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Abstract

We study portfolio optimization problems in which the drift rate of the stock is Markov
modulated and the driving factors cannot be observed by the investor. Using results
from filter theory, we reduce this problem to one with complete observation. In the
cases of logarithmic and power utility, we solve the problem explicitly with the help of
stochastic control methods. It turns out that the value function is a classical solution of
the corresponding Hamilton–Jacobi–Bellman equation. As a special case, we investigate
the so-called Bayesian case, i.e. where the drift rate is unknown but does not change over
time. In this case, we prove a number of interesting properties of the optimal portfolio
strategy. In particular, using the likelihood-ratio ordering, we can compare the optimal
investment in the case of observable drift rate to that in the case of unobservable drift
rate. Thus, we also obtain the sign of the drift risk.
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1. Introduction

In this paper, we investigate the problem of optimal portfolio choice in a financial market with
one bond and one stock. The drift rate of the stock price process is modelled as a continuous-time
Markov chain. The aim is to maximize the expected utility from terminal wealth. However, we
are only able to observe the stock price process and have to base our decision on this observation.
In particular, we are not informed about the state of the drift process. Such a model is also
called a hidden Markov model. For a general treatment of such models see, e.g. Elliott et al.
(1994).

It is well known that a financial market with constant parameters can only serve for a
relatively short period of time. Thus, it is necessary to use stochastically varying parameters.
One possibility is to introduce a continuous-time Markov chain, representing the general market
direction. For simplicity, we assume that only the drift rate of the stock price process depends
on this market direction. Furthermore, it seems to be realistic that we cannot directly observe
this market direction since not all the driving factors, or their impacts, are known. Thus, we
can only try to estimate this hidden factor by observing the stock price.

Portfolio optimization problems with partial observation, in particular with unknown drift
process, have been studied extensively over the last decade. Lakner (1995), (1998) and
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Rishel (1999), for example, have treated the case in which the drift rate follows a linear Gaussian
model. Karatzas and Zhao (2001) investigated the Bayesian case, i.e. where the drift rate is
constant but unknown. The papers by Sass and Haussmann (2004) and Haussmann and Sass
(2004) discuss a market model that is even more general than ours, for example in allowing a
stochastic interest rate and assuming d risky assets. Since it is possible to reduce the problem to
one in a complete financial market, these cited papers use the martingale approach to solve the
portfolio problem. The only exceptions are Rishel (1999) and Karatzas and Zhao (2001), who
use a stochastic control approach. Portfolio optimization problems with observable Markov-
modulated market data have been treated in Bäuerle and Rieder (2004).

In this paper, we use a stochastic control approach for the portfolio optimization problem with
unobservable Markov-modulated drift process. The first contribution of our paper is that we
can show that this approach works very well in the cases of logarithmic and power utility, in the
sense that we even obtain a classical solution of the corresponding Hamilton–Jacobi–Bellman
(HJB) equation. This is of practical interest since it gives an alternative way of computing the
value function and the optimal portfolio strategy. As a special case, we also investigate the
so-called Bayesian case, i.e. where the drift rate is unknown but does not change over time.
This setting has already been investigated in Karatzas and Zhao (2001); however, we give a
self-contained approach to the problem, treating it as a special case of the hidden Markov-
modulated drift model, and derive a more explicit formula for the optimal investment strategy.
We prove a number of interesting properties of the optimal portfolio strategy, in particular,
when compared to the case of observable drift rate. For example, when we have a power utility
u(x) = xα/α, with α ∈ (0, 1), it turns out that we have to invest more in the stock in the case
of an unobservable drift rate, relative to the case in which the drift rate is known and equal
to our expectation. If α < 0, this conclusion is reversed. Thus, for α ∈ (0, 1), the drift risk
is positive whereas, for α < 0, the drift risk is negative. This result is obtained by using the
likelihood-ratio ordering in an appropriate way. Some numerical results are also presented.

The paper is organized as follows. In Section 2, we introduce the market model and define
the optimization problem. In Section 3, we use filtering theory to reduce the problem to one
with complete observation. In the case of a logarithmic utility function, the problem is solved in
Section 4. In Section 5, we treat the case of a power utility. With the help of a stochastic control
approach, we are able to solve the problem; in particular, it turns out that the value function
is a classical solution of the corresponding HJB equation. We show this in Section 6. The
special Bayesian case is treated in Section 7 and properties of the optimal investment strategy
are proven in Section 8.

