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Abstract

We consider the nonlinear evolution of a Hamiltonian system as the system passes
through a linear resonance (as the system parameters vary). Two cases are con-
sidered. In the first case the linearized problem (at resonance) possess a full com-
plement of normal mode solutions. This case is presented in the context of the
interaction between modes which may have oppositely signed energy. The second
case considered has an additional degeneracy in that the linearized problem (at
resonance) has a single normal mode solution.

Both cases are analysed using normal form theory and in both cases the systems
governing the transition through resonance are shown to be completely integrable in
the classical sense. Possible bifurcations as the resonance is traversed are discussed.
Conditions for the existence of algebraic singularities at some finite positive time
are also presented.

1. Introduction

In this paper we are interested in the nonlinear evolution of a conservative
dynamical system as the linear normal mode solutions pass through reso-
nance. The resonance occurs when two normal frequencies ai\j. are such
that |eoi| « |G>2| (for some parameter value). The energy, is,-, of the mode
corresponding to the frequency w, can (though normalization) be related to
the sign of the frequency <u, at the point of resonance, i.e. sign(£',) = sign((u,).
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398 J. P. Denier and R. H. J. Grimshaw [2]

The physical significance of a mode of negative energy is seen when the
energy E corresponds to the Hamiltonian function for the linearized equa-
tions of motion. A mode then has negative energy when the excitation of
this mode lowers the energy level of the system relative to some basic state.
For example, in shear flows, for which a mode is a wave on an interface sep-
arating two fluids of different densities, exciting a wave of negative energy
lowers the total energy of the system relative to the previously unperturbed
flow, see Cairns [2], Craik and Adam [3].

The transition through a resonance of the linear normal mode solutions
can be classified into two distinct classes depending on the signs of the energy
of the two interacting modes (see Arnold [1], App. 6). The case when both
normal modes have the same signed energy (i.e. both positive or both negative
energy modes) will not be considered here. However, the case when the two
interacting modes have oppositely signed energies is of particular interest
(this case arises in many physical situations). We will restrict our attention to
this case. As will be shown this form of interaction between the linear normal
modes gives rise to a single complex mode (which in the linear theory allows
for unlimited growth in both modes during the interaction). The production
of this complex mode poses the question of how the solutions to the fully
nonlinear problem behave as the point of resonance is traversed.

The resonant interaction of positive and negative energy modes in con-
servative dynamical systems has received considerable attention in the last
decade. The linear theory has been considered by Grimshaw, [6], (in the case
when the system parameters are slowly-varying functions of the time) who
shows that the action in both modes grows during resonance. Applications
to resonant interactions (resonant triads -W\ + coi ± coj s» 0) in fluids have
been considered by Craik and Adams, [3], and Cairns, [2], who show that
the presence of both positive and negative energy modes in a resonant traid
results in the production of an explosive instability. The general problem of
the nonlinear interaction of positive and negative energy modes in resonant
traids occurring in Hamiltonian systems has been considered by Grimshaw
[ 18], (again the parameters are slowly varying). However, the case of the triad
resonance is inherently nonlinear whereas it is the case of the 2-mode reso-
nance which occurs in linear system. The linear instability caused through
the resonant interaction of a positive energy mode with a negative energy
mode is characteristic of the Kelvin-Helmholtz instability found in parallel
shear flows; see Cairns [2], who considers the problem for both a two-layer
and a three-layer shear flow.

The main bodies of work on resonant interactions in Hamiltonian systems
is to be found in the literature of plasma physics and celestial mechanics.
The celestial mechanics literature provides a wealth of work on this subject,
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[3] Nonlinear interaction of modes 399

most of which is concerned with the restricted three body problem which
exhibits such behaviours at the Routhian points (the term Hamiltonian Hopf
bifurcation has been coined for problems of the type that we wish to con-
sider; see van der Meer [15], and references therein). In plasma physics
instabilities which arise as a result of the interaction of positive- and nega-
tive energy modes are known as reactive instabilities, see Davidson, [4], and
the references contained therein.

In this paper we consider the nonlinear response of a Hamiltonian system
in which a (linear) positive energy mode interacts with a negative energy mode
through a resonance. The main question to be considered is the response of
the system as the resonance is traversed as some system parameter(s) are
varied. We employ the method of normal mode theory and make use of
normal forms to reduce the Hamiltonian system to a simpler system (which
is still Hamiltonian) which can be studied to yield some of the details of the
dynamics of the problem. Two cases are considered and are characterised by
the number of normal modes solutions which the linear system admits at the
point of resonance.

2. Semi-simple resonance

(a) Formulation. In this section we consider a system of 2-degrees-of free-
dom governed by Hamilton's canonical equations

dq/dt = dH(q, p)/0p, -dp/dt = 8H(q, p)/0q (2.1)

where //(q,p;//i/) is the Hamiltonian function; q = (#1,02). P = (Pi>Pi) a r e

the generalized coordinates and momenta, respectively, ft and v are system
parameters. To discuss the transition of the system (2.1) through a linear
resonance, it is convenient to introduce two parameters; these parameters
will later be related to each other leaving a single parameter to describe the
transition through the resonance. The Hamiltonian is assumed to be analytic
in all arguments. We suppose that p = q = 0 is an equilibrium solution
of (2.1) for all ft and v. The stability of this solution is determined by the
linearization of (2.1) about the origin:

dq/dt = BTq + Cp, -dp/dt = Bp + Aq (2.2)

where

C ( 02H
Pj)0

C(

The subscription 0 indicates that the function is evaluated at the origin in
(q,p) space; T indicates the transpose. The system (2.2) has normal mode

https://doi.org/10.1017/S0334270000006755 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006755


400 J. P. Denier and R. H. J. Grimshaw [4]

solutions consisting of the triplet [co;£, rf\, where
(q,p) = (£,>/) exp(m>0 (2.3)

and
ico£ = BTZ + Ct); -icon = Bn + A£. (2.4)

