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HOMOMORPHISMS OF LIE ALGEBRAS 
OF ALGEBRAIC GROUPS AND ANALYTIC GROUPS 

NAZIHNAHLUS 

ABSTRACT. Let <j>: L(G) —> L(H) be a Lie algebra homomorphism from the Lie 
algebra of G to the Lie algebra of H in the following cases: (i) G and H are irreducible 
algebraic groups over an algebraically closed field of characteristic 0, or (ii) G and //are 
linear complex analytic groups. In this paper, we present some equivalent conditions for 
<t> to be a differential in the above two cases. That is, <j> is the differential of a morphism 
of algebraic groups or analytic groups as appropriate. 

In the algebraic case, for example, it is shown that <j> is a differential if and only 
if (j> preserves nilpotency, semisimplicity, and integrality of elements. In the analytic 
case, <f> is a differential if and only if <f> maps every integral semisimple element of 
L(GQ) into an integral semisimple element of £(//o), where Go and//o are the universal 
algebraic subgroups of G and //. Via rational elements, we also present some equivalent 
conditions for </> to be a differential up to coverings of G in the algebraic case, and for 
<j) to be a differential up to finite coverings of G in the analytic case. 

If G is an algebraic group, an element of L(G) is called integral (resp. rational) if all 
its eigenvalues under the representations of L(G) associated with representations of G 
belong to Z (resp. Q), or equivalently, if all its eigenvalues for its derivation action on 
the algebra of polynomial functions of G belong to Z (resp. Q). We adopt the following 
notation and conventions: "algebraic group" means affine algebraic group, and "analytic 
group" means connected Lie group. L(G) is the Lie algebra of the group G. If G is 
algebraic, £L[G] is its (Hopf) algebra of polynomial functions, X(G) is its character group, 
Gu is its unipotent radical, and G\ is its identity component. If r is an element of L(G), 
then rn and TS are the nilpotent and semisimple (Jordan) parts of r. 

Section 1 of this paper is based on the author's doctoral dissertation written under 
the direction of Professor G. Hochschild to whom the author would like to express his 
deepest gratitude. 

1. Lie algebras of algebraic groups. Unless otherwise stated, all algebraic groups 
are assumed to be over an algebraically closed field F. Let G be an algebraic group. We 
view the elements of its Lie algebra L(G) as left invariant derivations on its algebra Sl[G] 
of polynomial functions, i.e., derivations that commute with the translation G action 
given by: (f • x)(y) = f{xy). For every element r of X(G), we let ET (relative to G) be 
the set of all eigenvalues for the derivation action of r on Sl[G]. If the base field F is of 
characteristic 0, an element r of L(G) is called integral (resp. rational) ifET is contained 
in Z (resp. Q) where Z is the ring of rational integers of F, and Q is the prime field of F. 
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If the base field F is of prime characteristic/?, then r is called integral ifET is contained 
in Fp, the prime field of F. For every subring A of F, we define LA(G) as the set of all 
elements r of L(G) for which ET CA. 

Let V be a polynomial G-module, z.e., a locally finite G-module whose associated 
representative functions belong to -#[G] (cf. [2, p. 41]). Then the differential of the rep­
resentation of G on V makes V into an Z(G)-module. The basic example of a polynomial 
G-module is -#[G] under the translation G-action given by: (JC -f)(y) =f(yx). In this case, 
the associated £(G)-module structure is given by the above derivation action of L{G) 
on A[G\. 

LEMMA 1.1. Let r be an element of L(G). 

(1) If V is a polynomial G-module, then the eigenvalues for the action ofron V 
belong to ET. In particular, ifp: G—^ His a morphism of algebraic groups, then 
Effi(r) C ET where p° is the differential of p. 

(2) If S is an algebraic subgroup of G such that r G L(S), then ET relative to G 
coincides with ET relative to S. 

(3) If G is an algebraic subgroup ofAut V where V is a finite dimensional F-space, 
then ET coincides with the 7j-module generated by the eigenvalues ofr on V. 

PROOF. (1) This follows immediately from the fact that every finite dimensional 
polynomial representation G-module is isomorphic with a G-submodule of a direct sum 
of copies of J%[G] [13, Lemma 3.5]. 