2. The model

Suppose that (�, F , F = {Ft , 0 ≤ t ≤ T }, P) is a filtered probability space with filtration
F = {Ft , 0 ≤ t ≤ T }, and that T > 0 is a fixed time horizon. We consider a financial market
with one bond and one risky asset. The bond price process B = (Bt ) evolves according to

dBt = rBt dt,

with r > 0 being the interest rate. The stock price process S = (St ) is given by

dSt = St (µt dt + σ dWt),

where µt = µ�Yt , W = (Wt ) is a Brownian motion, and Y = (Yt ) is a continuous-time
Markov chain with state space {e1, . . . , ed}, where ek is the kth unit vector in R

d and (Yt ) has
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the generator Q = (qij ). All processes are adapted with respect to F, and (Wt ) and (Yt ) are
independent. Finally, µ = (µ1, . . . , µd) ∈ R

d and σ > 0.
The optimization problem is to find self-financing investment strategies in this market that

maximize the expected utility from terminal wealth. We assume that our investor is only able to
observe the stock price process and that he knows the initial distribution of Y0. In particular, he
is not informed about the current state of the Markov chain. Let FS = {F S

t , 0 ≤ t ≤ T } be the
filtration generated by the stock price process (St ). In what follows, we denote by πt ∈ R the
fraction of wealth invested in the stock at time t . Then, 1 −πt is the fraction of wealth invested
in the bond at time t . If πt < 0 then this means that the stock is sold short, while πt > 1
corresponds to a credit. The process π = (πt ) is called a portfolio strategy. An admissible
portfolio strategy has to be an FS-adapted process.

The wealth process under an admissible portfolio strategy π is given by the solution of the
stochastic differential equation

dX̃π
t = X̃π

t [(r + (µt − r)πt ) dt + σπt dWt ], (1)

where we assume that X̃π
0 = x0 is the given initial wealth. We denote by

U[t, T ] :=
{
π = (πs)t≤s≤T : πs ∈ R, π is FS-adapted,

(1) has a unique solution, and
∫ T

t

(πsX̃
π
s )2 ds < ∞ almost surely

}
the set of admissible portfolio strategies over the time horizon [t, T ]. Let U : R+ → R be an
increasing, concave, and differentiable utility function. The value functions for our problem
are defined by

Ṽπ (t, x) = Et,x[U(X̃π
T )] for all π ∈ U[t, T ],

Ṽ (t, x) = sup
π∈U[t,T ]

Ṽπ (t, x),

where Et,x is the conditional expectation given that X̃π
t = x. A portfolio strategy π∗ ∈ U[0, T ]

is optimal if Ṽ (0, x0) = Ṽπ∗(0, x0). Note that Ṽ (0, x0) depends on the initial distribution of
Y0.

3. The reduction

We can reduce the control problem with partial observation to one with complete observation
as follows. Denote by

pk(t) := P(Yt = ek | F S
t ), k = 1, . . . , d,

the Wonham filter of the Markov chain, and define pt = (p1(t), . . . , pd(t)) (cf. Elliott et al.
(1994)). The following statements hold.

Lemma 1. There exists a Brownian motion (Ŵt ), with respect to FS , such that

(a) the filter processes pk(t) satisfy

pk(t) = pk(0) +
∫ t

0

∑
j

qjkpj (s) ds +
∫ t

0

1

σ
(µk − µ̂s)pk(s) dŴs for t ≥ 0,

where µ̂t := ∑d
k=1 µkpk(t) = E[µt | F S

t ];
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(b) µt dt + σ dWt = µ̂t dt + σ dŴt ; and

(c) F S
t = σ(Ŵs, s ≤ t).

Note that part (b) implies that Ŵt := Wt + (1/σ)
∫ t

0 (µs − µ̂s) ds. The control model with
complete observation is now characterized, for π ∈ U[0, T ], by the following (d + 1)-
dimensional state process:

dXπ
t = Xπ

t [(r + (µ̂t − r)πt ) dt + σπt dŴt ],
Xπ

0 = x0,

dpk(t) =
∑
j

qjkpj (t) dt + 1

σ
(µk − µ̂t )pk(t) dŴt ,

pk(0) = P(Y0 = ek), k = 1, . . . , d.

The wealth process is explicitly given by

Xπ
t = x0 exp

{∫ t

0
(r + (µ̂s − r)πs − 1

2σ 2π2
s ) ds +

∫ t

0
σπs dŴs

}
.

The value functions in the reduced model are defined by

Vπ(t, x, p) = Et,x,p[U(Xπ
T )] for all π ∈ U[t, T ],

V (t, x, p) = sup
π∈U[t,T ]

Vπ(t, x, p),

where Et,x,p is the conditional expectation given that Xπ
t = x and pt = p. The following

result is often taken for granted; however, it has to be proved formally.

Theorem 1. For all π ∈ U[t, T ] and x > 0,

Vπ(t, x, pt ) = Ṽπ (t, x) and V (t, x, pt ) = Ṽ (t, x).