From (2.4) we see that [—7o;^,rj] is also a solution. Also, not that the ad-
joint system to (2.4) is just (2.4) with co replaced by To. Thus [co;€,rj] and
[—co;£, rj] are solutions of (2.4) (here £, rj are the adjoint normal modes and
are solutions of (2.4) with co replaced by To). From (2.4) we can show that

-i(a> + co)(fn - rjT$) = 2(fA£ + JfTBTi + f Br, + rjTCr,), (2.5a)

-i((o-a>)(fri-rjTZ) = 0. (2.5b)
Similar relations hold for the adjoint normal modes. We note that the right
hand side of the first equation is real-valued and can be considered as the
averaged Hamiltonian for that mode. Following Grimshaw, [6], we can show
that the normal modes can be put into four categories (positive-energy modes,
negative-energy modes, complex modes and imaginary modes).

(i) Positive -energy modes: In this case the averaged Hamiltonian is posi-
tive-definite. From (2.5b) it follows that the normal frequencies are real. The
normal modes are normalized according to

fr,-rjTt = i. (2.5c)
It follows from (2.5a) that the normal frequency co is positive.

(ii) Negative-energy modes: In this case the averaged Hamiltonian is nega-
tive-definite. The normalization is as in (i), however from (2.5a) we see that
the normal frequency co is negative.

(iii) Complex modes In this case the averaged Hamiltonian is indefinite,
and the right-hand side of (2.5a) vanishes. From (2.4) and (2.5a,b) it follows
that

fn-riTZ=£Tt,-fjTZ = fri = fz = O,
and the normal modes occur as a quartet, [co;£,n], [—co;£,Tj], [cd;£, fj],
[—co;£, rf]. The normal frequency is complex with nonzero real and imag-
inary components and so each member of the quartet is distinct. The normal
modes are normalized by

Z n - n t = i-
(iv) Imaginary modes In this case the right hand side of (2.5a) vanishes,

the normal frequency co now being pure imaginary. The normal modes occur
in pairs [co;£, ri\ and \co;^, if]. The normal modes are normalized by

nT
n - n T t = i

and since co = -75 we can take £, n, <f, rj to be real valued.
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(b) Linear theory. We assume that at fi = v = 0 the system (2.3) has
normal mode solutions consisting of the pair

[A;a,,b,], M ; a , , b , ] (2.6a)

and the pair
[A;a2)b2], M ; a 2 ) b 2 ] . (2.6b)

Then at n = v = 0 the normal frequencies satisfy

o)i+o)2 = 0. (2.7)

The system is said to be in 1: - 1 resonance at fi = v = 0. We can consider
A(> 0) as a normal frequency of multiplicity two whose associated normal
mode is

fo = <*iai + a2a2, */0 = c*ibi + a2jb2 (2.8)

where the a,'s are, as yet, undetermined functions of some parameter. Note
that this case has been termed the semi-simple Hamiltonian Hopf bifuca-
tion since (2.4) possesses a full complement of normal mode solutions (the
nonsemi-simple case occurs when (2.4) has an additional degeneracy in that
for the normal frequency k there is a single normal mode solution). Here we
have assumed that the a, and b, are independent.

Due to the multiplicity of the normal frequency A we can impose the
orthogonality conditions

ajbfc - bja* = iSjk, (2.9a)

aJb*-bJa* = 0. (2.9b)

To obtain the higher order corrections to the normal fequencies we assume
that n and v are both small parameters and relate v to fi by

v = fie.

We now expand all the relevant quantities in (2.4) in powers of fi

o) I , -0)2 = A + fiSo) + O(n2),

and
A = AQ + USA + O(fi2),

where
Ao = A(0,0), SA = dA(0,0)/d/i + edA(0,

with similar expressions for B and C. Substitution of these expansions into
(2.4) yields at O(/i)

So)Ejkak = Xjk<*k, 0 = 1,2) (2.10)
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where we have made use of the orthogonality conditions (2.9a,b); the a^,
(k = 1,2), are the coefficients in the leading order normal mode vector (£0, tjo)
(see (2.8)). Here

Xn = a ^ a , + af<J5ra, + a|<55b, + bf^Cbi = Ji\,

In = f£6Aa2 + tfSBTH? + idSBb? + bTdCb2 = 72 2

and

From (2.10) the O(fi) "normal frequencies" are seen to be given by

26c0W=Xn-X22±[(Xu+X22)2-4\Xn\2]l/2, r = l , 2 .

The corresponding "eigenvectors" are denoted by a^\ Since the leading order
normal modes (ai,bi), (a"2,b2) are independent of both n and e we may write

Xij = Pij + eSij, ( / , „ / = 1 ,2)

where both P,; and Sij are independent of e. Following Grimshaw, [6], it can
be shown that the freedom of choice in choosing the leading order normal
modes (a,,b,) allows us to subject the a^'s to an arbitrary unitary trans-
formation which leaves the eigenfrequencies Sco invariant. We choose this
transformation to diagonalize {Sjj) and put

where, without loss of generality, we may assume that S\ > S2. Also by
suitably redefining the parameter e we may assume that P\ \ = P22 = 0. Mak-
ing use of these manipulations we find that 0{fi) corrections to the normal
frequencies may now be written as

2dwl>2 = e(Si + S2) ± [e2(Si - S2)
2 - 4|P12|2]1/2 (2.11)

with the corresponding "eigenvectors" given by (2.10). Note that at e = Co
the system (2.10) has a double zero 'eigenvalue' and a single 'eigenvector'

From (2.11) we see that Sco is real valued when [] > 0, while for [] < 0 5co
is complex with nonzero real an imaginary parts. It follows from the above
analysis that

co\ = k + fidcoi + O(fi2), co2 = -X - fidco2 + O(/i2)

so that for e = ±eo we have an exact resonance given by (2.7) (see Figure 1).
Here eo is given by

- S2)
2 - 4\Pl2\

2 = 0. (2.12)
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FIGURE 1. A plot of a>\^ as a function of e; dashed curve shows Im(w).

