
EXTREMAL PROBLEMS FOR SCHLICHT FUNCTIONS 
IN THE EXTERIOR OF THE UNIT CIRCLE 

E. NETANYAHU 

1. Introduction. Let 2 represent the class of functions 
CO 

(1) w = g(s) = * + £ bn z~n, g{z) * 0, 
71=0 

which are schlicht and regular, except for the pole at infinity, in \z\ > 1. 
Further let S _ 1 be the class of inverse functions of 2 which at w = °° have 
the expansion 

CO 

(2) z = y(w) = w — 2 PnW~n-

In a recent paper W. C. Royster (4) considers the subclass of functions of 
2 which map \z\ > 1 onto a domain whose complement is starlike with respect 
to the origin. He found, by using the Julia variational method, the exact 
bounds for |/?2| and |£3| and conjectured that for this subclass 

W-KÎTÏC:--.1)-
In this paper it is proved that the sharp inequality (3) holds for 2 _ 1 , and 

as the extremal function is essentially only the function inverse to 

(4) w = z + 2 + - , 
z 

the above-mentioned conjecture is answered in the affirmative. 

2. The differential equation satisfied by the extremal functions. Let 

(5) z = 7 W = w - ft - - - -2 - . . . - h - . . . v K w w w 

be an extremal function maximizing |/3n| which is inverse to the schlicht 
function in |z| > 1 

(6) w = g{z) = s + 6o + ^ + . . . . 
z 

We assume that g(z) satisfies the condition 

(7) g(z) * 0, 

and normalize it so that fin > 0. 
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We sketch a derivation of the differential equation satisfied by g (z) and refer 
the reader to (1, 5, 6, 7) for the rigorous treatment. 

We note first that the function w = g(z) maps \z\ = 1 onto a system of 
curves T. For suppose, on the contrary, that the complement of the image of 
|z| > 1 in the w-plane has an interior point w0', then the function 

i6 2 id 2 
/ o \ * i e P . e P 

(8) w* = w + — + —— , 
w — Wo Wo 

0 < 6 < 2ir, p > 0 and small enough, will be schlicht and ^ 0 in \z\ > 1. 
By taking the inverse of 

id 2 id 2 

(9) w* = g*(s) = g(z) + - T 4 - ^ + -^~ 
W * *V g(z) -wo Wo 
and denoting the coefficient of l/wn by —/V, it can be proved that for an 
appropriate choice of 0 we obtain 

(10) | / 3 / | > A, 

in contradiction to (3n being maximal. 
Now let Wo be a point of rp, an arc of r of outer conformai radius p. Then 

there is a conformai mapping 

which maps the exterior of Tp into the exterior of |f | > p in the f-plane, and it 
is known that for each n the coefficients Bn(p) are bounded uniformly in p. 

We introduce the functions 

(12) v(£) = f + ^ 

with 

(13) | d | < 1 

which are schlicht in |f| > p. Except for (13) Ci can be chosen arbitrarily. 
By composing the mappings (6), (11), and (12), we get for \z\ > 1 the schlicht 

function 

(14) gi(z) = „(r(g(*))) = g(s) - wo + Bo p + ( ^ }
+ _ C ^ - + " ( A 

Normalizing this function in accordance with (7), we obtain the function 

(15) w* = g*(z) =w+ ( i ? 1 + C l ) p 2 + (Bl + C l ) p 2 + o(p2) 
w — Wo w0 

schlicht and regular, except for the pole at infinity, in \z\ > 1. 
Let the inverse of (15) be 
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(16) 2 = 7*(W*) = y*[w + w _ W o + + O(P ) ) 

[_ w — Wo Wo J 

Replacing y*'(w) by yf (w) in (16), the error will be o(p2) and so 

(17) z = y*(w*) = y*(w) + [ ( ^ + ^ ) p ' + ( *'+ B
C I ) P , ]T' (») + «(p.), 

or 

/ 1 0 \ * / \ / \ ( ^1 + ^ l ) P I C^1 + ^ l ) p / / \ I / 2x 
(18) 7*(W) = y(w) - l ^ - z r ^ - + ^ jy (w) + "0> )• 

From the extremal property of fin it follows that 

(19) J pH + (Sx + Q p ^ ^ ' J ^ ^ - 1 + (w - 2)£„_2 + (w - 3)A^« w0 

+ . . . + ^ o n " 1 J + o(p2)| < ft.. 