The proof follows directly from Lemma 1. The reduced model is now one with complete
observation. We will solve it with the help of the HJB equation.

4. Logarithmic utility

In this section, we assume that the utility function is given by U(x) = log(x). For π ∈
U[t, T ], with the additional assumption that πs ∈ [−M, M] for M ∈ R+ large, we find, from
the explicit solution for Xπ

t , that

Vπ(t, x, p) = log(x) + hπ(t, p),

where

hπ(t, p) = Et,p

[∫ T

t

(r + (µt − r)πs − 1
2σ 2π2

s ) ds +
∫ T

t

σπs dWs

]

= Et,p

[∫ T

t

(r + (µt − r)πs − 1
2σ 2π2

s ) ds

]

and Et,p is the conditional expectation given that pt = p. Note that we need πs ∈ [−M, M]
in order to have E[∫ T

0 πs dWs] = 0, and that hπ does not depend on x.
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Let S denote the probability simplex in R
d . The results of the following lemma are now

obvious.

Lemma 2. (a) For all t ∈ [0, T ], x > 0, and p ∈ S, we have

V (t, x, p) = log(x) + h(t, p),

where h(t, p) = supπ∈U[t,T ] hπ(t, p).

(b) Let π∗
t = (µ̂t − r)/σ 2 for all t ∈ [0, T ]. Then, π∗ = (π∗

t ) is an optimal portfolio strategy
for the given investment problem.

Proof. Part (a) follows from the considerations preceding Lemma 2. Part (b) follows directly
from a pathwise maximization and the fact that taking the limit M → ∞ does not change the
optimal investment strategy.

In the case of complete observation, i.e. where we can observe the drift process µt , it is
well known that the optimal investment strategy at time t is to invest a fraction (µt − r)/σ 2 of
the wealth in the stock. Lemma 2(b) shows that the so-called certainty equivalence principle
holds, i.e. the unknown appreciation rate µt is replaced by the estimate µ̂t = E[µt | F S

t ] in
the optimal portfolio strategy (see Kuwana (1991)).

5. Power utility

Suppose that the utility function is given by U(x) = xα/α, with α < 1 and α �= 0. It
is well known that, in this case, the value function can be written in the form V (t, x, p) =
(1/α)xαg(t, p)1−α . One of our main contributions in this paper is to show that the correspond-
ing portfolio optimization problem has a smooth value function, where g can be identified as a
classical solution of a linear parabolic differential equation. This is not the case when the drift
process µt is more general (see Zariphopoulou (2001)). In particular, we can circumvent the
use of viscosity solutions. In the following, the subscripts on g denote single or multiple partial
differentiation with respect to the corresponding variables. Our theorem is as follows.

Theorem 2. (a) The value function V of our investment problem is given by

V (t, x, p) = 1

α
xαg(t, p)1−α for all (t, x, p) ∈ [0, T ] × R+ × S,

where g ≥ 0 is a classical solution of the following linear parabolic differential equation, with
g(T , p) = 1 for all p ∈ S:

0 = gt + α

1 − α

{
r + 1

2(1 − α)

(µ�p − r)2

σ 2

}
g

+
∑

k

{∑
j

qjkpj + α

1 − α
pk(µk − µ�p)

µ�p − r

σ 2

}
gpk

+ 1

2σ 2

∑
k,j

(µk − µ�p)(µj − µ�p)pkpjgpkpj
. (2)
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(b) The optimal portfolio strategy π∗ = (π∗
t ) ∈ U[0, T ] is given in feedback form as π∗

t =
u∗(t, pt ), where the function u∗ is given by

u∗(t, p) = 1

1 − α

µ�p − r

σ 2 +
∑

k pk(µk − µ�p)gpk
(t, p)

σ 2g(t, p)
.

(c) The Feynman–Kac formula yields the following stochastic representation of g:

g(t, p) = E

[
exp

(
r

α

1 − α
(T − t) +

∫ T

t

α

2(1 − α)2

(µ�Zs − r)2

σ 2 ds

) ∣∣∣∣ Zt = p

]
.

Here, the stochastic process (Zt ) ∈ R
d is a (componentwise) solution of the stochastic

differential equation
dZk

t = ak(Zt ) dt +
∑
j

bk,j (Zt ) dW
j
t ,

with

ak(p) :=
∑
j

qjkpj + α

1 − α
pk(µk − µ�p)

µ�p − r

σ 2 ,

bk,j (p) := 1

σ 2 (µk − µ�p)(µj − µ�p)pkpj .