Thus, the consequence of the interaction of a positive and a negative energy
mode due to the resonance (2.7) is the 'production' of a complex mode (which
exists in the parameter range |e| < £o)- At this stage linear theory predicts
the exchange of energy between what were the positive and negative energy
modes due to the production of the complex mode. We also note that it
can be shown that the action is conserved in the parameter region in which
the complex mode is present; however this conservation of action allows for
exponential growth in both modes when the parameter lies in the region in
which the complex mode is present (see Grimshaw, [6]).

We emphasize that these conclusions are based solely upon linear theory;
to fully analyse the behavior of the system due to the production of the
complex mode we must incorporate the nonlinear terms into the analysis.

(c) Nonlinear theory. Consider the nonlinear problem (2.1). For simplicity
of notation we write

k(q,p;/i,e) (2.13)

where Hk (k > 2), is homogeneous of degree k in qt, /?,-. Each Hk is assumed
to be analytic in all arguments. To analyse the nonlinear problem we first
reduce the system (2.1) with Hamiltonian (2.13) to its normal form. This
involves a succession of contact transformations which convert each Hk into
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its normal form. We shall use the following procedure for transforming the
quadratic Hamiltonian H2 to its normal form. Let

q = Q£t + Q&, q = Qtm + QiVi
where the (£,,»/,-) are the normal mode solutions of (2.3) corresponding to
the normal frequencies cu,-. However this transformation has an inherent
singularity which arises through the form of the leading order normal mode
(£o> fo) given by (2.8). This singularity arises due to the presence of the a^'s
in (2.8); the a^'s induce a singularity in the transformation at |e| = eo (since
at |e| = Co there is a single 'eigenvector' (a^) of the system (2.10). This
difficulty can be overcome by instead defining the transformation according
to _

q = Qi*i + Qi*i, P = fi/b,- + Q,b,
where the a,'s and b,'s are solutions of (2.4) with <y = A and satisfy the
orthogonality conditions (2.9a,b). With such a transformation the system
(2.1) becomes

n

dQx/dt = i(X + An)Qi + iAnQ2 + *5>tf3/»Gi (2.14a)

dQi/dt = - i(A- A22)<22 + iA12Gi + iJ2dH*/dQ2 (2.14b)
3

together with the corresponding complex conjugate equations; here A,-y- =
HXij and only the leading order linear terms have been retained. We have
made use of the orthogonality conditions (2.9a,b) and have assumed that the
a, and b, are chosen so as to produce (2.11). If in (2.14a) and (2.14b) we
define _

Pi = -iQh (1 = 1,2)
then the transformation from (q,p) to (Q, P) is a contact transformation (i.e.
preserves the Hamiltonian structure of the system). The Hamiltonian is given
by

3

To transform the higher order terms of the Hamiltonian to their normal
form we make use of the method of Lie transforms (see Appendix A). This
removes all non-resonant terms from the Hamiltonian function. The Hamil-
tonian then has the normal form

H = A(|M,|2 - |u2|2) + A,i|«, |2 + A12M,M2

_ b

+ A12M,W2 + A 2 2 |M 2 | 2 + £ u\4uTun
2, (2.15)

jkmn

the sum being over all indices j , k, m, n such that j+n = k+m = 2. However
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the Hamiltonian (2.15) must be real, since our original Hamiltonian was real.
Thus the nonlinear coefficients must satisfy

bjkmn = bmnjk,

for all possible indices j , k, m, n. Hamilton's canonical equations for the
Hamiltonian (2.15) are given by

i(A +A,,)«, + iAnu2 + / X m ^ « " i " 2 « r 1 " 2 . (2.16a)

du2/dt = /(A - A22)u2 - iA12«i - iY,kbjkmnuiuk
2-

lu?un
2. (2.16b)

From the linear theory we know that the "bifurcation problem" is governed
by the term

t7 = (All+A22)-4|A12|2.

To facilitate the analysis of the system (2.16a,b) as a changes sign we write

w, =nl/2dAl/d(r)[i(X+ 1/2(AU +A22))/]

u2 = ftl/2dA2/d(T)[i(l + 1/2(A,, + A22))/]

where x = \it and A,; = nXij\ (this corresponds to removing the oscillatory
part of the solution which arises from the real part of the normal frequencies
<o\ and co2). From (2.16a) and (2.16b) we obtain

dAi/dr = (i/2)0fn + ̂ 22)^1 + iXnM + iy\mbjkmnA{A~k
2~A™~XAn

2

(2.17a)

dA2/dT = - ixl2Ai - (i/2)(xn + Xn)A2 - i^kbikmnA$2
XA~m

x A\
(2.17b)

which are Hamilton's canonical equations for the real Hamiltonian

H(AiAi)=2-(Xn+X22)(\Ai\
2 + \A2\

2)

^ 2 { i ' (2.18)

the canonical variables being (Ai,A2) and {—iA\,iA2). The system (2.17a,b)
can now be studied to determine what bifurcations occur as the parameter a
changes sign.

Before proceeding there are several points to note from (2.17a) and(2.17b).
Firstly, it is easily shown that the system possesses the integral of motion

I = \A\\2 - \A2\
2 = constant

which represents the conservation of action in both modes. Note that this
conservation law allows for unlimited growth in the two modes (cf section
2(b)). Since the two degree of freedom system governed by (2.17a,b) is
Hamiltonian and possess two integrals of motion, namely the action and
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the "energy" given by the Hamiltonian (2.18), it is completely integrable in
the classical sense.

