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0. Introduction

Let T denote the circle group, C the set of continuous complex-valued
functions on T, and A the set of/e C having absolutely convergent Fourier series:

Z
net

I standing for the set of integers.
It would seem that G. E. Shilov ([1]; [2n], p. 187) was the first to note the

existence of functions f, he A such that (to speak loosely) h/f belongs to C but
not to A. Whenever this happens, the set Z(f) of zeros of/is necessarily nonvoid;
and then, unless Z(f) is nowhere dense, there is ambiguity involved in the possible
continuous extension(s) of h/f (which has domain T\Z(f)). In order to avoid
such ambiguities, we reformulate this type of problem in a manner making no
explicit reference to division.

As a starting point, we remark Jhat a well-known consequence of applying
the Gelfand theory to A is the following statement (see § 4 for more details).

0.1 If $ is a nonvoid subset of A having a (possibly void) set 2(<P) of common
zeros, and if g is a complex-valued function on T which vanishes on some neigh-
bourhood in T of Z($) and satisfies/# e A for every

fe 4>, then g e A.
In particular:

0.2 If/, he A, and if h vanishes on some neighbourhood of Z(f), then the
function

g = 0 on Z[f), = hlf on T\Z{f)
belongs to A.

These results suggest the following sort of problem. Given a nonvoid subset

$ of A, under what conditions does there exist geC such that fg e A for every

fe$,g = 0on Z(<P), and g £ A1
We shall in this note discuss and obtain a partial answer to the above problem
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168 R. E. Edwards [2]

in a more general setting, T being replaced by a more general group and/or the
spaces C and A being varied. (Still further generalisation is possible.) We shall,
however, obtain a general existential result only in the case in which <P is count-
able. The details of the context in which we shall work are given in § 1, the general
theorem in § 2, and applications of this general theorem appear in § 3. A con-
structive approach applying in a special situation is described in § 5.

The general Theorem 2.1 will by specialisation (the details of which appear
in 3.3) yield the following sample result.

0.3 Suppose that <P is a countable subset of A such that

either 0 is contained in the smallest closed ideal in A whose zero-set is Z($)
(which is the case whenever Z(<P) is a spectral synthesis set),

or every element of <£ satisfies a Lipschitz condition of order £.

Then there exist functions g satisfying a Lipschitz condition of order \ which
vanish on Z(<P), which satisfy/# e A for every fe <&, and which even so do not
belong to A.

This result is best-possible in the sense that any function satisfying a Lip-
schitz condition of order greater than \ necessarily belongs to A (see [3[], p. 167).

ACKNOWLEDGEMENTS. The author would like to express his thanks to a
referee for general comments and especially for the present formulation of 3.3,
which is an improvement over the original version.

1. Definitions and assumptions

1.1 Henceforth G will denote an infinite Hausdorff compact Abelian group
and C(G) the complex Banach space of continuous complex-valued functions on
G, the norm on C(G) being

| | / IL = sup{ | / (x) | :xeG}.

If P and Q denote subsets of C(G), we write PQ or P • Q for the set of product
functions/^ with/e P and g e Q.

We shall consider several normed (complex) linear spaces, each of which is
assumed to be (algebraically) a linear subspace of C(G), the corresponding
injection map being continuous. F, X, Y and Z will be normed linear spaces in
this sense, of which X and Z are assumed furthermore to be complete.

•T denotes a topology on X weaker than the norm topology. (In most of the
later applications, these two topologies coincide.)

1.2 Y is assumed to be a subset of X and to be such that

(1.1) the closed unit ball B in Y is ^"-closed in X,
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[3] Some Fourier division problems 169

(1.2) F'FcZ,

and

0.2') WfgWz ^ c\\f\\F\\g\\Y

for every/e F, g e Y,c being independent off and g.

1.3 Write Xv for the set o f / e X such that supp/ <= U, where supp/denotes
the support of/, and Yv for A^ n F.

The final assumption concerning X and Y is that, for each nonvoid open
subset U of G, there exists # e A^XY" and a sequence (gr)?L i extracted from F^
such that

(1.3) y-
r-* oo

and

(1.4) m = sup||0r| |x < oo.
r

1.4 We shall say that (#, K) is an F-admissible pair if <P is a nonvoid subset
of F and the following two conditions are fulfilled:

(a) K is a nonopen closed subset of G which is contained in the zero-set
Z(<P) (= set of common zeros of elements) of <P;

(b) every/e $ is the limit in F of a sequence (/n)̂ °= i extracted from F, each
/„ vanishing on some (possibly n-dependent) neighbourhood in G of K.

In the main theorem to follow we shall be concerned with F-admissible pairs
(4>, K) in which <t> is countable: we shall term these briefly (iff oddly) countable
F-admissible pairs.