Remark 1. (a) In the case in which the investor is able to observe the driving Markov chain, the
optimal fraction of wealth invested in the stock at time t , when the Markov chain is in state ek ,
is given by

u∗
o(t, ek) = 1

1 − α

µk − r

σ 2

(see, e.g. Bäuerle and Rieder (2004)). Thus, in the unobservable case, the optimal fraction
invested consists of the same myopic part and an additional term, which we call the drift risk.
This term is sometimes also called market risk or hedging demand but, since it stems from the
unknown drift rate only, we have decided to call it drift risk.

(b) Note that, since g and gpk
are continuous and [0, T ] × S is compact, the optimal portfolio

strategy (π∗
t ) is bounded.

The proof of Theorem 2 is given in Section 6.

6. The HJB equation and the proof of Theorem 2

In order to solve the investment problem, a classical approach in stochastic control theory
is to examine the so-called Hamilton–Jacobi–Bellman equation. For our problem, it turns out
to be

0 = sup
u∈R

{
vt + x[r + u(µ�p − r)]vx + 1

2x2u2σ 2vxx

+
∑
k,j

qjkpjvpk
+

∑
k

xupk(µk − µ�p)vxpk

+ 1

2σ 2

∑
k,j

(µk − µ�p)(µj − µ�p)pkpjvpkpj

}
, (3)
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with the boundary condition v(T , x, p) = xα/α for all x ∈ R+ and p ∈ S. The subscripts on
v denote partial differentiation, as for g in (2). In what follows, we abbreviate the expression
in curly brackets to Av(t, x, p, u). To prove Theorem 2, we proceed as follows.

Theorem 3. The function v(t, x, p) := (1/α)xαg(t, p)1−α , with g as given in (2), is a solution
of the HJB equation (3).

Proof. First, note that the boundary condition v(T , x, p) = xα/α is satisfied. Moreover,
since the coefficients of the linear parabolic differential equation for g are polynomials in the
components of p, the function g is sufficiently differentiable (see, e.g. Kloeden and Platen
(1995, p. 153)). We first compute the derivatives of v:

vt = 1

α
xα(1 − α)g−αgt ,

vx = xα−1g1−α,

vxx = (α − 1)xα−2g1−α,

vpk
= 1

α
xα(1 − α)g−αgpk

,

vxpk
= xα−1(1 − α)g−αgpk

,

vpkpj
= 1

α
xα(1 − α)(g−αgpkpj

− αg−α−1gpj
gpk

).

Substituting these into the HJB equation gives us

0 = sup
u∈R

1

α

{
gt + [r + u(µ�p − r)] α

1 − α
g − 1

2αu2σ 2g

+
∑
k,j

qjkpjgpk
+

∑
k

upk(µk − µ�p)αgpk

+ 1

2σ 2

∑
k,j

(µk − µ�p)(µj − µ�p)pkpj (gpkpj
− αg−1gpj

gpk
)

}

after some simple algebra. (Note that we need α < 1 here.) Since g ≥ 0, the maximum point
is well defined and given by

1

1 − α

µ�p − r

σ 2 +
∑

k pk(µk − µ�p)gpk

σ 2g
.

Inserting the maximum point and simplifying the expression, we find that g has to satisfy the
partial differential equation (2), in agreement with the statement of the theorem.

The power change of variable for the value function has already been used by Zariphopoulou
(2001) and Pham (2002). Here, it is shown that this trick also works in a multidimensional
setting. The next theorem provides the verification that v(t, x, p) as given in Theorem 3 is
indeed the value function of our investment problem.

Theorem 4. Suppose that v(t, x, p) is as given in Theorem 3. Then,

(a) V (t, x, p) = v(t, x, p) for all (t, x, p) ∈ [0, T ] × R+ × S; and

(b) the optimal portfolio strategy π∗ = (π∗
t ) ∈ U[0, T ] is as given in Theorem 2(b).
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Proof. We explicitly consider the case α ∈ (0, 1); the case α < 0 can be shown similarly.
Let π ∈ U[t, T ] be an arbitrary portfolio strategy and (Xπ

t ) the corresponding wealth process.
We interpret v(t, x, p) as a function on R+ × R

d+1. Since v is sufficiently smooth, we can
apply Itô’s formula to obtain

v(T , Xπ
T , pT ) = v(t, x, p) +

∫ T

t

Av(s, Xπ
s , ps , πs) ds

+
∫ T

t

vx(s, X
π
s , ps)X

π
s πsσ dŴs

+
∫ T

t

∑
k

vpk
(s, Xπ

s , ps)
1

σ
pk(s)(µk − µ�ps) dŴs

≤ v(t, x, p) +
∫ T

t

(Xπ
s )αg(s, ps)

1−απsσ dŴs (4)

+
∫ T

t

∑
k

(Xπ
s )α

gpk
(s, ps)

g(s, ps)α

1 − α

ασ
pk(s)(µk − µ�ps) dŴs,

where the inequality follows from the HJB equation. Since v ≥ 0, the local martingale
(
∫ T

t
· · · dŴs)T ≥t is bounded from below by −v(t, x, p) and, thus, is a supermartingale. Taking

the conditional expectation and using the boundary condition for v, we find that

Et,x,p

[
1

α
(Xπ

T )α
]

≤ v(t, x, p).