(2) By the first part, ET relative to G is contained in ET relative to S. For the other inclu­
sion, we may assume that r is semisimple because the eigenvalues of any linear operator 
on a finite-dimensional vector space are precisely the eigenvalues of its semisimple part. 
In this case, the polynomial ^-module Jl[S] is isomorphic with a r-submodule of 2L[G], 
because J%[S] is an S-homomorphic image of Sl[G]. Hence ET relative to S is contained 
in ET relative to G. 

(3) By tensoring and dualization of polynomial G-modules, (1) implies that ET is a 
Z-module because, in tensoring, eigenvalues add; and in dualization, eigenvalues turn 
into their negatives. Hence ET contains the Z-module Vr generated by the eigenvalues 
of r on V. Conversely, since every finite-dimensional polynomial representation of G 
can be constructed from its faithful representation on F by the process of forming tensor 
products, direct sums, subrepresentations, quotients and duals [13, p. 25], it follows that 
ET C VT since the eigenvalues of r in a quotient G-module of V are contained in that V 
as seen in the proof of (2). Hence ET = VT. 

LEMMA 1.2. Let T be a torus and let A be a subring of the base field F containing 
1. Then LA(T) is an A-form ofL(T), i.e., LA(T) is an A-module and L{T) = LA(T) 0 F. 

PROOF. Let r be an element of L{T) and let T\ be the differentiation of J?[7] corre­
sponding to (the derivation) r. Then r(f) = r\(f) -f for every element/ of X(T). Since 
X(T) spans A[T], it follows that ET C A if and only if n (X(TJ) C A. 

Now we shall view the elements of L(T) as differentiations of %\T\. Let e: L(T) —• 
H o m z ^ T ^ F ) be the F-linear map where for eachr in L(T), e(r) is the restriction of r 
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to X(T). In fact, e{r) G Homz(X(r),F), because r is a differentiation. Since T is a torus, 
X{T) spans -#[7], so £ is injective. Moreover, every map h fromI(7) to F has a unique 
extension to an F-linear map h from 2L[T] to F. Clearly, h is a differentiation if and only 
if h G Homz(X(F),F). This shows that & is surjective. 

Hence e: L(T) -+ Homz(X(T),F) is an F-linear isomorphism. Now if r G L(T), we 
have seen above that ET C A if and only if r maps X{T) into ,4. Hence e restricts to an 
^-module isomorphism LA(T) —> Homz(jf(r),,4). Since X(T) is a free Z-module and 
1 belongs to A, it follows that Uomz{X(T),A) is an ,4-form of Homz(X( JT),F). Conse­
quently, via e, /^(F) is an^-form of L(T). 

LEMMA 1.3. Let </>: L(T\ ) —* L(T2) be a Lie algebra homomorphism of Lie algebras 
of tori. Then </> is the differential of a morphism of algebraic groups if and only if<\> maps 
every integral element of L(T\) into an integral element of L{T2). 

PROOF. If </> is the differential of a morphism of algebraic groups then, by 
Lemma 1.1, <f> preserves integral elements. Conversely, suppose <j)(Li(T\)^ C Lj(T2) 
where I is the subring of F generated by 1. For / = 1,2, let £t: Li(Tj) —* Homz (X(Ti), fj 
be the canonical isomorphisms discussed in the proof of Lemma 1.2. Since </> 
maps Lj(T\) into Li(T2), <j> induces a Z-module homomorphism $: Y{omz(X(T\\l) —» 
Homz(X(72),i) where <j> = e2 o <f> o e^1. Since eachX(T/) is a finitely generated free 
Z-module, it follows that 0 is the dual map of a Z-module homomorphism a:X(T2) —> 
X{T\) (a is not unique in prime characteristic). Now, by the character theory of tori, a 
is the transpose of a morphism p: T\ —+ T2 of algebraic groups. From definitions, it is 
evident that the following diagram commutes 

U(TX) -!L LJ(T2) 

Homz(X(rO,/) M Homz(X(T2)j) 

where p is the dual map of the transpose p':X(Y2) —> ̂ (^1). Moreover, p = <j> and 
<£ = £2 o 0 o £j~l„ Hence p° agrees with </> on Li(T\). But this last is an/-form of L{T\) 
by Lemma 1.2. Hence p° = <f>. 

