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Let & be the semigroup of all total one-to-one transformations of an infinite set X.
For an f € & let the defect of f, def f, be the cardinality of X — R(f), where R(f) =f(X)
is the range of f. Then & is a disjoint union of the symmetric group % on X, the
semigroup S of all transformations in ¥ with finite non-zero defects and the semigroup §
of all transformations in S with infinite defects, such that S U S and § are ideals of #. The
properties of %y and § have been investigated by a number of authors (for the latter it
was done via Baer-Levi semigroups, see [2], [3], [5], [6], (7], [8], [9], [10] and note that
S decomposes into a union of Baer—Levi semigroups). Our aim here is to study the
semigroup S. It is not difficult to see that S is left cancellative (we compose functions f, g
in S as fg(x) =f(g(x)), for x € X) and idempotent-free. All automorphisms of S are inner
[4], that is of the form f—>hfh ™", f €S, h € %. _

In the present paper, we are concerned with congruences, Green’s relations and
ideals of S. A large variety of distinct types of congruences on § is present and the main
results are the content of Theorems 4, 5 and 6. In the concluding remark we state some
unsolved problems and conjectures on congruences on S.

For f, g€ S, let D(f, g) = {x:f(x) #g(x)}. The next lemma is easily verified.

Lemma 1. Let f, g, t be one-to-one transformations. Then
(i) def(fg) =deff +defg;

(ii) D(, 18) = D(f, 8);

(iii) ¢«(D(ft, gt)) = D(f, ) N R().

Let &, R, ¥, 9, # be the Green’s relations on S [1, p. 47-49] and ¢ be the diagonal
congruence. For an f € S let R¢[L, J;] denote the principal right [left, two-sided] ideal of
S generated by f. Denote by N the set of all natural numbers. Given n € N let

C.,={feS:deff=n}, I,=\{Cr:k=n}.
It follows from Lemma 1 that for every n € N, I, is an ideal of §.

ProrosITION 2.(1)) F=R=HX=D=F=,0nS§.
For every f €S,

(i) Ly=Jy ={f}UL,, where n=1+deff;

(iii) Ry =fUT(A), where A=R(f) and T(A)={geS:R(g)SA).

(iv) A subset I of S is an ideal of S if and only if =B U, for some n=2 and
BcC,_,.

Proof. (i)—(iii) can be easily verified using Lemma 1, while (iv) follows from (ii) and
an observation that every ideal is a union of principal ideals.

We remark that not every ideal of S is principal, for example, if B is a proper subset
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of C, consisting of more than one element, then the ideal B U L, is a non-principal ideal
of §.

For an ideal I of a semigroup S the Rees ideal congruence I* is such that (f, g) e I'* iff
either f =g or f, gel, where f, g€ S. As usual, we write S/I for S/I*. Observe that
Proposition 2 (iv) describes all Rees ideal congruences on S.

Another type of congruences on S is defined as follows. Let @ be an infinite cardinal
that does not exceed |X|*, the cardinal successor of |X|. Then a relation A, on S for
which (f, g) € A, iff |D(f, g)| < a is a congruence on S.

Let § be a relation on § such that for f, g€ S, (f, g) € 6 iff deff =defg. Lemma 1
ensures that d is a congruence on S.

ProrosITION 3. (i) For every infinite a < |X|*, A, is a cancellative congruence on S.

(ii) Ax,c 0.

Proof. While (i) follows from Lemma 1, to prove (ii) let (f, g) € Ay, D(f,g) =D,
f(D)=A, g(D)= B, and (X — R(f)) N (X —R(g)) = C. Then X - R(f) =[(X - R(f) N
R@IU[(X -~ RN X -REN=[X-R(H)NBIUC=(B-A)UC. Similarly,
X —R(g)=(A— B)UC, and the result follows from the fact that |A| = |D| = |B| < X,.

Now we are in a position to present our main result on congruences on §. These are
given in Theorems 4, 5 and 6 below. Theorem 4 describes all the congruences A c Ay,. It
is shown that for every such A there exists n € N such that A coincides with Ay, on 1,. Our
description of A c Ay, is given in terms of equivalence series defined below.

