outs with 16.77 s

mean running time vs. 57 time-outs with 39.46 s mean running time for the preferred

semantics. These results suggest room for improvement as well as, in accordance with

the theoretical considerations motivating our dynamic ASP-based approach, a potential

niche for the use of (a further optimized) YADF vs. for example, goDIAMOND.

6 Discussion

In this work, we developed novel ASP encodings for advanced reasoning problems in

argumentation that reach up to the third level of the polynomial hierarchy. Compared to

previous work, we rely on translations that make a single call to an ASP solver sufficient.

The key idea is to reduce one dimension of complexity to “long” rule bodies, exploiting

the fact that checking whether such a rule fires is already NP-complete (as witnessed by

the respective complexity of conjunctive queries (Chandra and Merlin 1977)); see also

Bichler et al . (2016b) who advocated this idea as a programming technique in the world

of ASP.

We implemented our approach for ADF and GRAPPA. Our experiments show the

potential of our approach. Still, the number of statements we can handle is somewhat

limited. Our encodings thus might also be interesting benchmarks for ASP competitions.

Nonetheless, there are certain aspects which have to be considered in future versions of

our system. In fact, a crucial aspect for the programming technique due to Bichler et al .

(2016b) is the possible decomposition of long rules, since grounders have severe problem

with such rules. As reported in a recent paper (Bichler et al . 2018) that also employs this

technique, the actual design of long rules can strongly influence the runtime. We shall

thus analyze our encodings in the light of the findings in Bichler et al . (2018) in order to

allow for better decomposition whenever possible.

Beyond boosting performance of our system, future work is to apply our approach

to alternative ADF semantics (Polberg 2014) as well as more recent generalizations of

ADFs and GRAPPA such as weighted ADFs (Brewka et al . 2018) and multi-valued

GRAPPA (Brewka et al . 2019); for dealing with possibly infinitely many values in this

context, recent advances in ASP (Janhunen et al . 2017) might prove useful. Also the

application of other recent ASP techniques (e.g. Bogaerts et al . (2016); Redl (2017)) that

allow for circumventing the problem of an exponential blowup when problems beyond

the second level of the polynomial are treated is of interest.
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