Since π was arbitrary, we obtain V (t, x, p) ≤ v(t, x, p). Now suppose that (π∗
t ) is as in

part (b). Since (π∗
t ) maximizes the HJB equation, we obtain equality in (4) under (π∗

t ). Note
that, since (π∗

t ) is bounded, g and gpk
are continuous, and [0, T ] × S is compact, the local

martingales
∫ · · · dŴs are true martingales. Taking the expectation, we now obtain

Et,x,p

[
1

α
(Xπ

T )α
]

= v(t, x, p),

and the statement follows.

Thus, parts (a) and (b) of Theorem 2 are proven. The Feynman–Kac formula (Theorem 2(c))
is standard; see, e.g. Kloeden and Platen (1995, p. 153).

7. The Bayesian case

In this section, we consider a special case of the previously discussed model, namely
the so-called Bayesian case. Here, the unobserved drift process (µt ) is simply a random
variable µt = θ that does not change over time, and the investor knows the initial distribution
P(θ = µk) =: pk, k = 1, . . . , d. The possible values θ can take are µ1, . . . , µd . As before, we
assume that θ and (Wt ) are independent. This model has already been solved by Karatzas and
Zhao (2001) via the martingale method and by stochastic control. We now relate their result to
our model of Section 2, giving a self-contained proof. Formally, we obtain the Bayesian case
if we set the intensity matrix Q ≡ 0 in the model of Section 2. With this modification, the
results of Sections 3–5 hold for the Bayesian case. However, we will see that the analysis can
be simplified considerably in this setup. This is mainly due to the fact that, instead of looking
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at the R
d+1-valued state process (Xt , p1(t), . . . , pd(t)) in the reduced model, we can find a

sufficient statistic for the unobserved parameter θ and can restrict to a two-dimensional state
space. A crucial step for this procedure is to look at the optimization problem under a change
of measure. Since the logarithmic utility is quite simple, we here restrict to the power utility
U(x) = xα/α, with α < 1 and α �= 0. In the sequel, we will use the following results. Recall,
from Section 2, that µ̂t = ∑d

k=1 µkpk(t), with pk(t) = P(θ = µk | F S
t ), k = 1, . . . , d, and

Ŵt = Wt + (1/σ)
∫ t

0 (θ − µ̂s) ds. Let us now introduce the process

Yt := Ŵt + 1

σ

∫ t

0
(µ̂s − r) ds = Wt + θ − r

σ
t.

It is convenient to write γk := (µk − r)/σ and

Lt(µk, y) :=
{

exp(γky − 1
2γ 2

k t), t > 0,

1, t = 0,

for t ∈ [0, T ], y ∈ R, and k = 1, . . . , d. It is well known that (L−1
t (θ, Yt )) is a martingale

density process with respect to the filtration Fθ,W generated by θ and (Wt ). Then we can
define a new probability measure Q by dQ /dP = L−1

T (θ, YT ). Under Q, the process (W
Q
t ),

with W
Q
t := Yt , is a Brownian motion with respect to Fθ,W . The process (Lt (θ, Yt )) is a

Q-martingale with respect to Fθ,W . Note that it can be shown that θ and (W
Q
t ) are independent

under Q. Finally, for t ∈ [0, T ] and y ∈ R, we use the abbreviation

F(t, y) :=
d∑

k=1

Lt(µk, y)pk.

Now we are able to state our first result.

Lemma 3. With the notation introduced in this section,

(a) FS = FY , i.e. the filtration generated by (St ) is the same as the one generated by
(Yt ) = (W

Q
t ); and

(b) pk(t) depends only on Yt . More precisely, for k = 1, . . . , d,

pk(t) = P(θ = µk | F S
t ) = Lt(µk, Yt )pk

F (t, Yt )
.

Proof. Part (a) follows from the definitions of the stock price process (St ) and (Ŵt ). The
Bayes formula for conditional expectations reads

E[Z | F S
t ] = EQ[ZLT (θ, YT ) | F S

t ]
EQ[LT (θ, YT ) | F S

t ] ,

where Z is a random variable defined on our probability space. Substituting Z = 1{θ=µk} in
this yields the result of part (b).