Returning to the original system (2.16a,b) we note that according to Lia-
punov, [12], this system possesses two families of periodic solutions in the
parameter range for which the normal frequencies are real. Also, applying
the stable manifold theorem, [9], to the system (2.17a,b) (or equivalently to
(2.16a.b)) we find that in the parameter range a < 0 there can be no periodic
solutions in a neighbourhood of the origin in (u\, «2)-space (since in this re-
gion of the parameter space the normal frequencies are complex and hence
the origin in (wi,«2)-space is a hyperbolic fixed point of the system (2.1)).
Thus, any peridic solutions which exist in this parameter range must be of
finite amplitude.

(d) Perturbation analysis. First we will restrict our attention to a neigh-
bourhood of the resonance points e = ±eo. Consider the linearized system
corresponding to (2.17a,b)

^ + iPx2A2,

dA2/dx = - iPnAi - ^e(S, - S2)A2.

(where we have made use of the normalization discussed in the linear theory).
From the linear theory we know that at e = ±eo this linearized system has a
double zero eigenvalue and a single corresponding normal mode vector. Here
Co is given by (2.12). We will restrict our attention to a neighbourhood in
e-space about e = £Q.

Define the matrix
x-S2) Pl2

where we have set P\2 = IPnle'9 and made use of the definition of eo- We
define the normal and generalized normal mode vectors according to

Ao6 = 0, Ao& = &. (2.19a)

For example

£, =2(l,-e-*)T, Z2 = \Pn\-\\,e-i*)T.

We also define adjoint vectors

= 3 (2.19b)

where Aj-J = Ao. Comparing (2.19a,b) we can choose

<O1 =£ll> £22 = ~£l2»

in =£21. £*2 = -£22.
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[11] Nonlinear interaction of modes 407

where £j = [Zj\Aj2)T, etc. We have the natural orthogonality conditions

<&,£> = o, (Z2,$) = fi,
«fi,«r> = <&,«> = «.

where we are still free to choose the real constants a, p with a suitable choice
of the normal mode vectors £\ and &• Here (v,w) = viJfik is the usual
Euclidean dot product.

Returning to the fully nonlinear system we make the transformation

A = (AUA2)
T = B&+B&.

If we choose the variables Qj = Bj and P\ = -iB2, Pi = -i~B\ then the trans-
formation from the canonical variables (A\,A2), (-iA\,iA2) to the variables
(Qj> Pj) is canonical that £i and & (i-e. a and 0) are chosen such that

0 = 0, a=l.

The transformed Hamiltonian is then given by

H = \B2\
2 + a[ai\B{\

2 + a2BiB2 + a2BiB2 + a3\B2\
2]

+ 52dJkmnB{B2BTBk
2 (2.20)

where

a = e - Co

and the djkmn are related to the bjkmn of (2.18). In particular

Hamilton's canonical equations for the Hamiltonian (2.20) are

dBxIdx = iB2 + ia[a2B, + a3B2] + i

dB2/dx = ia[aiBx + a2B2] + iY,mdjkmnB{B»Br%- (2.21b)

Since we are interested in a small neighborhood of a = 0 we rescale

Bi=SCi, B2CX, B2 = S2C2, x = Sr, a = 82co.

To leading order in d, we obtain from (2.21a,b)

(2.22a)

dC2/dx = iaio)Ci + 2id2020Ci |C, |2 (2.22b)
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which are Hamilton's canonical equations for the Hamiltonian

= g. (2.22c)

Here g € R is the 'total energy' for the reduced system (2.22a,b). Also note
that the system (2.22a,b) possesses a second integral of motion

2 / = C 2 C,+ CiC2. (2.22d)

which is the action integral and represents the conservation of action in both
modes. The system (2.22a,b) is equivalent to

d2d/dx2 = -axaCx - 2d2mCi\Cl|
2. (2.23)

Equation (2.23) has arisen in the study of Kelvin-Helmholtz instability in a
two layer shear flow, see Miles [14], and also in the interaction of a posi-
tive energy wave with a negative energy wave in a three layer stratified shear
flow where in both cases a i « is interpreted as a perturbation about a crit-
ical wavenumber, see [5]. We note that the above analysis also holds if we
consider a neighborhood of e = -co-

Before proceeding with an analysis of the solutions to (2.22a,b) we consider
the steady solutions

C2 = 0, C, = 0 (2.24a)

and
C2 = 0, \Cx\

2 = -co/{2d), (2.24b)

which correspond to periodic solutions of our original system (2.16a,b). Note
that as co changes sign there is a bifurcation from one equilibrium solution to
two equilibrium solutions. In this reduced system this bifurcation is equiva-
lent to a pitchfork bifurcation whereas in our original system governed by the
Hamiltonian (2.15) this bifurcation corresponds to a bifurcation to periodic
solutions from the trivial equilibrium (0,0). The second of these solutions
exists for d < 0, co > 0, and d > 0, co < 0. However, these solutions can be
shown to be stable only for w < 0(e < Co)- Note that in the case co < 0 the
origin in (C\, C2)-space in unstable. Hence it is only possible for a bifurca-
tion to manifest itself in the second of these cases. So as co increases from
negative values to positive values the solutions governed by (2.24b) tend to
zero and no longer exist for co > 0. Thus, the case of bifurcation of periodic
solutions of the original system governed by the steady solutions (2.24a,b)
corresponds to one of the possible behaviours of such systems mentioned by
Meyer, [4], in which the family of periodic solutions exist only for ax 0. It
would appear that the periodic solutions given by (2.24b) are precisely those
predicted by Liapunov's theorem, [12].