We let p —> 0 and note that Bi —> —e2i4>, where </> is the angle of inclination 
of the tangent to T at w0] (6). Since 0n > 0, we get from (19) in the limit, as 
p —> 0, the inequality 

(20) Re{ ( d - ^ 2 ^ ) [ ( n " i ) f e " 1 + (« - 2)A,_2 + (n - 3)ft,_3 ^o 
Wo 

+ .. . + ^(T1 
<o, 

where C\ is any complex number satisfying (13). Because of this property of 
C\ we get from (20) the relation 

(2i) (n ~ 1 ) ^ ~ 1 + (n- 2)ft*_2 + (n - 3)ft,_3 w0 + . . . + W " 1 L w > 0, 
L Wo J 

where dz^o is t h e differential e l emen t of T a t t h e p o i n t WQ. 
From (21) we can derive a differential equation satisfied by the function 

g (z) whose inverse is the extremal function y (w). The expression 

(22) * V ( * ) { ( n ~ ( y , , ~ 1 + (» - 2)/3B-2 + (» - 3)/3re_3 g(«) + . . . 

+ gC*)""1] = zn+1 + . . . 

is an analytic function for \z\ > 1, except for a pole at infinity, of order n + 1. 
According to (21), this function is real for \z\ = 1, and hence it can be con­
tinued analytically into \z\ < 1 by the Schwarz reflection principle. The 
function has a pole at the origin of order n + 1, and hence we get 
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2 „ ' / „ \ 2 

(23) Ztf(*) 

= sB+1 + ^l2
K + ... + Anz + An+1 + ^ + ... + je- + 4 i , 

z z z 
where ^4i , . . . , ^4w+i can be calculated explicity in terms of the coefficients 
00, 01, . . . , 0n. 

3. The sharp bounds for 0W. From (5) we get 

(24) 1 _ , w [ , + -g1 + ... + ferJ^ + ...]. 
Hence 

?(*r ' "" ' «w 

A(*rV(*)- »ft,8V(»)2 _ (« + l)fe+12
2g'(2)2 

g(2)2 g(2)3 

As non-negative powers of z can occur only in the first two expressions of the 
right-hand side of (25), the coefficients A\, . . . , An+1 can be calculated from 
the expression 

(26) 8 V ( , r i ^ ) _ » â ^ i ! . 

By the residue theorem we obtain 

where the integration is carried along a closed curve in \z\ > 1 (and the 
corresponding image in the w-plane), and 

(28) An+1 = - (n + 1)0,. 

From the second integral in (27) it is seen that Ak is a polynomial P*(0o, 
0i, . . . , 0fc_i) in 0o, 0i, . . . , 0fc_i with positive coefficients. 

It is well known that under the normalization (7) 

(29) |0o| < 2. 

Assuming that 

(30) |/S,| < y~Y^Zi) > *= 1 , . . . , » - 1, 

we are going to prove that 

<31> M<^i2n
n:l)-
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As the inverse of 

(32) w = z + 2 + -
z 

IS 

1 \ n - 1 / ww (33) s = w _ 2 - - - . . . r 

we get, on the assumption (30), an upper bound for 

Ak = Pfc(0Of ft,. . . , A-i) , * = 1,'2, . . . , » , 

by inserting 

g{z) =z + 2 + -z 

in (25). We obtain 

(34) \Ak\ < ( 2 M ~ *) - ( 2 * J / ) , * = 1, 2 , . . . , n. 

Combining (28), (34), and the fact that the right-hand side of (23) must 
vanish for some value zo = eie° we obtain the relation 

As 

n + 
_ (2n - l \ 
"l \ n - 1 / 

is the absolute value of the coefficient of l/wn in (33), equality must hold in (35). 
Now, equality in (35) holds only if 

-Ml-i)- '-••>•• 
Hence |/30| = 2, \$i\ = 1, but then, except for rotations, 

w = z + 2 + - . 
s 

Hence, we have proved the following 

THEOREM. Le£ 

(36) g(z) = z + b0 + ^ + h + . . . 
z z 

be schlicht, different from zero, and regular, except for the pole at infinity, in 
\z\ > 1. Let 

(37) a = 7 ( W ) = w _ ft-^-§-••• 
w w 
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be the inverse function of (36). Then 

where equality holds essentially only for the function which is inverse to 

(39) w = z + 2 + - . 
z 

The bound (38) is also the bound given by Lôwner (2) for the coefficients 
of the inverses of schlicht functions in the unit circle. 

We close by considering functions of the form 

(40) w = z + %E$ + % i + . . . , n > 2, 
z z 

schlicht and regular, except for the pole at infinity, in \z\ > 1 (evidently 
w 7e 0 there). 

The inverse functions of (40) are 

V w w (41) ^ ^ l - S - S - - ^ - ^ - ^ 

where 

z = 7(ze>) = w 
w w2 

is an inverse of a function of the form (5). Evidently qv (v = 1 ,2 , . . . ) are 
polynomials in /30, /?i, . . . , /3„_i with positive coefficients. Hence we have the 

COROLLARY. The coefficients of functions inverse to functions of the form (40) 
attain their greatest absolute value for {essentially) the function inverse to 

w -o+r-
This throws some light also on the problem of finding bounds for the absolute 

value of the coefficients of functions of the form 

dealt with in (8). 

l(z) = z + b-± + 
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