Let p, be an equivalence on Cy, k =1. We say that an equivalence p,on C;, [ >k, is
derived from p, if whenever (f, g) € pi, t € S with def t =1~ k then (ft, gt), (¢f, tg) € p..
Every congruence A on S induces in a natural way an equivalence 4 on C;, k =1. Given
an equivalence p, on C, such that p, c 5&, let 3, denote a set of equivalences p, on C,,
| = k, such that for every [ >k, p; S Ay, and p, is derived from p,_;. We refer to such X,
as an equivalence series derived from p,. We show (Lemma 10) that every such series is
finite and hence we can define a maximal equivalence series Z, derived from p, such that
if m =max{l/:p, € Z,} then every equivalence derived from p,, coincides with Ay,

THEOREM 4. Let neN, p, c ANO be a non-trivial equivalence on C, and X, be an
equivalence series derived from p, with m = max{l:p,€X,}. Then

p=cU{pr:pr €Z,} U (AN (L1 X Ln11)) (1)
is a congruence on S contained in Ay,
Conversely, if A ¢ Ay, is a non-diagonal congruence on S then there exists a non-trivial

equivalence p, c Ay, on C, and a maximal equivalence series T, derived from p, such that
A = p as defined above. '

In the following we describe congruences A,, X< a =|X|". We observe that every
A, can be extended in a natural way to a congruence A, on %, US, (so that for f,

8e€9US, (f g)eA, if ID(f g)l<a). Note that Ay+=5 XS, the universal con-
gruence on §. Let A be the lattice of congruences on S, and if p, o € A, write

[p,ol={veA:pcycoa}, [p)={veA:pcy}, (p)={veAipsy)
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THEOREM 5. (i) Ay, is @ minimal cancellative idempotent-free congruence on S.

For every Ry < a <|X|" the following holds:

(ii) A, is a group congruence on S and (4x U S)/AL =S/A, = 9x/Al;

(iil) [A0) = (Ap:B>a}.

For m, neN, let o(m ,n) be a congruence on S such that (f, g) € a(m, n) if either
f =g or def f, def g =m and def f =def g mod n. Evidently 8 < o(m, n). Moreover, if a
congruence y contains &, then S/y is isomorphic to a homomorphic image of
§/8 =(N, +). Hence S/y is isomorphic to a monogenic subsemigroup of type (m, n), for
some m, n € N. It follows that y = o(m, n). This proves the first part of Theorem 6 below.
Now let N, be the lattice of natural numbers ordered by divisibility, N;* be the dual lattice.
Let w be the first infinite ordinal, w* be the dual order type. For a lattice A let A® denote
the lattice obtained from A by adjoining a (new) least element 0.

THEOREM 6. (i) [6) = {o(m, n):m, n e N}.

(ii) [6)=(w* X N)’(=((0 X N)*)°).

(iii) For every n>1, o(1, n) is a group congruence on S and S/o(1, n) = Z,, a cyclic
group of order n.

(iv) There is no least group congruence on S.

For every a > X,

(v) S/80 A, = (Gx/AL) X (N, +);

(vi) S/o(m, n)N A, =(9x/AL) X (N, +)/n(m, n),
where 1(m, n) is a congruence on the semigroup (N, +) such that (k, [) € n(m, n) if either
k=lork, I=mand k=I[Imodn;

(vii) form, neN, L cC,/A,, 4+, A= 4, andA=<LmJ Ci)—
i=1

e(a’ m,n, d) = (6 n Aa n (A— x A)) U (O(m! n) n Aa n ((Im+1 UA) X (lm+1 UA))
is a congruence on S.

(viii) every congruence ye€(6NA,, A,), y¢ 6, has the form 6(a,m,n, A) as
described in (vii).

Proofs of Theorems 4, 5 and 6 constitute the remainder of the paper.

LeMMA 7. Given f, g, t, s €S such that D(f, g)=D(t,s) = {x}, where x € X, and
def f = def g > defs = def ¢, there exists l € S withIs =fand It = g.

Proof. Observe that g(x) ¢ R(f), t(x) ¢ R(s) and choose a 1-1 function
l;:X = R(s) = {t(x)} > X = R(f) — {g(x)},

(note that since def s <def f, [, has a finite non-zero defect in X — R(f) — {g(x)}). Define
a function /: X — X as follows. For a y € X, let

f(z)ify=s(z) forsome zelX,
I(y)=9 &) ify =t(x),
li(y)if y € X — R(s) — {t(x)}.
Clearly, / € S and Is = f, also lt(x) = g(x) and for u #x, It(u) = Is(u) = f(u), so that It =f.
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LemMma 8. Let (f, g) € A,,, f #8. Then there exist f,, . . ., f, € S such that |D(f,, fi1)| =
1, fori=1,...,n—1,and f=f, f,=g.

Proof. Let |D(f, g)l =m. We prove the result by induction on m. Assume that the
statement is true for every pair of functions in S that differ on at most m — 1 points. Let
D(f, g) =D, f(D)=A and g(D) = B. Consider two cases:

(i) A#B.