COROLLARY 1.4. Let A be a toral subalgebra of L(G\ i.e., A is an abelian subal-
gebra ofsemisimple elements of L(G). Then A is the Lie algebra of a torus of G if and 
only if A has a basis of integral elements of L(G). 

PROOF. Let L be a maximal toral subalgebra of L(G) containing A. Then, in any 
characteristic, L is the Lie algebra of a maximal torus of G ([7, p. 62], [11, p. 1054]). 
Hence, by Lemma 1.1, we may assume that G is a torus. 

Now suppose that A has a basis of integral elements. Then, by Lemma 1.2, AH U(G) 
is an /-form of A. Let D be a torus of dimension dimpA. Then we may identify L(D) 
with A, and Li(D) with A n X/(G). Now the injection i: L(D) —* L(G) maps £/(£>) into 
Lj(G). Hence, by Lemma 1.3, / is the differential of an algebraic group homomorphism 
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p:D—>G. Since p° is injective, it follows that X(p(D)) = p° (£(£>)) = A for reasons of 
dimension. This means that A is the Lie algebra of a torus of G whenever A has a basis 
of integral elements of L(G). The converse is also true by Lemmas 1.1 and 1.2. 

Recall that a sub Lie algebra A of L(G) is called algebraic if it is the Lie algebra of 
an algebraic subgroup of G. 

THEOREM 1.5. Let <j>: L(G) —> L(H) be a Lie algebra homomorphism of Lie alge­
bras of irreducible algebraic groups over an algebraically closed fieldFofcharacteristic 
0, and let T be a maximal torus ofG. Then the following are equivalent. 

(1) <j> is the differential of a morphism algebraic groups. 
(2) <j> preserves nilpotency, semisimplicity, and integrality of elements. 
(3) <j> maps every (nilpotent) element ofL{Gu) into a nilpotent element ofL(H), and 

<f> maps every integral (semisimple) element ofL(T) into an integral semisimple 
element of L(H). 

(4) The graph of(f> is an algebraic sub Lie algebra of L(G x H), and <j> maps every 
integral element ofL(T) into an integral element ofL(H). 

PROOF. (1) implies (2) by Lemma 1.1, and (2) implies (3) trivially. Now we show 
that (3) implies (4). Let R be the radical of G and let D be the identity component of 
ROT. Since T is a maximal torus of G, it follows that D is a maximal torus of R and 
L(R) = L(GU) + L(D) (semi-direct). Since each of L(GU) and (/>(£(GM)) consists of 
nilpotent elements, so does the graph of <\> on L(GU). Hence it is an algebraic sub Lie 
algebra of L(G) x L(H). Moreover, L(D) has a basis of integral (semisimple) elements 
by Lemma 1.2, and we are given that <j> maps every integral (semisimple) element of L(T) 
into an integral semisimple element of L(H). Thus the graph of <j> on L(D) has a basis of 
integral semisimple elements of L(G) x L(H), so this graph is the Lie algebra of a torus of 
G x//by Corollary 1.4. Now the graph of</> on the sum £(K) = L(GU)+L(D), is the semi-
direct sum of two algebraic sub Lie algebras of L(G) x L(H). Hence it is an algebraic 
sub Lie algebra of L(G) x L(H). But this sub Lie algebra coincides with the radical of 
graph <j> (on L(G)). Hence graph <j> is an algebraic sub Lie algebra of L(G) x L(H), so 
(3) implies (4). 

Finally, suppose (4) holds. Then graph </> is the Lie algebra of an irreducible algebraic 
subgroup G of G x H. Let/: G —> G and p: G —» H be the projection morphisms to 
the factors of G and H. Then/0 and p° are the projection morphisms of graph <j> on the 
factors of L{G) x L(H). Thus/0 is an isomorphism and (/° x p°)(X(G)) = graphe/). 
Hence p° = <j> o/° and/: G —> G is a covering, i.e., a surjective (separable) morphism 
with finite kernel. 