Equation (2.23) can be integrated; introducing

C, = Rew; R,6eR
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we obtain upon equating the real and imaginary components of the resulting
equation

d2R/dx2 - R(dd/dx)2 = -gl (oR - 2d2o2oR\ (2.25a)

dddR d262 + R °
From (2.25b) we obtain

R26X = constant = J

where / is the action given by (2.22d). Substituting back into (2.25a) yields

d2R/dx2 - J2R~3 = -aiwR - 2d2Q2QRi. (2.26)

Without loss of generality we will set ai = 1 and drop the subscripts on the
2̂020- Denning S = R2 we obtain from (2.26)

(Sx)
2 = 4(gS - (oS2 - dS* - J2) (2.27)

where g is a constant of integration (it is, in fact, the total energy given by
(2.22c)). Equation (2.27) can now be integrated in terms of elliptic integrals.
Thus

f[gS - coS2 - dS3 - J2]x'2dS = ±2x + x0. (2.28)

Returning to equation (2.25a) we note that this equation has been derived
by Miles, [14], as the equation governing the onset of Kelvin-Helmholtz in-
stability in a two layer stratified fluid. This equation also arises in the study
of the interaction of two modes of oppositely signed energy in a three layer
stratified shear flow, [5].

Closed trajectories of (2.27) correspond to periodic solutions R of (2.26).
The existence of closed trajectories of (2.27) in the (SX,S) plane depends
upon the nature of the roots of the polynomial

P(S) = gS- coS2 - dS* - J2.
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We note that only the positive roots of P(S) correspond to realistic solutions
R of (2.26).

Miles, [14], has classified the solutions of (2.27) into the following four
categories (where without loss of generality we may assume that d takes only
the values ±1).

(i) co > 0, d = — 1. P(S) has three positive roots. The trajectories in the
(ST, S) -plane can be both open and closed provided

(ia) co2/3>g>0
(ib) P(So) > 0, P(S0

+) < 0, S± = l/3[o> ± (co2 - 3*)1/2].

Violation of any of these conditions reduces the number of positive roots of
P(S) to one and no closed trajectories exist in the (ST,S)-plane (see Figure
2a,b).

(ii) co < 0, d = — 1, P(S) has a single positive root and no closed trajecto-
ries exist (see Figure 2c,d).

(iii) co > 0, d = 1. In this case P(S) has two positive roots. Closed
trajectories exist in the (5T,5)-plane provided that the following are satisfied
(see Figure 2e,f)

(iiia) g > 0
(iiib) P(S0) >0,S0= 1/3[(G>2 + 3g)1'2 - co].

1 . 0 0

0 . 6 0 -

0 . 0 . 3 0 0 . 6 0 0 . 9 0 1 . 2 0 1 . 5 0

1 . 0 0

-0.20 -

-0.60 -

-1.00

-0.20 -

-0.60 -

-1.00
0.

FIGURE 2a,b. Phase-plane plot of Sj versus S for equation (2.26); a> = 1, d = — 1,
(a) J2 = 0, (b) J2 = 0.01 and G = 0, 0.1875, -.25, 0.5.
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FIGURE 2c,d. Phase-plane plot of ST versus 5 for equation (2.26); w = - 1 , d = - 1 ,
(c) J2 = 0, (d) J2 = 0.01 and g = -0.25, 0, 0.25, 0.5.

-o.io

-0.30 -

- 0 . 5 0

0.50
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FIGURE 2e,f. Phase-plane plot of ST versus 5 for equation (2.26); w = 1, d = 1.
(e) J2 = 0, g = 0.125, 0.25, 0, 0.5, (h) J2 = 0.001, g = 0, 0.125, 0.25, 0.5.

(iv) co < 0, d = 1. In this case P(S) has two positive roots. Closed
trajectories exist provided that (see Figure 2g,h)

(iva) P{S0) >0,S0= l/3[(w2 + 3#)'/2 + \a>\], geR,g> -co2/!.

In cases (ii) and (iv) So is the positive root of Ps (the derivative of P with
respect to S). For these two cases the period of the closed trajectories is given
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FIGURE 2g,h. Phase-plane plot of ST versus 5 for equation (2.26); a = - 1 , d = 1.
(g) J1 = 0, g = -0.125, -0.25, 0, 0.5, (h) J2 = 0.01, g = 0, -01.25, 0.25, 0.5.

by

[fa - s){s - s2)(s - *3)]1 / 2 ds

where s\ > s2 > 0 > s$ are the roots of P{S).
In cases (i) the period of the closed orbits is given by

where S\ > s2 > £3 > 0 are the roots of P{S). A!" is a complete elliptic integral
of the first kind. Trajectories in (S^S^-plane are plotted in Figures 2a-h for
various values of the parameters g, J, co, d.

Considering cases (i)-(iv) we see that there are two possible distinct forms
of bifurcation which can occur as the parameter co changes sign. The first
of these is as described above for the steady solutions. Namely, for co > 0
there exist periodic solutions which tend to zero (disappear) as co changes
sign. This form of bifurcation is also possible in case (iii) and (iv) provided
that the change in sign of the parameter co produces a violation of one of the
conditions (iib) or (iva). The other form of bifurcation is represented solely
by cases (ii) and (iv). This case can be characterised as follows: for w < 0
there exist periodic solutions which persist for co = 0 and for co > 0 they grow

https://doi.org/10.1017/S0334270000006755 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006755


[17] Nonlinear interaction of modes 413

in amplitude. The fact that these periodic solutions must necessarily grow in
amplitude is not evident from the analysis presented above. However, it is
possible to infer this property from the stable manifold theorem [9], which
implies that there can be no periodic solutions in a neighborhood of the origin
for 0) > 0 (since the linearized normal frequencies are them complex implying
linear instability). However, case (iii) ensures that periodic solutions do exist
and therefore must be of finite amplitude (which increases with increasing
co>0).

The analysis about e = -eo parallels that above. Now, writing, e = -eo - a
we obtain an equation similar to (2.23).

(e) Singular solutions. Let us now return to the system (2.17a,b). Due
to the presence of the cubic nonlinearities one would expect that solutions
of (2.17a,b) could posses movable singularities at some finite time To. To
investigate this possibility we introduce polar coordinates according to

Aj = Rj exp(ify), Rj, 6j e R, (j =1 ,2) .