It is of course trivial that (<£, K) is F-admissible whenever <P c F, Kis a non-
open closed subset of G, and K is contained in the interior of Z(<P). In general,
(€>, Z($)) will not be F-admissible; but in all the examples we shall consider later
(4>, K) will be F-admissible provided K satisfies (a) and provided every element
of 4> is 'sufficiently smooth' and/or vanishes 'sufficiently strongly' at each point
of K (the precise meaning of the phrases in quotation marks depending upon the
normed linear space F); see 2.5 below.

1.5 REMARKS

(i) The assumptions made in 1.1 and 1.2 concerning F,X,Y,Z are not
minimal; they have been chosen so as to be at once reasonably simple and ade-
quate for the applications in § 3 below.,

(ii) In all the applications we make, F and Y are complete. In any such case
(1.2') is a consequence of (1.2) and 1.1 on account of general theorems (see, for
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example, [6], Theorems 6.4.2 and 7.7.9). On the other hand, the direct verification
of (1.2) will in most cases involve the proof of (1.2') as well; cf. 3.6.2 and 3.7.2
below.

2. The main theorem

2.1 THEOREM. The notations and hypotheses being as in 1.1-1.3, suppose that
($>, K) is a countable F-admissible pair. Denote by E the linear space formed by
those functions g e X such that

(2.1) g = 0 on K, fgeZ (/elf);

make E into a topological linear space having a base at 0 formed of the sets

where j runs over the positive integers and s over the positive numbers,

(2.2) Hs) = i

for every g e E, and where i -> / ; is a surjection of {1,2, • • •} onto 0. Then:

(i) E is a Frechet space containing every element of Y which vanishes on K;

(ii) the set Eo = E\Y is comeagre and everywhere dense in E;

(iii) there exist functions g e Xsatisfying (2.1) and g $Y.

2.2 REMARKS

(1) Given 2.1(i), it follows that E is a Baire space and so that any comeagre
subset of E is everywhere dense in E; see [6], 0.3.16.

(2) Plainly, 2.1(ii) entails that Eo is nonvoid, so that any g e Eo satisfies
2.1(iii).

These remarks show that, to prove 2.1, it suffices to establish 2.1 (i) and the
following assertion:

(iv) E\E0 = E n Y is a meagre subset of E.

2.3 PROOFS OF 2.1(i) AND 2.2(iv)

As to 2.1(i), it is first of all clear from 1.2 that E contains every element of Y
which vanishes on K, and that E is a metrisable locally convex space; thus it
remains only to show that E is complete. But suppose (gk)£=i to be a Cauchy
sequence extracted from E. The definition of the topology on E combines with
the assumed completeness of X and Z (see 1.1) to show that there exist geX
and hjB Z (i = 1, 2, • • •) such that

lim gk = g in X and limftgk = hi in Z
* k
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[5] Some Fourier division problems 171

for i = 1, 2, • • •. These limiting relations hold a fortiori in the sense of uniform
convergence on G (see 1.1 again) and so entail that g = 0 on K and that hi = ftg
for every i. Consequently, g e E and limt gk — g in E. This proves completeness
of£.

The proof of 2.2(iv) proceeds by contradiction, assuming that E n Y is
nonmeagre in E. Indeed, if this be assumed, the relation

(2.3) EnY = {J(En vB),
v = l

which is an immediate consequence of (1.1), coupled with the fact that each
E n vB is closed in E (since each vB is norm-closed in X), would show via Baire's
theorem ([6], 0.3.16) that some E nvB has interior points relative to E. Since
E n vB is convex and balanced, it is accordingly a neighbourhood of zero in E.
This signifies the existence of integers v andj and a real number 5 > 0 such that

g e E, Nj(g) ^ 3 => g e vB,

or, what is equivalent, such that

(2.4) E<=Y and \\g\\Y S vd~' N j(g) (geE).

Hence, by (1.2), (1.2') and (2.4) we have for every/e Fand g e E:

(2.5) fgeZ, \\fg\\z ^ cvd^

At this stage we use the assumption that ($, K) is F-admissible to sanction
the choice of ft* (i = 1, 2, • • -,j) from F such tha t /* = 0 on some open subset
V of G containing K and

(2-6) 2cy/||/ i*-/i| |, =g 5 (i = 1,2, ••• , ; ) •

For g e is we then have:

+III/^liz (by 2.2)

the last step by (2.5), so that (2.6) yields

Nj(g) ^ 2(\\g\\x+ £ \\f*g\\z)
i = l

for every g e E. In particular, since/j* = 0 on F for / = 1, 2, • • -,j, another use
of (2.4) shows that
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(2.7) \\g\\Y ^ 2vS-1| |0| |x if geE, supp*? c: V.

A contradiction can now be reached on the basis of 1.3 in the following way.
Take U to be the nonvoid open subset V\K of G and choose g e XV\Y and
gr eYv (r = 1, 2, • • •) in accord with (1.3) and (1.4). Then gre E for every r
(since gr e Y c A'and gr vanishes on K; see 1.2 and (2.1)); since also supp gr c V
for every r, (2.7) applies with gr in place of g to give

that is, g, e 2v<5~1£. But then (1.1) and (1.3) show that g e 2v5~lB <= y, contrary
to the choice of g e A^XY. This completes the proof.