In particular, Lemma 3 implies that µ̂t = ∑d
k=1 µkpk(t) is a function of Yt alone. Therefore,

(Yt ) can be seen as a sufficient statistic. There is no need to consider the conditional probabilities
pk(t) for all k = 1, . . . , d. More precisely, when we define

µ(t, y) =
∑d

k=1 µkLt (µk, y)pk∑d
k=1 Lt(µk, y)pk

,
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we have µ̂t = µ(t, Yt ). It is now convenient to introduce the process γt = γ (t, Yt ), where
γ (t, y) := (µ(t, y) − r)/σ . We can reduce our portfolio problem to a problem with complete
observation and two-dimensional state space in the following way:

dXπ
t = Xπ

t [(r + σγtπt ) dt + σπt dŴt ], Xπ
0 = x0,

dYt = γt dt + dŴt , Y0 = 0.

As in Section 3, we define the value functions Vπ(t, x, y) and V (t, x, y) for (t, x, y) ∈ [0, T ]×
R+ × R, and obtain

Vπ(t, x, Yt ) = Ṽπ (t, x),

V (t, x, Yt ) = Ṽ (t, x),

as in Theorem 1.
A proof of parts (a) and (b) of the following theorem can also be found in Theorem 3.2 of

Karatzas and Zhao (2001).

Theorem 5. (a) The value function V of our investment problem with power utility is given by

V (t, x, y) = 1

α
xαg(t, y)1−α

for all (t, x, y) ∈ [0, T ] × R+ × R, where g(t, y) ≥ 0 is a classical solution of the linear
parabolic differential equation

0 = gt + α

1 − α

{
r + 1

2

γ (t, y)2

1 − α

}
g + γ (t, y)

1 − α
gy + 1

2gyy, (5)

with g(T , y) = 1 for all y ∈ R.

(b) The following representation of g holds for t ∈ [0, T ] and y ∈ R:

g(t, y) = E

[(
F(T , YT )BT

F (t, Yt )Bt

)α/(1−α) ∣∣∣∣ Yt = y

]
.

(c) The optimal portfolio strategy π∗ = (π∗
t ) ∈ U[0, T ] is given in feedback form as π∗

t =
u∗(t, Yt ), where the function u∗ is given by

u∗(t, y) = 1

1 − α

µ(t, y) − r

σ 2 + gy(t, y)

σg(t, y)
.

Proof. It is straightforward to see that our portfolio problem is equivalent to the follow-
ing optimization problem (with respect to the equivalent martingale measure Q), where we
maximize over all π ∈ U[0, T ]:

EQ

[
F(T , YT )

1

α
(Xπ

T )α
]

→ max,

dXπ
t = Xπ

t (r dt + σπt dW
Q
t ), Xπ

0 = x0,

dYt = dW
Q
t , Y0 = 0.

We denote the value function of this problem by V Q(t, x, y). It follows from the definition that
V (0, x0, 0) = V Q(0, x0, 0).
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(a) Solving the HJB equation for the Q-problem, we obtain

V Q(t, x, y) = 1

α
xαgQ(t, y)1−α,

as in Section 6, where gQ is a classical solution of the linear parabolic differential equation

0 = g
Q
t + αr

1 − α
gQ + 1

2gQ
yy, (6)

with gQ(T , y) = F(T , y)1/(1−α) for all y ∈ R. Moreover, the Feynman–Kac formula gives
the representation

gQ(t, y) = exp

(
r(T − t)

α

1 − α

)
EQ[F(T , YT )1/(1−α) | Yt = y].

If we define g(t, y) := F(t, y)1/(α−1)gQ(t, y) then it is easy to see, after some calculations,
that g is a classical solution to the HJB equation for the P-problem equivalent to (5).

(b) Using the representation of gQ just given, and applying the Bayes formula, yields the
statement for g(t, y).

(c) From the HJB equation, we find that the optimal portfolio strategy is given by π∗
t = u∗(t, Yt ),

where the function u∗ is given as stated.

Remark 2. Note that the optimal portfolio strategy (π∗
t ), with π∗

t = u∗(t, Yt ), can also be
written as

u∗(t, y) = g
Q
y (t, y)

σgQ(t, y)
.

This follows from the equivalent Q-problem formulated in the proof of Theorem 5.