We write
bjkmn = cjkmn + idjkmn

and noting that b^mn = bmnjk we obtain, upon equating real and imaginary
parts of (2.17a,b), the 'amplitude' equations

dRi/dr = - ^ sin(p - 6)R2 + (C1021-R? + £0112-̂ 2)̂ 2 sin 0

-{dmxR\ + dOi i2R2)R2 cos 0 + 2(c22oo sin 26 + d22oo cos 2d)R^R\,
(2.29a)

dR2/dT = - i sin(p - e)Rx + (C1021-R? + C0112

cos6

+ 2(c22oo sin 26 + d22OO cos 26)R\R2 (2.29b)

and the 'phase' equations

Rid6i/dx = (e/2)Ri + (l/2)cos(p - 6)R2 + 3(c102i cos0 + 1̂021 sin6)R\R2

+ (coi 12 cos 6 + dO\ 12 sin 6)R\

+ 2(c22oo cos 26 - d22OO sin 26)R2R\

+ 2C2O2O*? + Cimtfi*2 (2.29c)

R2d62/dx = - (l/2)cos(p - 6)Ri - (e/2)R2 - (c,02i cos0 + dXQ2x sixv6)R\

- 3(coi 12 cos 6 + dom sin 6)R2R\

- 2(c22OO26 - d22oo sin 26)R\R2

- 2CQ202R\ - e n , i R \ R 2 , (2.29d)
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where 0 = 6\ - 02 and we have set (for simplicity) Si — S2 = 1, Pn =
exp(/§>). Note that the parameter governing the resonance, e, appears only in
the equation for the phase 6\, 62.

A simple dominant balance argument shows that if the amplitude equa-
tions (2.29a,b) have solutions Rj, (j = 1,2) which develop a singularity at
some finite time To then this singularity must be of the form (to - T)~ 1 / 2 ,

(T -» TQ ). We then look for solutions of (2.29a-d) in the form

Rj = {to-T)-1'2PJ, 0 = 0o ( T - T O ) .

Note that the position of the singularity cannot be predicted i.e. it must be a
moveable singularity. From the conservation of action equation we obtain

Pi - Pi = 0.

With the leading order behaviour given as above we obtain from the ampli-
tude equations (2.29a,b) the single equation

+cOii2)sin0o -

+4(c22oo sin 20O + </22oo cos 290)Pi - 1 = 0 . (2.30a)

From the phase equations (2.29c,d) we obtain

[2c2O2o + Ci 111 + 2(c22oo cos 20O - 2̂200 sin 2dQ)]Pl

+[(3c,o2i - coi 12) cos 0O +(3rf,o2i +^oi 12) sin 00^1^2 = 0 (2.30b)

and

[2cO2O2 + Ci 111 + 2(c22oo cos 20O - 2̂200 sin 20o)]i'1
2

+KC1021 + 3Com) cos 0O + {dW2i + 3dOm)sindo]PiP2 = 0. (2.30c)

we note that the equations (2.30a-c) do not depend upon the parameter, e,
governing the linearized stability.

Equations (2.30a-c) are three equations for two unknowns, namely Pi
and 0o (P2 is determined form P\ = P\). We can then consider equation
(2.30a,b) as equations for the amplitude P\, and the phase 0o, respectively.
The third equation is then a compatability equation for the nonlinear coeffi-
cients, (Cjicmn>djkmn)- Thus, given any particular set of nonlinear coefficients
we can predict from (2.30a-c) whether the system (2.17a,b) can possess sin-
gular solutions.

In Figures 3 And 4 we present numerical solutions of the system (2.29a-d).
In Figure 3 we have rfio2i = 1 with all other nonlinear coefficients set equal
to zero. In this case we predict from (2.30b,c) that sin0o = 0. From (2.30a)
we then predict that cos 0o = 1 (in order for the singularity to occur at some
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FIGURE 3. Numerical solutions of (2.29a-d). Nonlinear coefficients d\021 = 1, with all others
equal to zero, e = I, <p = n. Plot of logo, cos© (solid curve) and sin© (dashed curve) versus x.

7.18 1.00

- 1 .

FIGURE 4. Numerical solutions of (2.29a-d). Nonlinear coefficients d\02i = Ci<m =
all others equal to zero, e = 0.5, <p = n. Plot of log/?i, cos© (solid curve) and
sin 0 (dashed curve) versus T.

positive time To > 0). The plots of log-Ri, cos0 and sin0 versus x in Figure
3 confirm this prediction.

In Figure 4 we have i/1021 = C1021 = 1 with all other nonlinear coefficients
set equal to zero. From (2.30b,c) we predict that cos 8Q = - sin 0o- From
(2.30a) we then see that sin#o > 0. The plot of log^i, cos# and sin0 versus
T in Figure 4 confirm this prediction.
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3. Nonsemi-simple resonance

In this section we consider the case of bifurcation from resonance in the
nonsemi-simple case. This case has been considered by Van der Meer, [15,
16], whose interest in the problem was motivated by the fact that this type
of bifurcation problem occurs in the restricted problem of three bodies at
one of the Routhian points. Our interest in this problem is motivated by the
occurrence of problems of this type in the interaction of positive and nega-
tive energy modes in three layer stratified fluid flows in which the additional
degeneracy manifest itself through the particular form of the dispersion rela-
tion one encounters in such problems. Van der Meer, [15], approached this
problem through the use of real normal forms by making use of the concept
of an "energy-momentum" map, (see [15]), and obtaining a reduced system
whose solutions give information on the bifurcation behaviour of his original
system. We however, take a different approach than that followed by Van
der Meer [15], by assuming that the Hamiltonian depends on a small param-
eter as in Section 2, obtaining the complex normal form and then doing a
multiple scale analysis.