2.4 CONCERNING CONDITION 1.3. In all the examples we consider the following
conditions prevail:

(a) each of X and Fis translation invariant, and X is stable under multiplica-
tion by functions belonging to a set M (either A(G) or Cn(T), where ^(T) is
defined as in [3J, p. 27 and [3n], Chapter 12) which contains arbitrarily fine finite
partitions of unity;

(b) there exist nonnegative continuous functions vr ^ 0 on G with supports
contained in arbitrarily small neighbourhoods of zero in G and such that
vr*geY, supr \\vr * g\\x < oo, and ^"-lim vr* g = g whenever g e X.

When these conditions are fulfilled, condition 1.3 is satisfied whenever Y ^ X.
For, if Y T6 X and if (a) holds, a simple partition of unity argument shows

that to any nonvoid open subset U of G corresponds g e XV\Y. We then take gr

to be a suitable subsequence of vr * g, where the vr are as in (b) and have supports
so small that supp gr <= U for every r.

2.5 CONCERNING F-ADMISSIBILITY. We aim to give here some nontrivial suf-
ficient conditions for .F-admissibility in cases covering the examples discussed in
§ 3. In many cases best-possible results are not known, but this question is not
vital here since interesting applications result without need for extremely precise
results about F-admissibility.

In all that follows, A will denote normalised Haar measure on the underlying
group G in question.

2.5.1 We begin with the case in which G = T, this being richer in examples.
In the examples we shall consider, the following additional assumptions concerning
F will be satisfied:

(a) C°° c F with a continuous injection;

(b) writing en for the function x++einx with domain T, \\en\\F = 0(\n\K) for
n el, \n\ ->• oo.
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Introduce Fo as the set oifeF such that, for every / e F' (the dual of the
normed linear space F),

(2.5.1) f(/) = I«O/(«) ,
nel

the series being absolutely convergent. It is plain that (a) and (b) guarantee that
C00 c Fo.

2.5.2 Suppose that F is as in 1.1 and 2.5.1. Let K be a closed subset of T
different from 0 and T, and let <P be a nonvoid subset of F. Write Vj(j = 1, 2, • • •)
for the interval ( - J" 1 , ; " 1 ) modulo 2rc and D, = (£+ Vj)\K. In order that
(<P, # ) be F-admissible, it is sufficient that

(a) < fcF o and / s : c Z(<Z>), and

(b) limj2K + 1 I \f\2<tt = 0 for every/e<Z>.2 K + 1 f

hmj I

Since X(D}) -> 0 asy -»• oo, (b) will be satisfied if each/e $ is such that/(x) =
0(dK+i) for every x at distance at most d from AT.

PROOF. By the Hahn-Banach theorem, we need to show that, if fe 0 and if
a continuous linear functional / on F annihilates every element of F which vanishes
on some neighbourhood of K, then /(/) = 0. In view of 2.5.l(a) and 2.3.1 of [6],
there is a distribution 5 on T such that S(en) = l(en) for every nel, and (2.5.1)
shows that

(2-5.2) l(f) = S(f) = X '(«.)/(«)
nel

for every/e C°°. Moreover, by 2.5.1(b),

(2-5.3) | / ( O l ^ c ( l + |n|)K (nel)

for some real number c ^ 0.
The fact that / annihilates every element of F which vanishes on a neighbour-

hood of K combines with (2.5.2) to show that supp S <= K. Take an approximate
identity for convolution formed of functions fcj e C* such that supp kj <= Vj.
Then k} * / e Cm and (2.5.2) gives

where 5, = ^ * S e C00, so that supp Sj c £ + F,-, and &/x) = kj(-x). On the
other hand, lini,-.^ fcj = 1 boundedly on / and so, since 2.5.2(a) guarantees that
fe Fo, the assumed absolute convergence of the series appearing in (2.5.1) ensures
that
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/(/) = I KeJ(n) = lim £ l(en)(kj *ff(n)
ne I j-*<x> neI

= lim l(kj */)

= lim \SjfdX.
J-00 J

Thus, since supp Sj c AT+ F; and/vanishes on K (by 2.5.2(a)),

(2.5.4) /(/) = lim \ SjfdL

By the Parseval formula, the Cauchy-Schwarz inequality, (2.5.3) and (2.5.4),
we have

(2.5.5) |/(/) | ^ const, lim inf lWj ! \f\2dxY,
j->oo y JDj )

where

(2.5.6) 2 2

nel

Straightforward calculation confirms that one may choose the kj so that Wj =
0(./2K + 1) for large j , so that (2.5.5) and 2.5.2(b) lead to the conclusion /(/) = 0,
as required.