Choose be B— A, and let g(d)=b, where de D. Let f=f and define f, as follows:

lex-(d) =f1|x—(d) and f,(d) =b. Then D(f}, f;)={d} and D(f,, g) = D — {d}. By indu-
ction supposition there are f;, ..., f, €S such that f, =g and |D(f, fi+1)| =1 for every
i=2,3...,n—1LThusfi, 5, f5, ..., f, is the required sequence.

(ii) A=B.

Using an observation that A = B implies that X — (R(f) U R(g)) # O, choose x €
X = (R(f)UR(g)). Choose de D, let f,=f and define f, so that f|x_(4y =fi|x-(sy and
fo(d) = x. Let g, be such that g,|x_4) = g|x—(a) and g,(d) = x.

Then D(fy, ;) = D(g1, g) = {d} and D(fz, g.) =D — {d}, so there exist f,...,f, €S
with f, =g, and |D(f;, fi+1)| =1 for every i=2, ..., n — 1. The result follows.

LEMMA 9. Let A be a congruence on S, A= Ay,. Let

N={deff:feS, |[fIl#1, [f]l€S/A}, and for every n € N let
L(n)={ID(f, 8)I:f. 8 €S, [ #8, (f, g) €A, def f =n},

¥, :L(n)—>N be defined by ¥,(l)=n+1+1, I € L(n). Let m, be a minimum value of ¥,
and

m =min{m,:n e N}.
Then AN (L, X L) = Ay, N (L, X L,).

Proof. Let m=m,=n+1+1, for some neN and /€ L(n). Let f, g €S such that
(f,g)eA, f#g deff =defg=nand |D(f, g)l =1 Let (¢, s) € Ay, with defr =defs =k =
m. In view of Lemma 8 we can assume that [D(¢, s)| = 1. Let D(t, s) = {x}, D(f, g)=D.
Choose de D, ae X — D and g € S with R(q) = (X — D)U {d} — {a} and q(x) =d. Then
D(fq, gq) = {x}, deffq=defgg=n+|D|=m—1<k, and so Lemma 7 implies there
exists € S such that Ifg =¢, lgq =s, so that (¢, s) € A.

LemMma 10. Every equivalence series X, derived from p, c Ay, is finite.

Proof. The result follows from the proof of Lemma 9 and an observation that the
relation derived from is transitive, that is if , e N, i=1, 2, 3 and p,, is an equivalence on
C, such that p,  is derived from p,, i =1, 2, then p,, is derived from p,,.

Proof of Theorem 4. That p defined in (1) is a congruence on S follows from the
definition of a congruence series derived from p, and Lemma 10.

To show the converse let A < A, be a non-diagonal congruence on § and let n be the
minimal integer such that AN(C, X C,)#iN(C, x C,), m be the maximal integer with
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AN(C,xC,)#A,N(C,,xC,) if AN(C,XC)#FA,N(C,XC,) and m=n
otherwise. Then for every k, n <k =m, A induces in a natural way equivalences p, on
C,. The set of all these equivalences forms a maximal congruence series =, derived from
p., and the result follows.

CoroLrARY 11. (i) Every right (left] cancellative congruence n on S contains A,
(ii) Every group congruence on S contains Ay,

Proof. (i) Assume n2A,, is right cancellative, and let (f,g)eAy,. Let m
be such that (Ax,Np)N(I,X1L,)=A;,N(,Xx1,) (Lemma 9) and teC,. Then
(f1, gt) € Ay,N 1, so that (f, g) € n since 7 is right cancellative.

(ii) Follows from (i).

The next lemma is self-evident.

LemMma 12. For any fe 9xUS, n=0 there exists g€ 4 US with def g=n and
(f, 8) € Ak, where ¥, =X{.

Proof of Theorem 5. (i) It is not difficult to verify that A, is a cancellative
congruence. Hence, in view of Corollary 11 (i) it is sufficient to show that A, is
idempotent-free. This follows from an observation that for any feS, D(f f})=
D(fex, f3) = D(x, f) (Where ¢ is the identity mapping on X), so that |D(f, f?)| = R, and
(f, f) € Ax,

(i1) It is sufficient to show the existence of the indicated isomorphisms. For that let
f €S, he %, [f] and [h] be A/ -classes of fin S and h in %y respectively. We show that
[f1U[h] is the Al -class of f (or, equivalently, h) in 45 US if any only if (f, h) € A,.
While the necessity is clear the sufficiently follows from the observation that if (f, k) € A,
and A is the A class of fin 4 US then AN Yy =[h] and AN S =[f].

(iii) Let y be a congruence on S containing A,. Since S/A, = 9x/A, there exists a
homomorphism from 9x/A, onto S/y, so that there is a congruence y' on Yy such that
%x/y'=S/y. But then y’ = Ag for some 8 = a and so

S/ly=%/Ap=5/As, and y=A,.

