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A N EXTRAPOLATION THEOREM FOR CONTRACTIONS 
WITH FIXED POINTS 

BY 

RYOTARO SATO 

1. Introduction. In [9] de la Torre proved that if (X, ^ , /x) is a finite 
measure space and T is a linear operator on a real Lp(X, 2F, JLL) for some fixed 
p, K p < o c , such that | |T| |P<1 and simultaneously HTl l^ l , and also such that 
there exists h eLp(X, SF, n) with Th = h and h¥"0 a.e., then the dominated 
ergodic theorem holds for T, i.e. for every feLp(X, 3F, fi) we have 

| s u p ^ r f r / | | ^-^TII/IIP. 
II n n | i = 0 Nip p - 1 

de la Torre proved his result, by showing that the operator S, defined by 
Sf = (sgn h) - T(f • sgn h) for / e Lp(X, SF, p,)> is positive, and by applying Ak-
coglu's theorem [1] to S. 

In this paper we shall show that such an operator may be regarded as a 
Dunford-Schwartz operator on LX(X, £F, JJL), i.e. HTH^l and simultaneously 
llTlloo^l; therefore de la Torre's result follows from Dunford and Schwartz [5] 
(see also Garsia [8], Chapter 2). It is important that in the present paper 
(X, 3*, /x) may be cr-finite (and LP(X, ^ , JUL) may be a complex Banach space). 
On the other hand, de la Torre's argument does apply for the finite measure 
space case only. 

THEOREM. Let (X, 3F, JJL) be a a-finite measure space and T a linear operator 
on an Lp = Lp(X, ^ , JLL) for some fixed p, K p < o c ? such that |jT||p=^l and 
simultaneously WTfW^-^WfW^ for every f e Lp HL^. Assume that there exists h e Lp, 
h T^O a.e., such that Th = h. Then 

IIT/Hx sll/H, for every feLxC\Lp, 

and thus T is uniquely extended to a Dunford-Schwartz operator on Lx. 
Furthermore, if we set rf=(sgn h) • T(f • sgn h) for feLu then r is a positive 
Dunford-Schwartz operator on Ll9 and there exists geL1(lLQO, g > 0 a.e., such 
that rg = g and hence T(g • sgn h) = g • sgn h. 

COROLLARY. Let (X, ^ , /ut) be a cr-finite measure space and Ta linear operator 
on an Lp for some fixed p, l < p < œ , such that | |T| |P<1 and simultaneously 
\\Tf\\i ^H/lli for every feL1C\Lp. Assume that there exists heLp, h# 0 a.e., such 
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that Th = h. Then llT/l^ll/ll» for every feLpHL^, and thus T is uniquely 
extended to a Dunford-Schwartz operator on Lx. 

2. Proofs. 

Proof of Theorem. Put e(x) = sgnh(x)(= h(x)/\h(x)\). Since Lq with 
l/p + l/q= 1 is the dual space of Lp, it then follows from Holder's inequality 
that 

he-1|h|p-1djLi = <h,e-1 |h|p"1> 

= <Th, e'1 \h\p~1) = (K T*^"1 Ih^1)) 

^NuiTijie-Mhrt^iihiuk-ihri 

so that T*(e x \h\p 1) = e x \h\" \ because there is only one function feLq for 
which \hfd^=\\h\\p\\f\\q=\\h\rP. 

On the other hand, since HT/II^H/^ for every feLpHL^ (by hypothesis), 
T* may be regarded as an operator on L1? denoted by the same letter T*, such 
that l lT^H^l . To see this, it suffices to notice that for every feL1C\Lq we 
have 

[ \T*f\ d\L = f(T*/) • sgn T*fdn = lim f (T*/) • sgn T*fdiJL 

= l i m < T ( l A n - s g n r 7 ) , / ) 

l/l d/m (because ||T(lAn • sgn T*f)\l^l) 

where Ax c: A 2 c: • • • 5 ̂ {An)<^ for each n > l , and limn An = X. Now, by 
Chacon and Krengel [4], there exists a positive linear operator P on L b called 
the linear modulus of T* (on Lx), such that HPH^l and also such that for 
every 0<feLx 

Pf = sup{\T*g\:geL1 and | g | < / } . 