2.5.3 In case of a more general group G (see 1.1 above), the substance of
2.5.1 and 2.5.2 can be modified by replacing both C00 and Fo by A(G) and formally
taking K = 0; one can then adapt the arguments in 13.5.5 of [3M] in such a way
as to reach the following conclusion.

Suppose that A(G) c Fwith a continuous injection and that

sup ||y||F < GO,
yer

where F denotes the group dual to G. Suppose that <P is a nonvoid subset of A(G)
and K a nonopen closed subset of G contained in Z(<P). In order that (0, K) be
f-admissible, it is sufficient that either

(a) AT is a spectral synthesis set (see [3n], 12.11.4), or

(b) to each/e $ corresponds a base (Vj)f=l of neighbourhoods of zero in G
such that

limAC^)-1 f \f\2dX = 0,

where
Dj = (K+ Vj)\K.

Condition (b) will be satisfied if each/e <£ satisfies
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[91 Some Fourier division problems 175

sup i/(x)| = O(A(F,)*)
xeDj

for large j .
Note that K is a spectral synthesis set whenever its frontier contains no

nonvoid perfect set (cf. [3n], Exercise 12.52).

3. Applications

3.1 NOTATIONS AND PRELIMINARY REMARKS. In this subsection we collect
together some of the notations and preliminary remarks used throughout the
examples to follow.

G and C(G) are as described in 1.1 and, as in 2.5, X denotes normalised Haar
measure on G. F denotes the group dual to G. For 1 ^ p ^ oo, LP(G) denotes
the usual Lebesque space constructed relative to X and lp(F) the similar space
constructed relative to counting measure on F; \\-\\p denotes the corresponding
norm on LP{G) or on lp{F), the context making plain which is involved.

F o r / e Ll(G), / denotes the Fourier transform of/:

/(?) = f f(x)y(x)dX(x) (yeF).
J G

For any numberp satisfying 1 ^ p 5= oo,/?' will always denote the conjugate
exponent denned by p' = p/(p—l).

3.1.1 If 1 ^ r ^ oo, Ar(G) will denote the set o f / e C(G) such that / e lr(F),
regarded as a Banach space with the norm

| | /IUc) = max {II/IL, H/ll,}.

When r = 1 we usually write A(G) in place of A1(G); this is the direct extension
(from T to G) of the space A mentioned in § 0. If r ^ 2, A\G) = C(G); and in
all cases A(G) a Ar(G) with a continuous injection.

By using summability factors (similar to those described in Theorem (3.4)
of [5]) it can be shown that, if 1 ^ q ^ oo , / e L"(G) and g e Lq'(G), then

\(fgf(y)\ ^ I/I * 101 (y)

for every yeF; an application of Young's inequality for the group F (cf. [3n],
p. 150) then shows that

(3-1.1) WifgfW, ^ WfWMWs

whenever

(3.1.2) l g i ^ o o , l^r^s', 1/f = 1 / r + l / j - l .

3.1.2 In 3.1.3-3.1.5 we specialise by supposing that G = T, so that F becomes
the additive group / of integers. Whenever this is the case, we write C, Ar, L", • • •
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in place of C(G), Ar(G), L"(G), • • • and V in place of lr(I). Also, we shall continue
to write en for the function x +-> e%nx on T whenever ne I; and

(3.1.3) sNf= £/(«>„

will denote the iV-th symmetric partial sum of the Fourier series of/e Ll, N denot-
ing a nonnegative integer.

3.1.3 For a e (0, 1], 5 > 0 and / e C we write

M.M) = SUP {*~"l/(*)-/G0l -x,yeT, \x-y\ S S}
and

and define /la to be the set o f / e C for which Ma(f) is finite. Endowed with the
norm

Ax is a Banach space.
The set o f / e /!„ for which

limM.,,(/) = 0
d->0

is a closed linear subspace of Ax which we denote by la and view as a Banach
space with the induced norm.

Two facts concerning la will be needed later.

(i) If fe Aa, then \\Taf-f\\A<x -> 0 as a -> 0, where Ta denotes the operator
of translation by amount a; see, for example, [7], p. 16, Exercise 4 (where Aa is
denoted by Lip a and ka by lip a). From this it follows that

l im | | tv* / - / IL , = 0
r—• oo

whenever fe la and (fr) is an approximate identity for convolution (which may
be extracted from C°°(T) if one wishes).

(ii) If 1 ̂  s < 2 and a = 1/j-i, then

(3.1.4) X. + A s .

In fact, it is known ([4], p. 243) that, if a and s are as specified, then

(3.1.5) A. + As.

Where (3.1.4) to be false, the closed graph theorem ([6], Theorem 6.4.2) would
show that

(3-1.6) Il/H, ^ const.

for every fe ka. But then, if g e Ax and (vr) is an approximate identity extracted
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from C°°(T), we should have \\vr * g\\Aai bounded with respect to r, so that (3.1.6)
applied w i t h / = vr * g would show that |[tV$||s would be bounded with respect
to r and hence that geAs. This conflict with (3.1.5) provides an indirect proof
of (3.1.4).