Now we show that ker/ C kerp. Since p° = </> o / ° , it follows that <j> preserves 
semisimple elements. Thus <$> maps every integral semisimple element of L(T) into an 
integral semisimple element of L(H). It follows from Lemma 1.3 and Corollary 1.4 that 
(j) is the differential of a morphism h:T —+ H of algebraic groups. Consequently, if t is 
the maximal torus of G such that/(r) = T, then p° agrees with h° o/° on L(t). Hence 
p agrees with h of on t, because t is connected. Thus, the intersection of ker/with t 
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is contained in ker p. But/: G —> G is a covering. Hence ker/ is a finite closed central 
subgroup of G which necessarily consists of semisimple elements. But such a subgroup 
of G is contained in every maximal torus of G. Hence ker/ C T, so ker/ C ker p. Now 
p induces a morphism p:G -^ H of algebraic groups whose differential is </>, because 
p° = (f> o/°, so (4) implies (1). This completes the proof of Theorem 1.5. 

REMARK. The equivalence of (1) and (2) in Theorem 1.5 may fail over arbitrary 
fields of characteristic 0 mainly because an irreducible abelian reductive algebraic group 
G may fail to be a torus whence L(G) may fail to have a basis of integral elements. 

For example, let G = SO(2, R) be the group of all orthogonal 2 x 2 real matrices of 
determinant 1. Then its Lie algebra consists of all skew-symmetric 2 x 2 real matrices. 
In particular, L(G) has no non-zero integral elements. Moreover, ifH = R*, the multi­
plicative group of non-zero real numbers, and if <j>: L(G) —* L(H) is any non-trivial Lie 
algebra homomorphism, then </> satisfies condition (2) of Theorem 1.5 although there are 
no non-trivial morphisms from G into H. 

DEFINITION 1.6. Let </>: L(G) —> L(H) be a Lie algebra homomorphism of Lie al­
gebras of algebraic groups. Then </> is called a differential up to coverings of G if there 
exists a covering/: G ^> G, and a morphism p: G —• H of algebraic groups such that 
p° = </>o/>. 

THEOREM 1.7. Let </>: L{G) —> £{H) be a Lie algebra homomorphism of Lie alge­
bras of irreducible algebraic groups over an algebraically closed field F of characteristic 
0, and let D be a maximal torus of the radical ofG. Then the following are equivalent. 

(1) <f> is a differential up to coverings of G (see Definition 1.6) 
(2) (/> preserves nilpotency, semisimplicity, and rationality of elements. 
(3) <j> maps every (nilpotent) element ofL(Gu) into a nilpotent element of L(H), and 

4> maps every rational (semisimple) element of L(D) into a rational semisimple 
element of L(H). 

(4) The graph of<\> is an algebraic sub Lie algebra ofL(G x H). 
(5) The restriction ofcf) to the Lie algebra of the radical of G preserves nilpotency, 

semisimplicity, and rationality of elements. 

The proof of Theorem 1.7 follows immediately from the proof of Theorem 1.5 in view 
of Lemma 1.1 and the following lemma. 

LEMMA 1.8. Letf: G —> Hbe a covering of algebraic groups and suppose that the 
basefield F is ofcharacteristic 0. Thenf®(LQ(GJ) = LQ(H). 

PROOF. / ° ( X Q ( G ) ) C £Q(H) by Lemma 1.1. Conversely, suppose/0^) = y where 
y e LQ(H). TO prove that x is rational, it suffices to prove that its semisimple part xs 

is rational (see the proof of Lemma 1.1). Also >> is rational if and only ifj^ is rational. 
Thus we may assume that x and y are semisimple. In this case, x (resp. y) lies in the Lie 
algebra of a torus of G (resp. H) by Corollary 1.4. Consequently, by Lemma 1.1 we may 
assume that G and H are tori. Since/ is a covering, ker/ is a group of finite order, n say. 
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Thus, if 6 G X(H)9 9" induces a polynomial character on G. Consequently the Z- module 
homomorphism/: Homz(X(G), Q) —» Homz(X(//), Q) induced from/by dualizing the 
transpose off is surjective. Now if we consider the commutative diagram 

£Q(G) A £Q(JÏ) 

Homz(Z(G),Q) - ^ Homz(X(//),Q) 

as in the proof of Lemma 1.2, we see immediately via the isomorphism e\ and ei that/0 

is surjective because/ is surjective. 

2. Lie algebras of complex analytic groups. Throughout this section, all complex 
analytic groups are assumed to have faithful (finite dimensional) complex analytic rep­
resentations. Let G be a complex analytic group. An analytic subgroup P of G is called 
reductive if every complex analytic representation of P is semisimple. Now we recall 
from [10] the following notion with some of its properties. 