Let C and D denote the conservative and dissipative parts (cf. [7]) of X with 
respect to P. Thus, for every 0 < / e L l 5 Yk=o PkfM = ® or °c a .e . on C and 
Ik=o P k / M < 0 0 a.e. on D. It follows that for every feL, 

lim — 
n n 

l - l -j tt-1 

X T * 7 | < l i m - X Pfc |/l = 0 a.e. on D. 
k=o n n k=0 

To see that e l \h\p x = 0 a.e. on D, let e > 0 be given and choose feLlC\Lq 

so that 

iiz-e-MhriL^. 
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Then from the fact that ||T*||q - | |T| |P<1 we have 

<£ ( n ^ l ) , 

and by a mean ergodic theorem (cf. [6], p. 662) 

lim 
1 n ~ * I 
- I T*kf-f 
n ic=o 

= 0 

for some f&Lq. Therefore / = 0 a.e. on D, and 

\\f-e^\hr\^e. 

Since e > 0 was arbitrary, this implies that e~l |ft|p_1 = 0 a.e. on D, and thus 
/u,(D) = 0, because | h | > 0 a.e. (by hypothesis). 

We have proved that X = C. Hence, by Akcoglu and Brunei [2], there exists 
an invariant set r e 3* with respect to P and a function s e £«,(0 such that 

(i) |s| = 1 a.e. on T and T*f=sP(sf) for feL^T), 
(ii) if A = X - r then ( I - T*)LX(A) is dense in L^A), in the norm topology, 

(hi) a function teL^T), with |r| = 1 a.e. on T, satisfies T*/= tP(tf) for all 
feL^T) if and only if there exists a function weLcJT), with |M| = 1 a.e. on T, 
such that P*u = u a.e. on T and f = us. 

Since X = C , T and A are invariant sets with respect to P; thus 
T*(lAe - 1 \h\p~1)= lAe_ 1 |h|p_1. Using this relation, we now prove that /x(A) = 
0. To do this, let e>0 be given and take feLX(A)(1 Lq(A) with 

| | / - l A e - M f e | p - l , < e . 
Then 

- I T ^ f - V ^ l h r 1 < 8 ( n > l ) 

and 

lim - I T*k/-/ - 0 

for some f^Lq. But, by (ii), we have easily that 

lim 
-, n - l 

i £ T*k/ - 0 . 

Hence / = 0 a.e., and since £ > 0 was arbitrary, lAe 1 \h\p 1==0 a.e. and so 

MA) = 0. 
Since we have observed that X = C = T, it follows that Pf=sT*(s~1f) for all 

/ G L J . Therefore F is also an operator on Lq such that ||P||q = ||T*||q < 1. Hence, 
by Akcoglu and Chacon [3], we get 

P¥MII for every /e l^HLoo, 
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so that the operator T (on L^) adjoint to P (on Lx) satisfies U T I I ^ I and, for 
every feL1DLO0, 

T / = P * / = S - X T ( S / ) and Hrfll^ll/H,. 

T is then uniquely extended to a positive linear operator on L1? denoted by the 
same letter T, such that Uridyl. (Thus T is also extended to a (unique) 
Dunford-Schwartz operator on Lx.) By the Riesz convexity theorem, T may be 
regarded as a positive linear operator on each Lr, l < r < o c ? such that | | r | | r <l . 
Since r \h\>\Th\ = \h\, it then follows that r \h\ = |h| and thus X = CT, where CT 

denotes the conservative part of X with respect to T. 
To prove that s_1h is measurable with respect to the cr-field 3 of all 

invariant sets with respect to T, write s~1h = ( f i - / 2 ) + J(/3~~/4), where each /k is 
nonnegative and fj2

 = fif*= 0- Since h = Th = ST(s_1h), it follows that 
r(s~lh) = s~1h and then r/k > / k > 0 for each k. Hence rfk = / k for each k, and 
(cf. [7], Chapter III) each fk and s~1h are measurable with respect to 3. Using 
this, we next prove that 

r /= ( sgnh) - T ( / - sgnh) for a l l / e L ^ 

To do so, we now apply Akcoglu and Brunei [2] (see (iii) above). Since 
sgn h=(s~1fi/|fi|)s~1, it may be readily seen that it suffices to check that 

r^(s:rTh/\h\) = 7Thl\h\. 

And this is done easily, because s_1h/|h| is measurable with respect to 3. 
Finally we must construct a function geL1r\LOQ, g > 0 a.e., such that rg = g. 

For this purpose, put 
Bn={x:\h(x)\>l/n} 

for each n > l . Then Bne3, ix(Bn)<^ and limnBn = X. Therefore if we set 
g = Z : = i 2 - n ( l + jLt(Bn))-1lBn, then 0 < g < l a.e. and rg = g. 

The proof is completed. 

Proof of Corollary. This is essentially done in the proof of Theorem (see the 
first half of the above proof) and omitted here. 
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