3.1.4 We denote by AC the Banach space of absolutely continuous functions
on T, the norm being

wherein D denotes derivation.
Also, if 1 ^ r 5̂  oo, AC will denote Ar n AC, made into a Banach space

with the norm

If r > 1, AC and AC are identical as linear spaces and their norms are
equivalent.

3.1.5 We denote by C* the set of fe C having uniformly bounded Fourier
partial sums (UBFPS for short), i.e., for which

is finite. It is easily seen that

(3.1.7)

from which it follows that C* is a Banach space and that the injection of C* into
C is continuous.

3.2 APPLICATION TO AS{G). In our first application we suppose that

(3.2.1) 1 ^ s < 2, l^r%s', 1/f = 1 / r + l / j - l

and aim to apply Theorem 2.1 on choosing

X = C(G), Y = A'(G), Z = A'(G), F = A\G),

the notation being as described in 3.1.2. For &~ we take the norm topology on X.
It is clear that all the assumptions of 1.1 hold, and that (1.1) is verified. The

remainder of 1.2 is also guaranteed by (3.1.1).
We may apply 2.4 (with M taken to be A{G)) and (3.1.1) to infer that 1.3 is

satisfied on account of the fact that Y jt X (i.e., that there exist continuous func-
t i o n s / on G such t h a t / ^ ls(F)): this is the case since G is infinite and s < 2
(cf., for example, [3,,], 15.3.2 and 15.2.5).

Concerning v4r(G)-admissibility, see 2.5.3.
Appeal to 2.1 yields the following conclusion:

3.2.1 If r, s and t are as in (3.2.1) and if (#, K) is a countable >T(G)-admis-
sible pair, there exist continuous functions g on G such that g = 0 on K,
(fffT e l'(r) for every/e <*>, and yet g $ ls(F).
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In the next two examples we take G = T and strengthen the conclusion of
3.2.1 in certain respects.

3.3 APPLICATION TO 1X. We take s, r, t, Fand Z as in 3.2. But now, supposing
G to be the circle group T, we take for X the space Xa defined in 3.1.3 with
a = 1/s — i, for ^ the norm topology on X, and for Y the space Xx n As with
norm

The verification of 1.1 and 1.2 proceeds as in 3.2. On the other hand, 1.3 is
now equivalent (via 2.4) to (3.1.4).

An application of 2.1 yields the following refinement of 3.2.1.

3.3.1 Suppose that r, s, t are as in (3.2.1) and that a = \\s — \, and let
(<P, K) be a countable ^'-admissible pair. Then there exist functions g e Aa such
that g = 0 on K, (fg)~ e /' for every/e $, and yet g $ Is.

3.3.2 In view of the substance of 2.5.2 (with F = Fo = A and K = 0) or
2.5.3, the case r = s = t = 1 of 3.3.1 yields 0.3.

3.4 APPLICATION TO AC1. Here we take (using the notation described in
3.1.4) X = AC and 3~ the norm topology on X, F = Z = AC and Y = AC1.

It is again easy to verify that 1.1 and 1.2 are fulfilled. Moreover, in view
of 2.4, 1.3 is equivalent to the existence of functions g e AC such that g^l1,
concerning which see [3|], 10.6.1(2).

From 2.1 we accordingly derive the following conclusion.

3.4.1 If 1 ^ r ^ oo and (<P, K) is a countable /IC-admissible pair, there
exist absolutely continuous functions g such that g = 0 on K, (fg)~ e V for every
/ e $ , and yet g$l\

3.4.2 Concerning ^C-admissibility, 2.5.2 applies with K = 1; thus 2.5.2(b)
will be satisfied provided f(x) = 0(di) for all x at distance at most d from K
(which is so, provided fe C 1 a n d / = Df = 0 on K).

3.4.3 We cannot hope to 'combine' 3.3 and 3.4 to the extent of choosing g
so as to belong simultaneously to Ax (a > 0) and to AC, since Ax n AC c: A
([3,], P- 167).

3.5 APPLICATION TO CONJUGATE FUNCTIONS. Here again we take G = T and
denote b y / ~ = H*f the function conjugate to/(cf . [3,,], pp. 86 et seq.).

3.5.1 It is our intention to apply Theorem 2.1, taking X = AC and &~ as
the norm topology on X;

Z = Y = {feAC :f~ eL00}
with norm
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and

(3.5.1) F = {/e AC : £ |n|*|/(n)| < oo}
nel

with norm

(3-5.2)
nel

It is plain that all this conforms with 1.1.

3.5.2 Concerning 1.2, we first note that/fc ->/ in Censures that/j~ -*f~ in
L2, which makes it easy to verify that B is a ^"-closed subset of X.