The next result describes some properties of the congruence 8. Recall that (f, g) € 6 if
def f = defg.

ProposiTION 13. (i) 6 v Ag, =S X S.
(ii) 8 is the unique congruence on S such that S/6 = (N, +), where (N, +) denotes the
semigroup of positive integers under addition.

Proof. (i) Let f, geS. According to Lemma 12, there exists k€S such that
(f, k) € b, (k, g)Ay,, so that (f, g) € Ay, e =S v Ay,

(i) We show that if 8 is a homomorphism from § onto (N, +) then 67'c8=34.
Firstly observe that if f € C,, and g € C, with m <n, then 6(f) < 6(g), for there exists
qeS such that gf =g and 6(q)+ 6(f)=0(g). Since 6 is onto, 8(C,)=1 and so
6(C,,) =m, for every meN (indeed, if f € C,, then there exist f;, 5, ..., f,, € C; such
that f =f,f,... fn, so that 8(f) = 0(f)) + 0(f) +. ..+ 6(f,) =m).
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Proof of Theorem 6. Let a(m, n)— (m, n) be a mapping of (6) onto N X N. The
result then follows from an observation that o(m,, n,) c (m,, n,) if and only if m, =m,
and n, divides n,.

(iii) Follows from the fact that a monogenic semigroup of type (m, n) is a group if
m =0 and Proposition 13.

(iv) Observe firstly that () {o(1, n):n e N} =9, indeed, if (f,g)e(M{o(1, n):ne
N}, then def f = def g mod n for every n € N, so that def f = def g, or (f, g) € 4. If there is
the least group congruence t on S, then tco(l,n) for every n, so that t¢
M {o(1, n):n e N} = 4. It follows that  is a group congruence (for S/6 = (S/1)/(6/7),
which is a homomorphic image of the group S/, a contradiction to Proposition 13).

The verification of (v)—(vii) is trivial.

(viii) Let y e (6 N A,, A,), ¥ ¢ 8, m be the minimal integer for which there exists
f € S with def = m such that the y-class of f does not coincide with the (6 N A, )-class of f.
Let B be the set of all classes of y that contain an element g of C,, and that do not
coincide with the g-class of § N A, and of = {C,,NB:B € B}. Let k =min{defg:(f, g) €
y, (f, g) ¢ 8} and n =k —m. Clearly, y coincides with 8 N A, on U {C;:1=l=m —1}.
We show firstly that

¥ O sy X Lr) 2 0(m, 0) N Ay O (Lyyss X Lpsr). @)

For f € S let S(f) = {x € X :f(x) #x} and shift f = |S(f)|.
Let (f, g) e y with deff =m, defg =m +n. We observe that for every ¢t e C, with
shift t =Xy, (t"f, g) € N A, c v, so that (f, £’f) € y. Moreover, for any integer >0,

(f, "f)ey, 3)

since (f, t'f) € y implies (¢*f, £*’f) € v, so that (f, £*f) € y etc.

Take (p, q) € o(m, n) N Ay N (L+1 X I,11), and let f be as above. Since defp >m =
def f there exists an s in § such that p =sf. Without loss of generality assume that
def g-def p =an, a e N, a>0. Now (3) implies that (sf, st**f) € y, or (p, st**f) € y. Also,
def(st*™"f) = defq and D(st*f, ¢) = D(p, q) Uf~(S(t*")), so that |D(st*f, q)|<a and
(st*"f, q) e N A, = y. We conclude that (p, g) e y.

To complete the proof it suffices to show that if (u, v)e yN(l,4 X 1I,,,) then
(u, v) € o(m, n). Assume m <defu <def v and let (def v)}—(def u) = bn +r, where b,
reN, 0=r<n. Let f and ¢ be chosen as above. We show that if 7 >0 then (f, f) €y, a
contradiction to the choice of n that assures that r =0 and so (u, v) € o(m, n). Observe
that there exists w € S and [ €N, />0 such that £"f = wu. But then (wu, wv) € y implies
that (', wu) e y, so that using (3) we conclude that (f, wv) € y. Note that def wv =
(I+b)n+m+r and since y28NA, we have (f, "*»*'f)e y. By (3), we have that

(¢f, ") ey, so that (f, t'f) e .

ReMARK. In this paper we described certain large classes of congruences and parts of
the lattice of congruences on S. A description of all congruences and the lattice of
congruences of S is as yet an open problem. In particular, we conjecture that for every
infinite cardinal o <|X|, every congruence in the interval (A, N§, A,«N ) can be
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described in terms of a finite equivalence series derived from a given equivalence A on C;
for some k=1 such that A,=A=<A,+ as was done in Theorem 4 for congruences
p c Ay,
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