The case of the nonsemi-simple resonance is characterised by the fact that
now the normal mode equations (2.4) possess a single normal mode solution
at fi = 0.

iX&i = B£*i + Cobi, Ubi = Bobi +Aoti\ (3.1)

i.e. the system (2.4) has an additional degeneracy in that the "eigenvalue" iX
has a single "eigenvector".

To analyse this case we proceed somewhat differently from section 2 in
that we immediately derive the complex normal form and then proceed to an
analysis of the fully nonlinear equations. To derive the complex normal form
we first introduce the notion of a generalized normal mode vector (a2, b2)
defined according to

+- Cob2 + &i, —/Ab2 = B()b2 + AQ&2 — b\. (3.2)

From (3.1) and (3.2) we obtain the orthogonality conditions

bf a, - afb, = bf a2 - afb2 = 0 (3.3)

and
b2 &\ — a2 bj = a, b2 a2 — a2 b2 = ip (3.4)

where a, P are real normalization constants which we are still free to choose.
To put the quadratic Hamiltonian into normal form we make the trans-

formation
q = Qt&i + Q,a,, p = Q,b, + G,b,,
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and substitute these expressions into the (9(1) quadratic Hamiltonian

H = ( l /2)qr(^oq + *oP) + (l/2)j>T(B$q + Cop).

Making use of the orthogonality conditions (3.3) and (3.4) we obtain

H(Qi,Qi) = i<*KQ2Qx - QiQy) - (W + a)\Q2\
2. (3.5)

However, the transformation from the cannonial variables (q, p) to be vari-
ables (Qi, Qj) is not necessarily a canonical transformation. To check that
such a transformation can be made canonical we make use of the method
outlined by Whittaker, [17]. In this case a transformation from the variables
(q, p) to the variables (Q, P) is canonical provided that the expression

Spjdgj - dpjdqj = SPjdQj - dPjdQj

holds. Here {dpj, Sqj) and (dpj, dqj) are independent infinitesimal variations
in the (/?,, qj). In our case we have

qj = a(SPjdQj - dPjSQj) + ifi(SQ2dQ2 - 8Q2dQ2)

where

Pi = Q2, P2 = -Qi. (3.6)

Thus, in order for the transformation from (q, p) to (Q, P) (with P given by
(3.6)) to be canonical we must choose a and /? such that

a = 1, p = 0.

In this case the 0(1) quadratic normal form is given by

H(Qt&) = iKQiQi ~ QiQi) - \Qi\2- (3-7)

This normal form is equivalent (after some rescaling and a transformation
to complex conjugate variables) to that presented by Arnold, [1] and Vad der
Meer, [15].

To proceed with the analysis we write the full Hamiltonian as

where H^0) is given by (3.7), H^ is homogeneous of degree 2 and Hk is
homogeneous of degree k. Making use of the method of Lie transforms (see
Appendix A) This Hamiltonian can be reduced to the normal form

H = i{k + nvx){Q2Qx - Q2QXY- \Qtf

+ a, |(2i I4 + ia2\Qi\\QiQ2 - Q, Qi)_

+ a3[3«2.G2 " Q2Q1)2 + (Q1Q2 + Q1Q2)2], 0.8)
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where v\ and v2 are parameters and the a, are real constants. Note that
0 < n «; 1 is a small parameter. The higher order corrections to the normal
frequencies are then given explicitly by

Thus, we see that the stability is governed by the sign of v2; as v2 changes
sign the linearized normal frequencies go from stable to unstable. As noted
by Van der Meer, [15], the Hamiltonian (3.8) is essentially an unfolding of
the 0(1) quadratic Hamiltonian (3.7) and it this unfolding that is responsible
for the loss of stability of the leading order normal mode.
Perturbation analysis. Hamilton's canonical equations for the Hamiltonian
(3.8) are given by

dQJdt = /(A + nvx)Qx -Q2 + ia2Qx\Qx\2 + ^QxVQfo - Q2QX), (3.9)

dQ2/dt = i(X + nui)Q2 - nviQx - 2a,<22|<2il2

- (ia2Q, - 4a3Q2)(QlQ2 - 2Q2Q{). (3.10)

We note that this system possesses the second integral of motion (the action
integral)

G2G1 ~ Q2Q1 = constant
so that the system governed by the Hamiltonian (3.8) is integrable in the
classical sense. Substituting

into (3.9) and (3.10) yields the evolution equations

dX\ldt = -X2 + ia2Xi\Xi\2 + 403X^2X1X2 - XiXi) (3.11)

and

dX2/dt = -fiu2Xi - 2a,Z,|^1|2 - (ia2Xx - 4a3X2)(Z,X2 - 2X2X~X). (3.12)

This effectively averages out the oscillatory component of the solutions g,-,
~Qi of (3.9) and (3.10). Introducing the scaling

and substitution into (3.11) and (3.12) yields to leading order in ft

dYl/dt = -Y2, dY2/dx = -v2Yl-2alYl\Yl\
2 (3.13)

or equivalently
= v2Yl+2cnYx\Yl |2 (3.14)

with a\ and v2 real. We note here that the only nonlinear coefficient a, which
appears in equation (3.14) is a\, the coefficient \Qi |4 in the Hamiltonian (3.8).
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This is in agreement with Van der Meer, [15], whose analysis shows that the
dominant nonlinear coefficient is precisely this one.

Equation (3.14) arises in the analysis presented in Section 2(c) above and
the properties of its solutions have been described there. We can show that
these results are in agreement with those noted by Meyer, [13]. Equation
(2.27) together with the restrictions on the critical points, So, correspond to
Van der Meer's, [15], reduced system.

4. Discussion

We have show that the interaction through a resonance of two linear nor-
mal modes of a general Hamiltonian system as the system parameters are
varied has the effect of producing an unstable mode in some region of the
parameter space. The onset of this instability causes the linear normal mode
approximation to become invalid. In this region of the parameter space one
must now consider the fully nonlinear problem.