Next we have the identity

(3.5.3) (ekg)~-ekg~ =
nel

the right hand side being a trigonometric polynomial. The Cauchy-Schwarz
inequality and the Parseval formula lead from (3.5.3) to

and thence to the inequality

(3.5.4) ll((s*/)0r-(s*/)0~IL ^ \\g\\2

I f / e F and ge Y, sNf-*f uniformly as N -*• oo and so ((sNf)g)~ -» (/<?)~ in
L2. In combination with (3.5.1) and (3.5.4), this shows that (fg)~ e/.00 and that

Since also/gf e AC, it is now easy te verify that FY c Z and that (1.2') holds
with a suitable c.

3.5.3 As to 1.3, it is known ([3n], p. 91) that there exist functions g e AC
such that g~ $L™, so that X # Y. On the basis of 2.4 we can therefore be sure
that 1.3 is satisfied.

At this point we may apply Theorem 2.1 to derive the following conclusion.

3.5.4 Suppose that F is as described in (3.5.1) and (3.5.2) and that (<£, K)
is a countable F-admissible pair. Then there exist functions g e AC such that
g = 0 on K,fg e AC and (fg)~ e L°° for every/e 4>, and g~ $ Lm.

3.5.5 Regarding F-admissibility, we may revert to 2.5.2 for sufficient condi-
tions. In the present case we may take K = 1, so that Fo contains at least all
feC such that

X \nf(n)\ < oo.
nel

If 0 contains only such functions, and if AT is a closed subset of T different from
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0 and T and contained in Z(4>), then (<P, K) is inadmissible provided

limj3 f
j-*co JD

for every fe <P. As in 3.4.2, this limit relation is satisfied provided every fe 0
satisfies/(x) = 0(di) for every x at distance ^ d from Â  (and so whenever every
fe 0 satisfies/ = Df = 0 on K).

3.6 APPLICATION TO CONTINUOUS FUNCTIONS WITH UNIFORMLY BOUNDED

FOURIER PARTIAL SUMS

3.6.1 We now take X = C with 3" the norm topology on X and define both
Y and Z to be the space C* defined in 3.1.5.

For F we take the space of functions fe C for which

(3-6.1) 11/11, = £

is finite. Again it is clear that the injection of F into C is continuous.
The conditions of 1.1 are thus met.

3.6.2 Regarding 1.2, it is first of all clear that (1.1) holds. Moreover, it may be
verified (cf. 3.5.2) that ekg e Z and

\\ekg\\z£ const. (1 + \k\f\\g\\z

whenever g e Y and k e I. Using the completeness of Z and the continuity of the
injection of Z into C, it then follows that FYcZ and that

(3-6.2) \\fg\\z tk const. | | / | | f | M | z

whenever fe F and g e Y. Thus (1.2) and (1.2') are satisfied.

3.6.3 The verification of 1.3 proceeds by reference to 2.4, taking M = C00.
(That M • Y <= Y follows from the substance of 3.6.2.)

All the hypotheses stated in § 1 being satisfied, an appeal to Theorem 2.1
leads to the following conclusion.

3.6.4 If (<P, K) is a countable F-admissible pair, with F being as described
in 3.6.1, there exist continuous functions g vanishing on K, such that fg has
UBFPS for every fe <P, and yet g has not UBFPS.

3.6.5 Conditions sufficient to ensure F-admissibility stem from 2.5.2. In the
present case we may take K = \ and Fo = F. The relation 2.5.2(b) is accordingly
satisfied whenever <P <= At (defined as in 3.1.3); or whenever K is a finite union
of points and intervals (in which case X{Dj) = O^/"1)) and every fe $ belongs
to Ax for some (possibly/-dependent) a > \.
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3.7 APPLICATION TO CONTINUOUS FUNCTIONS WITH UNIFORMLY CONVERGENT

FOURIER SERIES

3.7.1 We here take for X the space C*. For ^ we take the topology of
uniform convergence (induced on X by the topology of C).

Let (EJV)JV=O
 De a sequence of positive numbers. The interesting cases are those

in which l im^^ eN = 0, but we do not need to assume this to be the case from
the outset. For Y we choose the linear subspace of g e X such that

(3.7.1)

the norm on Y being denned by

(3-7.2)

For Z we take the set of g e X such that g has a uniformly convergent Fourier
series (UCFS for short), the norm on Z being the restriction to Z of that on C*.

Fis denned in 3.6.1.
All the conditions in 1.1 are then satisfied.

3.7.2 Turning to 1.2, it is simple to verify that B is ^"-closed in X.
The verification of (1.2) is less immediate. We note first that (3.6.2) may be

expressed in the current notation by the assertion

(3.7.3) F-X<=X and \\fg\\x ^ const. i|/IWI<?llx (feF, g e X).

Also, as is quite clear,

(3.7.4) fgeZ whenever/e F and g is a trigonometric polynomial.

As a final preliminary, note that

(3.7.5) Z is norm closed in X.

Now suppose that g eY; then sN(g — sqg) is 0 if N S 1 and is sNg—sqg if N > q,
so that

\\g-sqg\\xS
N>q

which tends to 0 as q -> oo since the Fourier series of g is uniformly convergent.
Thus

(3.7.6) Km 110-8,011* = 0 (geY).