DEFINITION 2.1. The universal algebraic subgroup Go of G is the subgroup of G 
generated by its commutator subgroup [G, G] and all reductive analytic subgroups of G. 

(2a) [10, Proposition 1]. Go is the unique maximal normal analytic subgroup of G that 
is algebraic under all analytic representations of G. 

(2b) [10, Corollary 3]. The analytic structure of G induces a unique algebraic group 
structure on Go in such a way that every analytic morphism from G to a complex 
algebraic group H restricts to a morphism of complex algebraic groups from Go 
to/ / . 

We shall need the notion of a nucleus of G. This is a closed simply connected solvable 
normal subgroup KofG such that G/K is reductive. 

(2c) G has a nucleus if and only if G has a faithful representation; if G has a nucleus 
K then G = K • P (semi-direct) for any maximal reductive analytic subgroup P 
of G [6, Section 2]. 

THEOREM 2.2. Let <j>\ L(G) —> L(H) be a Lie algebra homomorphism of Lie alge­
bras of (faithfully representable) complex analytic groups. Let Go and HQ be the 
universal algebraic subgroups of G and H. Then the following are equivalent. 

(1) <j> is the differential of an analytic morphism from G to H. 

(2) (j)(^L(Goyj C L(Ho) and the restriction ofcj) to L(Go) is the differential of an 
algebraic morphism from Go to H$. 

(3) (j) maps every integral semisimple element of X(Go) into an integral semisimple 
element ofL(Ho). 

(4) For some maximal (complex) torus TofG, (j) maps every integral (semisimple) 
element of L(T) into an integral semisimple element ofL(Ho). 
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(5) For some closed analytic subgroup A of G such that G/A is a simply connected 
homogeneous space, the restriction ofcj) to L(A) is a differential. 

PROOF. Iff: P —» H is a morphism of analytic groups where P is reductive, then 
f(P) C Ho. By (2b), this shows that (1) implies (2). Lemma 1.1 shows that (2) implies 
(3), while (3) implies (4) trivially. 

Now suppose that (4) holds. Let P be a maximal reductive analytic subgroup of G 
containing T. Since <j>(UT)) C L(H0) and L(P) is contained in L{T) + [L(G\ L(G)\ it 
follows that cj)(L(P)) C L(H0). By (2b), we may view P as an algebraic group and T as 
a maximal (algebraic) torus of P. Since <j> maps every integral (semisimple) element of 
L(T) into an integral semisimple of £(//o), Theorem 1.5 implies that the restriction of 
<f> to L(P) is a differential. But G/P is a simply connected homogeneous space by (2c). 
Hence (4) implies (5). 

Finally, we show that (5) implies (1). Let p: G —> G be the universal analytic covering 
of G. Then <j> o p° is the differential of an analytic morphism/: G —> //. To prove that </> is 
a differential, it suffices to show that ker p C ker/. L&Â be the connected component of 
p~l(A). Then p induces a covering morphism p: G/Â —> G/^4 of homogeneous spaces. 
Since G/A is simply connected, p must be a homeomorphism, so kerp C Â Since (5) 
holds, we have a morphism, a say, from^4 to //whose differential agrees with <j> on L(A). 
Thus a0 o p° agrees with/0 on L(Â). ButÂ is connected. Hence ao p agrees with/ on 
Â. Thus kerp C ker/because kerp C A. Consequently,/ induces a morphism from G 
to //whose differential is </>, so (5) implies (1), and the proof is complete. 

Similarly, using Theorem 1.7, we can prove the following: 

THEOREM 2.3. Let </>: L(G) —* L(H) be as in Theorem 2.2. Let G0 and H0 be the 
universal algebraic subgroups of G and H. Then the following are equivalent. 

(1) <j> is the differential up to finite coverings ofG, i.e., there exists a finite analytic 
covering/: A —> G, and a morphism p:A —> H of analytic groups such that 
P° = 4>of. 

(2) (j)(L(Go)) C L(HQ) and restriction ofcj) to L(GQ) is the differential up to (alge­
braic) coverings of Go. 

(3) cj) maps every rational semisimple element of X(Go) into a rational semisimple 
element of L{Ho). 

(4) For some maximal (complex) torus D of the radical G, <j) maps every rational 
(semisimple) element of L(D) into a rational semisimple element of L(Ho). 
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