It is shown, using simple normal form theory and perturbation theory that
the fully nonlinear problem can possess periodic solutions in the parameter
range for which the linear normal modes are unstable. Agreement with earlier
results has been demonstrated and both the semi-simple and nonsemi-simple
cases were shown, locally about the point of resonance, to governed by the
same form of second order differential equation.

Also, in the case of the semi-simple resonant interaction we have derived
a compatibility condition on the nonlinear coefficients which determines
whether it is possible for solutions to develop algebraic singularities at some
finite time. This compatibility condition is independent of the parameter
governing linear stability.

5. Appendix A

In this section we explicitly derive the higher order normal forms for both
the semi-simple and nonsemi-simple case. We make use of the method of
Lie transforms as outlined in [9], [11]. To this end we let /fj0) denote the
leading order quadratic Hamiltonian (i.e. ji = 0). We define the map ^0)

according to

( A - 2 )

where the Poisson bracket {•, •} is defined according to
8FdG\
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The normal form is then found by obtaining a basis for the complement to
the space adlif\pk); Pk is the space of polynomials of degree k. A suitable
choice for this complement is the space keradH^(Pk), the kernel of the map
adHf\vk), (see [9, 11] for details).

Semi-simple case. The quadratic normal form for the semi-simple case is

f 2-|G2|2) (A.3)
where

Q\=P\ + iQ\, Q2=P2 + iQ2-
In terms of the complex variable Qi, Qt the map adH^ becomes

The Hamiltonian can be reduced to its normal form by applying the map
^ to the order n monomials

(*, /) = Q\' Q^Q'l Q'l, *i + h + h + h = n.

Allowing adH^ to act on these monomials we obtain

adH^\k, 1) = -Ufa =h-k2- I2){k, I).

Hence
keradHf\k,l) = {(k,l): ki+l2 = h + k2).

Thus
keradH^\p2 = {(k, I): k, + l2 = /, + k2 = 1}

i.e. keradH^\f2 is spanned by the quadratic monomials

QlQ2,QlQ2,\Qi\2,\Q2\2. (A.4)

Thus all O(fi) quadratic terms other than those given in (A.4) can be removed
from the Hamiltonian by a canonical transformation. Also

Similarly
keradH^\Pt = {(k,I): kx +12 = /, + k2 = 2},

and so the quartic Hamiltonian can be reduced, via a contact transformation,
to a linear combination of the quartic monomials
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Nonsemi-simple case. The quadratic normal form for the nonsemi-simple
case is given by

H?] = iX(Q2Ql - Q2QX) - \Q2\
2 (A.5)

where

Q\ = Q\ + iQi, Q2=Pi+ iPi-

In terms of the complex variables (?,, Qt the map ad Hf^ becomes

Quadratic normal form. The O(fi) quadratic Hamiltonian H^ can be
reduced to its normal form by applying the map ad H2

0^ to the quadratic
monomials

Q = 2).

We compute the image of the map ad H^p on the generators

Xx = \Qx\\ X2 = \Q2\\ X^ = {QX-Q2-Q&

Q\, x5 = Q\, x6 = Q\,

= QlQ2.

The matrix representing the action of adH^ on these generators is given by

x2
Xi

XA

Xi

x6
Xn

x»
x9
X\n

Xi

0

0

0

-2

0

0

0

0

0

0

x2
0

0

0

0

0

0

0

0

0

0

*3

0

0

0

0

0

0

0

0

0

0

XA

0

-4

0

0

0

0

0

0

0

0

Xi

0

0

0

0

4/A

0

0

0

-4

0

x6
0

0

0

0

0

-4/A

0

0

0

-4

Xi

0

0

0

0

0

0

4iX

0

0

0

0

0

0

0

0

0

0

-4/A

0

0

x9
0

0

0

0

0

0

-2

0

4a

0

0

0

0

0

0

0

0

-2

0

-4iV
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This matrix is singular. Columns 1, 4-10 are linearly independent and a
complement for adH^ can be chosen as the space spanned by the monomials
represented by the left eigenvectors of the above matrix

(lOOOOOOOOOO)7", (OOIOOOOOOOO)7".

Thus a complement to the kernel of adH^ can be chosen to be spanned
by the monomials X\, X3. Hence, the G(n) normal form for the quadratic
Hamiltonian can be represented as a linear combination of the monomials
X\ and Xj i.e.

Without presenting the analysis for the cubic terms it is sufficient to note
that all cubic terms can be removed from the Hamiltonian by a canonical
change of coordinates.

Quartic normal form. To obtain the normal form of the fourth order
Hamiltonian H* it is sufficient to consider the action of the map adH^ on
the monomials

Zi=\Qi\\ Z2HG2I4,

Z9 = (QiQ2 - G1G2XG1G2 + QxQi)-

The matrix representing the action of adH^ on these monomials is

z,
z2
z3
z4
z5
z6
z7
z8
z9

Z\

0

0

-4

0

0

0

0

0

0

z2
0

0

0

0

0

0

0

0

0

Z3

0

0

0

0

0

0

1

-3

0

z4
0

-4

0

0

0

0

0

0

0

z$
0

0

0

0

0

0

0

0

0

z6
0

0

0

0

0

0

0

0

-1

z7
0

0

0

0

0

0

0

0

0

z%
0

0

0

-8

0

0

0

0

0

z9
0

0

0

0

-4

0

0

0

0
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We observe that the vectors

(100000000)T, (000001000)T, (000000310)7" (A.6)

are left eigenvectors for zero of the above matrix. Thus adH^0) has a compli-
ment which is at least three dimensional. Also columns 1, 4, 6, 8, 9 are seen
to be linearly independent. Thus the compliment of adH^ is three dimen-
sional and is spanned by the three vectors (A.6). Thus the quartic normal
form is given by

a.\Z\ + icfiZf, + e*3(3Z7 + Zg).
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