Therefore, i f /e F and g e Y, (3.7.3) and (3.7.6) show that

(3-7.7) limlLfc-/-5,011* = 0;
q-*co

this, together with (3.7.4) and (3.7.5), entails that fgeZ. Moreover, by (3.7.3)
and (3.7.7),
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q-* oo

c o n s t . IL/llF
£-•00

const.

the last step by (3.7.6). In particular, reference to (3.7.2) and (3.7.3) now shows
that F- Y <= Z and \\fg\\z ^ const. ||/||FIM|y f o r / e F and g e Y. This verifies
(1.2) and (1.2').

3.7.3 All the conditions of 2.4 are met: (a) follows with M = C00 from the
substance of 3.7.2; and (b) is satisfied if we take vre C00 forming an approximate
identity for convolution with supp vr J, {0}. Therefore, 1.3 will be satisfied when-
ever Y ¥= X.

Now reference to pp. 125-127 of [2t] shows that Y is indeed distinct from X
provided there is an integer a such that

(3.7.8)

where

and

(3.7.9)

b = sup {| £ k
k=l

lim inf eNr =

a > exp (2Z\/:

~l sin kx\ : n =

= 0, where

= 1,2, • • -, x n

= 2 a r 2 - l .

This being so, we may infer from 2.1 the following result.

3.7.4 Suppose that {sN)^=0 is a sequence of positive numbers satisfying
(3.7.9) for some choice of the positive integer a satisfying (3.7.8). Suppose also
that F is as defined in 3.6.1 and that (<P, K) is a countable /"-admissible pair
(cf. 3.6.5). Then there exist continuous functions g with UBFPS which vanish
on K, which are such that/# has a UCFS for every fe <P, and yet which satisfy

(3.7.10) limsupe^ll^-sjvsfll^ = oo.

4. Concerning 0.1

4.1 In all the applications we have discussed our choice of F has been in
accord with the following stipulations:

(a) F contains a set Fx which is a subalgebra (with respect to pointwise
operations) of C(G), containing all constant functions and endowed with a norm
(possibly different from that induced by the norm on C(G) and from that on F)
making it into a Banach algebra, the injection of Fy into C(G) being continuous;

(b) i f /e F t , then the complex conjugate function/e Fy;
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(c) every nonzero continuous complex homomorphism of Fy is of the type
f+*f(x) for some xeG;

(d) if L is any closed subset of G and x0 e G\L, there exists/0 e Fl such that
/o(*o) # 0 and/0(x) = 0 for every xeL.

As we shall now show, this circumstance leads to a conclusion of which 0.1 is
the special case G = T, Ft = F = Z = A.

4.2 Suppose that F satisfies conditions (a)-(d) in 4.1, that <P is a nonvoid
subset of F1, and that U is any neighbourhood in G of -Z($). Suppose further
that Z is a set of complex-valued functions on G such that Z+Z c Z and
Ft • Z cz Z. If g is any complex-valued function on G such that # = 0 on U and
fg e Z for every/e $, then g e Z .

PROOF. We may assume that U is open in G. The argument proceeds in two
stages, the first of which refers only to Fy.

(i) Consider the ideal / in Ft formed of those fe Ft which vanish on the
closed subset L = G\U of G. The final clause of (a) ensures that / is closed in
Fi, so that F1jI is a commutative Banach algebra with identity. From (c) it follows
that every nonzero continuous complex homomorphism of FJI is of the type
f+I++f(x) for some x e G, and (d) goes to show that x must belong to L = G\U.
The Gelfand theory (specifically, 11.4.10 of [3U]) now shows that, if fe ft is
nonvanishing on G\U, there exists he F^ such that hf = 1 on G\U.

(ii) Since G\U is compact and U •=> Z(4>), there exist / t , • • •,/„ e $ such
that

/ = tfifi
; = i

is nonvanishing on G\U. On the other hand, (a) and (b) show that/is an element
of F t . By (i), therefore, there exists he F1 such that

V= I */«/« = ! on G\U.
i = l

Hence, since g vanishes on U,

(4-1) 9 = i(hMfi9),

wherein ftg e Z and hft e Fx (the first by hypothesis on g, and the second by
4.1 (a) and (b)). The hypotheses on Z then combine with (4.1) to show that g e Z.

4.3 If F has any one of the meanings described in 3.4-3.7 above, 4.1 is
applicable with Ft = F. But if we choose F = Ar (as in 3.2 and 3.3), and if
r e (1, 2), the situation is not clear: it appears to be a nontrivial open problem
to determine whether Ar is or is not an algebra under pointwise operations. (We
may, of course, apply 4.1 with Ft = A.)
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5. A constructive approach when G = T

5.1 It is assumed throughout this section that G = Tand that <P is a nonvoid
subset of C with the following properties:

(1) to each/e $ corresponds/? = pf > 1 such that DfeLp;

(2) Z(<P) is nonvoid.