8. Properties of the optimal investment strategy in the Bayesian case

In this section, we investigate the structural properties of the optimal investment fraction
u∗(t, y) given in Theorem 5(c). In particular, we will compare the optimal investment strategy
with the one we obtain when the drift rate is known. In the observable case, the problem has
been solved by Merton (1971), (1973). Suppose that

dSt = St (µ dt + σ dWt)

describes the dynamics of the stock price and that µ ∈ R is observable. Then, it is well known
that it is optimal to invest the constant fraction

1

1 − α

µ − r

σ 2

of the wealth in the stock. Let us now assume that we are in the Bayesian case and observe that
the state of Yt is y at time t . Then we expect that the drift rate of the stock is µ(t, y). If we
were certain that the drift rate were µ(t, y) then we would invest the fraction

u∗
o(t, y, α) = 1

1 − α

µ(t, y) − r

σ 2 = 1

(1 − α)σ
γ (t, y)

of the wealth in the stock. Recall that u∗(t, y) = g
Q
y (t, y)/σgQ(t, y) and u∗ depends on α.

Hence, we will write u∗(t, y) ≡ u∗(t, y, α). We now obtain the following comparisons, where
part (d) is nontrivial and of particular interest in practical applications.
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Theorem 6. (a) At time T the optimal fraction is equal to the myopic part, i.e.

lim
t→T

u∗(t, y, α) = u∗
o(T , y, α)

for all y ∈ R and α < 1.

(b) As α → 0, the optimal fraction tends to the myopic part, i.e.

lim
α→0

u∗(t, y, α) = u∗
o(t, y, 0)

for all y ∈ R and t ∈ [0, T ].
(c) Suppose that µ1 ≤ · · · ≤ µd . Then we obtain the following bounds for all y ∈ R and
t ∈ [0, T ]:

1

1 − α

µ1 − r

σ 2 ≤ u∗(t, y, α) ≤ 1

1 − α

µd − r

σ 2 .

(d) Suppose that r ≤ µ1 ≤ · · · ≤ µd . If α ∈ (0, 1) then

u∗(t, y, α) ≥ u∗
o(t, y, α)

and, if α < 0, then
u∗(t, y, α) ≤ u∗

o(t, y, α)

for all y ∈ R and t ∈ [0, T ].
Proof. Let us define γ ∗(t, y, α) := (1 − α)g

Q
y (t, y)/gQ(t, y), as it is then sufficient to prove

the statements for γ ∗(t, y, α) and γ (t, y). From Section 7, we know that γ ∗(t, y, α) =
�D(t, y, α)/�N(t, y, α) with

�N(t, y, α) :=
∫

R

F(T , y + x)1/(1−α)φT −t (x) dx,

�D(t, y, α) :=
∫

R

F(T , y + x)α/(1−α)

( d∑
k=1

pkγkLT (µk, y + x)

)
φT −t (x) dx,

where φT −t is the density of the normal distribution with expectation 0 and variance T − t .

(a) In this case, the following representations of �D(t, y, α) and �N(t, y, α) are useful:

�N(t, y, α) = E[F(T , y + WT −t )
1/(1−α)],

�D(t, y, α) = E

[
F(T , y + WT −t )

α/(1−α)

( d∑
k=1

pkγkLT (µk, y + WT −t )

)]
.

Since limt→T WT −t = 0 almost surely, we obtain

lim
t→T

�N(t, y, α) = F(T , y)1/(1−α),

lim
t→T

�D(t, y, α) = F(T , y)α/(1−α)

( d∑
k=1

pkγkLT (µk, y)

)
,
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due to the continuity of the functions involved. Altogether, this yields

lim
t→T

γ ∗(t, y, α) =
∑d

k=1 pkγkLT (µk, y)∑d
k=1 pkLT (µk, y)

= γ (T , y).

(b) We obtain

lim
α→0

�N(t, y, α) =
d∑

k=1

pk

∫
R

LT (µk, y + x)φT −t (x) dx,

lim
α→0

�D(t, y, α) =
d∑

k=1

pkγk

∫
R

LT (µk, y + x)φT −t (x) dx.

Moreover, ∫
R

LT (µk, y + x)φT −t (x) dx = Lt(µk, y),

which implies the result.

(c) Since LT , pk ≥ 0, we obtain

γ1F(T , y + x) ≤
d∑

k=1

pkγkLT (µk, y + x) ≤ γdF (T , y + x).

Hence, we can bound the denominator of γ ∗(t, y, α) by

γ1�N(t, y, α) ≤ �D(t, y, α) ≤ γd�N(t, y, α)

and the result follows.

(d) Suppose that α ∈ (0, 1). We have to show that γ (t, y) ≤ γ ∗(t, y, α). Both sides can be
interpreted as expectations in the following way:

γ (t, y) =
d∑

k=1

γkpk(t, y),

where

pk(t, y) = pkLt (µk, y)

F (t, y)
,

and

γ ∗(t, y, α) =
d∑

k=1

γkqk(t, y, α),

where

qk(t, y, α) =
∫
R

pkLT (µk, y + x)F (T , y + x)α/(1−α)φT −t (x) dx

�N(t, y, α)
.

