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AN EXTRAPOLATION THEOREM FOR CONTRACTIONS
WITH FIXED POINTS

BY
RYOTARO SATO

1. Introduction. In [9] de la Torre proved that if (X, %, u) is a finite
measure space and T is a linear operator on a real L,(X, &, ) for some fixed
p, 1<p <=, such that ||T||, =1 and simultaneously || T||.=1, and also such that
there exists he L,(X, %, u) with Th=h and h#0 a.e., then the dominated
ergodic theorem holds for T, i.e. for every fe L,(X, %, u) we have

5

de la Torre proved his result, by showing that the operator S, defined by
Sf=(sgn h) - T(f - sgn h) for fe L, (X, %, n), is positive, and by applying Ak-
coglu’s theorem [1] to S.

In this paper we shall show that such an operator may be regarded as a
Dunford-Schwartz operator on L(X, %, u), i.. |T|;=<1 and simultaneously
| T|l.=1; therefore de la Torre’s result follows from Dunford and Schwartz [5]
(see also Garsia [8], Chapter 2). It is important that in the present paper
(X, &, u) may be o-finite (and L,(X, %, n) may be a complex Banach space).
On the other hand, de la Torre’s argument does apply for the finite measure
space case only.

S
=220l

1
sup ;

THEOREM. Let (X, &, u) be a o-finite measure space and T a linear operator
on an L,=L,(X, %, p) for some fixed p, 1<p<c, such that |[T||,<1 and
simultaneously || Tf||..<||f|l. for every f € L, N L... Assume that there exists h€ L,
h+#0 a.e., such that Th=h. Then

ITfll;=<|Ifll, forevery feL,NL,,

and thus T is uniquely extended to a Dunford—Schwartz operator on L,.
Furthermore, if we set 7f =(sgn h) - T(f - sgn h) for fe L, then 7 is a positive
Dunford—Schwartz operator on L,, and there exists ge LN L., >0 a.e., such
that 7g¢ = g and hence T(g - sgn h)=g - sgn h.

CoroLLARY. Let (X, &, u) be a o-finite measure space and T a linear operator
on an L, for some fixed p, 1<p<c, such that ||T|,=1 and simultaneously
| Tfll, <|Ifll, for every fe L, NL,. Assume that there exists he L,, h#0 a.e., such
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that Th=h. Then ||Tf|..<||f|l. for every fe L,NL., and thus T is uniquely
extended to a Dunford—Schwartz operator on L,.

2. Proofs.

Proof of Theorem. Put e(x)=sgn h(x)(=h(x)/|h(x)]). Since L, with
1/p+1/q=1 is the dual space of L, it then follows from Holder’s inequality
that

Il = [ e~ [hlP i = Ch e )

=(Th, e |h["™")y=(h, T*(e " [R"Y)

=l 1T, lle™* [rl"~ g <Rll, lle™* 1R 1",

=|lnl,
so that T*(e ' |h|P"") = e ' |h|°"", because there is only one function fe L, for
which | hf dp =||hl, lIflly = lIAll5-

On the other hand, since ||Tf|..<||f|.. for every fe L, N L.. (by hypothesis),

T* may be regarded as an operator on L, denoted by the same letter T*, such

that | T*|,=1. To see this, it suffices to notice that for every fe L,NL, we
have

J |T*f| dp = J(T*f) -sgn T*f du = lirrln J (T*f) - sgn T*f du.
=1im (T(1,, - sgn T*f), )

= [ 1fldu (because (1, - sen Tl = 1)

where A;cA,<-+, u(A,)<c for each n=1, and lim, A, = X. Now, by
Chacon and Krengel [4], there exists a positive linear operator P on L,, called
the linear modulus of T* (on L,), such that ||P|;=1 and also such that for
every 0=felL,

Pf=sup{|T*g|:geL, and |[g{=f}.