Our object is to indicate an explicit construction leading to functions g e AC
such that

(3) fgeA for every/e <£;

(4) giA.

The outcome bears comparison with the case G = T, r = \ of 3.4.1.
Condition (1) immediately above entails ([3n], Exercise 13.2) that, as in 3.4.1,
<£ is a subset of AC1. On the other hand, we do not here assume that 4> is countable;
and we do not here assert anything about g vanishing on subsets K of Z(4>) (so
that admissibility considerations no longer arise).

5.2 CONSTRUCTION OF g. We start with any function ^ e i " such that

(5.2.1) Zty = n + t,

where \i is a measure on T satisfying

(5.2.2) supp n c Z(«J>), X I n ' W l = °°

and

(5.2.3) f e L ' for some q > 1.

A possible choice is to take a e Z($) and

(5.2.4) * W = I ( iB)" 1 e w *- ' ) ,

corresponding to which /i = e0 (the Dirac measure placed at a) and ip = 1.
Then, by [3n], Exercise 13.1 and Holder's inequality,

so that (5.2.1) and (5.2.2) arrange that

(5.2.5) n$(n) = 0(1), X l#»)l = « .
• E l

Thanks to (5.2.5), a sequence (AJV)JV=I
 c a n be constructed so that

(5.2.6) XN > 0, t XN < co,
N=l
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(5.2.7) £ \$(n)\ £ XNFN(n) = oo
• E I J V = 1

where FN denotes Fejer's kernel.
Now define

(5.2.8) g = X XN(FN *<£) = &*<£,
J V = 1

where

(5.2.9)
J V = 1

Then (5.2.6) combines with the fact that HF^I^ = 1 to show that heL1, so that
geC. What is more, (5.2.1)-(5.2.3) and (5.2.8) show that

Dg = h* D<t> — h * n + h * ^i e L1,

so that g e AC. Furthermore, (5.2.8) yields

g(n) = $(n) £

and (5.2.7) guarantees that g $ A.
It remains to show that/gr e A whenever fe <P. Now D(fg) = Df- g + / • Dg,

of which the first summand belongs to L" by 5.1(1). On the other hand,

f-Dg=f-(h*ii)+f-(h*ilt),

of which the second summand belongs to L? in view of (5.2.3) and the fact that
h e L1. It will therefore suffice ([3n], Fjcercise 13.2) to show that

(5.2.10) / • ( / i * / i ) 6 L I for some s > 1.

But, by (5.2.8) and Fatou's lemma,

ll/-(**A0ii,g I W-tF^/Oii,

and so (5.2.6) will ensure (5.2.10), provided

(5.2.11) supjv | | / • (FN * fi)\\s < oo for some s > 1.

An appeal to Holder's inequality and the Fubini theorem leads to the estimate

\\f-(FN * n)\\: ̂  Mlt'j [j\f(x + y)\°Fs
N(x)dl(x)} d\fi\(y)

for any s > 1, where s' = s(s-1)"1. Reference to (5.2.2) shows that this is 0(1),
provided
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sup sup \ \f(x + y)\sFs
N(x)dX(x) < oo,

N yeZ(d>)JT

which is verifiably the case whenever

(5.2.12) sup U(y + x)\ = O(\x\<)

with T = s~2(s— 1)(2J— 1). But, since / vanishes on Z(4>), and since 5.1(1)
ensures that fe Al/p,, (5.2.12) will be satisfied as soon as we choose J > 1 so
close to 1 that x ^ l/p'.

Note added in proof. Concerning 4.3, if r e (1,2), Ar is not an algebra under
pointwise operations; see Lynette M. Butler, "Certain non-algebras in harmonic
analysis" (to appear Bulletin Australian Math. Soc).

References

[1] G. E. Shilov, 'On the Fourier coefficients of a class of continuous functions', (In Russian.)
Doklady Akad. Nauk 35 (1942), 3 - 7 .

[2; n ] N. Bary, A Treatise on Trigonometric Series. Vols. I, II (Pergamon Press, Oxford, 1964).
[3j n] R. E. Edwards, Fourier Series: A Modern Introduction (Vols. I, II. Holt, Rinehart &

Winston, Inc., New York, 1967, 1968).
[4] A. Zygmund, Trigonometric Series, Vol. I (Cambridge University Press, 1959).
[5] R. E. Edwards and E. Hewitt, 'Pointwise limits for sequences of convolution operators',

Ada Math. 113 (1965), 181-218.
[6] R. E. Edwards, Functional Analysis: Theory and Applications (Holt, Rinehart and Winston,

Inc., New York, 1965).
[7] Y. Katznelson, An Introduction to Harmonic Analysis (John Wiley and Sons, Inc., New York,

1968).

Department of Mathematics
Institute of Advanced Studies
ANU

https://doi.org/10.1017/S1446788700009447 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700009447