We will show now that the densities satisfy

(pk(t, y), k = 1, . . . , d) ≤lr (qk(t, y, α), k = 1, . . . , d),
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where ‘≤lr’ is the likelihood-ratio order, i.e. we show that

qk(t, y, α)

pk(t, y)

is increasing in k for all t ∈ [0, T ] and y ∈ R. Then it is well known that the expectations are
ordered as stated. Obviously,

qk(t, y, α)

pk(t, y)
= C

∫
R

LT (µk, y + x)F (T , y + x)α/(1−α)φT −t (x) dx

Lt (µk, y)
,

where C > 0 is a constant. Since LT (µk, y + x) = Lt(µk, y)LT −t (µk, x), it follows that

qk(t, y, α)

pk(t, y)
= C E[F(T , y + Xk)

α/(1−α)],

where Xk ∼ N (γk(T − t), T − t). Thus, we have to show that

E[F(T , y + Xk)
α/(1−α)] ≤ E[F(T , y + Xk+1)

α/(1−α)].
This inequality is of the form

E[f (Xk)] ≤ E[f (Xk+1)],
where the function f (x) is increasing in x since α ∈ (0, 1) and γk ≥ 0. Thus, the statement is
true since Xk ≤st Xk+1, where ‘≤st’ is the usual stochastic order. If α ∈ (−∞, 0) then f (x) is
decreasing and we obtain the reverse inequality.

Remark 3. (a) The optimal fraction u∗
o(t, y, 0) of Theorem 6(b) is the optimal fraction we

obtain in the case of a logarithmic utility function (see Section 4). Thus, the portfolio problem
with logarithmic utility can be seen as the limiting problem when α → 0 in the power utility
case.

(b) Part (d) of Theorem 6 tells us that we have to invest more in the stock in the case of an
unobservable drift rate, relative to the case in which we know that µ(t, y) is the drift rate when
α ∈ (0, 1). If α < 0, this conclusion is reversed. A heuristic explanation of this phenomenon
is as follows. Although in all cases our investor is risk averse, the degree of risk aversion
changes with α. Formally, the degree of risk aversion is defined by the Arrow–Pratt absolute
risk aversion coefficient, which is

−U ′′(x)

U ′(x)
= (1 − α)

1

x

in the case of the power utility U(x) = xα/α. Thus, the risk aversion decreases for all wealth
levels with α. In particular, if α ∈ (0, 1) the investor is less risk averse than in the logarithmic
utility case (α = 0) and, thus, invests more in the stock.

(c) Theorem 6(c) implies that limα→−∞ u∗(t, y, α) = 0 (also see the preceding remark).

In the following figures, we have computed the optimal fractions u∗(t, y, α) and u∗
o(t, y, α)

in the case of partial and complete observation for the following data: d = 3, r = 0.04, σ = 0.2,
µ2 = 0.1, µ3 = 0.2, t = 0, y = 0, p1 = 0.2, p2 = 0.4, and p3 = 0.4. Figure 1 shows the
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Optimal fraction – observed case
Optimal fraction – unobserved case

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
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α

Figure 1.

Optimal fraction – observed case
Optimal fraction – unobserved case

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
α

2.5

2.0

1.5

1.0

Figure 2.

optimal fractions that have to be invested in the stock in the observed case u∗
o(t, y, α) and in

the unobserved case u∗(t, y, α), as functions of α, when µ1 = 0.04 and T = 1. According to
Theorem 6(b), for α = 0 the fractions coincide. Our conjecture is that both u∗(t, y, α) and the
difference u∗(t, y, α) − u∗

o(t, y, α) are increasing in α if µk ≥ r for all k. Figure 2 shows the
same situation with µ1 = −0.2, i.e. the first stock has a negative appreciation rate. In this case,
we can see that Theorem 6(d) no longer holds.
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Optimal fraction – observed case
Optimal fraction – unobserved case
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Figure 3.

Optimal fraction – observed case
Optimal fraction – unobserved case
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Figure 4.

Figures 3 and 4 show the optimal fractions as functions of the planning horizon T , with
α = 0.5. As shown in Theorem 6(a), the fractions coincide for T = t = 0. Figure 3 was
computed with µ1 = 0.04 and Figure 4 with µ1 = −0.2. In the case in which α > 0 and
µk ≥ r for all k, we conjecture that u∗(t, y, α) is increasing in T and converges to the upper
bound [1/(1 − α)](µd − r)/σ 2. Figure 4 shows that there is no monotonicity with respect to
T , in general.
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