Let C and D denote the conservative and dissipative parts (cf. [7]) of X with
respect to P. Thus, for every 0=feL,, Y5_, P*f(x)=0 or =« a.e. on C and
v-o0 P“f(x) <% a.e. on D. It follows that for every fe L,
1 |nat =
lim—| ) T*f|<lim— ) P“|f|=0 a.e.onD.
N lk=o n M=o

n k=

To see that e ™' |h[?"' =0 a.e. on D, let £ >0 be given and choose fe L, NL,
so that

Ilf =€ [nfP~l, <
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Then from the fact that | T*|, =||T||, =1 we have
1 n—1
— Z T*kf_e—l ]hlpvl

‘”ho

and by a mean ergodic theorem (cf. [6], p. 662)

<e (n=1),
q

1 "io T*— f

n,-

lim

n

=0
q

for some fe L,. Therefore f=0a.e. on D, and
If et [hP <.

Since &£>0 was arbitrary, this implies that e ' |h|""'=0 a.e. on D, and thus
w(D)=0, because |h|>0 a.e. (by hypothesis).

We have proved that X = C. Hence, by Akcoglu and Brunel [2], there exists
an invariant set I'e & with respect to P and a function s € L.(I') such that

(i) |s|=1 a.e. on T and T*f=35P(sf) for fe L,(I),

(i) if A= X—T then (I- T*)L,(A) is dense in L,(A), in the norm topology,

(iii) a function te L,(T'), with |t|=1 a.e. on T, satisfies T*f= tP(tf) for all
fe Ly(I) if and only if there exists a function u € L.(I), with |u|=1 a.e. on T,
such that P*u=u a.e. on I" and = us.

Since X=C, ' and A are invariant sets with respect to P; thus
T*(1,e " [n[P~")=1,e " |h|°~'. Using this relation, we now prove that w(A)=
0. To do this, let £>0 be given and take fe L,(A)NL,(A) with

If = 1ae™" [n[PHl, <e.

Then
n—1
RS v <o w=y
ny=o q
and
1 n—1 N
lim = Y, T*f—fll =0
n 1N k=g q

for some feL,. But, by (ii), we have easily that

1 "il T*kf
=0

lim =0.
n 1

Hence f=0 a.e., and since £>0 was arbitrary, 1,e ' |h|'"'=0 a.e. and so
r(A)=0.

Since we have observed that X = C =T, it follows that Pf=sT*(s"'f) for all
feL,. Therefore P is also an operator on L, such that ||P||, =||T*, =1. Hence,
by Akcoglu and Chacon [3], we get

IPfll.=[|fl..  forevery feL,NL.,
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so that the operator 7 (on L.) adjoint to P (on L,) satisfies ||7]..=1 and, for
every feLiNL,,

f=P*f=5s""T(sf) and |[f],<l|fl-

7 is then uniquely extended to a positive linear operator on L;, denoted by the
same letter 7, such that |7, =1. (Thus T is also extended to a (unique)
Dunford-Schwartz operator on L,.) By the Riesz convexity theorem, T may be
regarded as a positive linear operator on each L,, 1=r=cx, such that |7, =1.
Since 7|h|=|Th|=|h|, it then follows that 7 |h|=|h| and thus X = C,, where C,
denotes the conservative part of X with respect to .

To prove that s 'h is measurable with respect to the o-field $ of all
invariant sets with respect to 7, write s~'h = (f; — f,) + i(fs — f4), where each f is
nonnegative and f,f,=fsf,=0. Since h=Th=s7(s"'h), it follows that
7(s"'h)=s""h and then 7f, =f, =0 for each k. Hence f, = f, for each k, and
(cf. [7], Chapter III) each f, and s~'h are measurable with respect to 4. Using
this, we next prove that

Tf= (Sg—n;l) - T(f-sgnh) forall feL,.

To do so, we now apply Akcoglu and Brunel [2] (see (iii) above). Since
sgn h=(s"'h/|h|)s™", it may be readily seen that it suffices to check that

7*(s"Th/|h|) = s Th/|h|.

And this is done easily, because s~ h/|h| is measurable with respect to .
Finally we must construct a function ge L, N L, g>0 a.e., such that rg=g.
For this purpose, put
B, ={x:|h(x)|>1/n}

for each n=1. Then B, e $, u(B,)<c and lim, B, = X. Therefore if we set
g=Yr_12"(1+nu(B,) 15, then 0<g<1 a.e. and 7¢=g.
The proof is completed.

Proof of Corollary. This is essentially done in the proof of Theorem (see the
first half of the above proof) and omitted here.
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