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Abstract

We study the persistence of network segregation in networks characterized by the co-evolution

of vertex attributes and link structures, in particular where individual vertices form linkages on

the basis of similarity with other network vertices (homophily), and where vertex attributes

diffuse across linkages, making connected vertices more similar over time (influence). A

general mathematical model of these processes is used to examine the relative influence

of homophily and influence in the maintenance and decay of network segregation in self-

organizing networks. While prior work has shown that homophily is capable of producing

strong network segregation when attributes are fixed, we show that adding even minute

levels of influence is sufficient to overcome the tendency towards segregation even in the

presence of relatively strong homophily processes. This result is proven mathematically

for all large networks and illustrated through a series of computational simulations that

account for additional network evolution processes. This research contributes to a better

theoretical understanding of the conditions under which network segregation and related

phenomenon—such as community structure—may emerge, which has implications for the

design of interventions that may promote more efficient network structures.

Keywords: network dynamics, network segregation, community structure, homophily, influence,

graph theory, differential equation method, agent-based models

1. Introduction: Segregation and community structure in self-organizing networks

Many real-world networks exhibit network segregation, in that linkages are con-

centrated among vertices with shared or similar attributes (Freeman, 1978; Henry

et al., 2011b). Related to network segregation, many networked systems also exhibit

community structure, where vertices may be naturally partitioned into two or more

groups of with many within-group linkages, but relatively few linkages across

groups (Girvan & Newman, 2002; Newman, 2003; Palla et al., 2005; Porter et al.,

2009). These community boundaries often map onto a natural definition of groups
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based on clusters of vertex attributes; in this way, community structure is often a

strong form of network segregation.1

Network segregation has important consequences for the efficient functioning of

networks (Jackson, 2014). In some contexts, it is advantageous for network vertices to

have access, via relatively short paths, to other vertices with heterogeneous attributes

or within distinct communities (Burt, 2004; Granovetter, 1973). For example,

networks of information exchange among organizations and individuals involved in

policy making often cluster around shared values or political positions, making it

difficult for actors within these networks to reach negotiated agreements (Sabatier

& Jenkins-Smith, 1993) or share information necessary to solve complex prob-

lems (Hong & Page, 2004). This is one explanation for the mismatch between

scientific understanding and political action on complex policy issues such as climate

change (Dietz, 2013; Henry, 2009). Network segregation can also influence the ways

in which technologies or behaviors diffuse in a network (Banerjee et al., 2013; Jackson

& López-Pintado, 2013), and may reinforce inequalities between groups of different

socio-economic status (Jackson, 2014). In some other cases, network segregation

may be individually advantageous—for example, it may be useful for social actors

to exploit fragmentations by occupying brokerage or bottleneck positions between

communities (Burt, 2004). Network segregation may even be globally advantageous

if, for example, the presence of communities increases the stability and resilience of

ecosystems (Krause et al., 2003) or provides a mechanism that shields “altruistic” or

“cooperative” actors from the negative influence of non-cooperative actors (Nowak,

2006). Better theories of the mechanisms that produce network segregation and

community structure can inform the design of interventions to promote more

efficient policy processes (Sabatier, 2007), increased social learning (Henry, 2009;

Parson & Clark, 2005), the emergence of cooperation (Nowak, 2006), or any other

process emerging from a broad array of network types (Newman, 2003).

Why does network segregation emerge? A large body of research has grown

around methods for the efficient and reliable detection of communities in segregated

networks (Girvan & Newman, 2002; Porter et al., 2009; Newman, 2006), however

relatively few studies have sought to develop theoretical explanations for why these

network structures emerge and are maintained over time (but see Palla et al., 2007;

Henry et al., 2011b; Kumpula et al., 2007; Lambiotte et al., 2007; Durrett et al.,

2012; Cooper et al., 2014). Research in this area often assumes some form of

structural or choice-based homophily, in that linkages are more likely to form

between similar vertices due to increased opportunities for interaction or systematic

biases for homophilous links (Boucher, 2015; McPherson et al., 2001).

The idea that vertices form connections with each other based on shared or similar

traits is a strong and consistent empirical finding in the network science literature,

particularly in the study of social networks. For example, research based on the

Adolescent Health (“Add Health”) dataset (Harris et al., 2009) shows a correlation

1 Community structure and network segregation are complementary but distinct concepts in network
science. Community structure refers to a concentration of linkages among certain groups of vertices,
whereas network segregation refers to a situation where the existence of links is correlated with
the similarity of vertex attributes. It is possible to have networks that exhibit both segregation and
community structure, but community structure is also possible without network segregation and
network segregation is possible without community structure.
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between race and friendship among a sample of high school students, and that

this homophily effect tends to be stronger for racial groups that comprise a larger

proportion of the student population (Currarini et al., 2009; Currarini et al., 2010).

An analysis of the same dataset also shows that genetic similarity—in addition

to social and behavioral characteristics—also lead to the formation of friendship

ties (Boardman et al., 2012). Among new university students in Germany, factors

such as race, gender, and propensity for cooperative behavior were found to influence

friendship choices (Girard et al., 2015). In online social networks, homophily drives

individuals to “befriend” others with similar tastes (Lewis et al., 2012). Within a

large corporation, employees were shown to exhibit a preference for communication

with others sharing their gender and basic job functions—at least when they had

some flexibility to choose their communication partners (Kleinbaum et al., 2013).

A tendency toward homophily has also been observed for social aggregates. For

example, organizations seeking to influence policy will tend to coordinate with other

organziations that share their beliefs about policy problems (Henry, 2011; Henry

et al., 2011a), and municipal governments tend to seek out collaborative ties with

other governments on the basis of shared political ideology (Gerber et al., 2013).

Within this very large literature on homophily, it should be noted that there is

some variation in how the terms “homophily” and “segregation” are used. For our

purposes, “homophily” refers to a dynamic process of tie formation or deletion,

where the formation or deletion of ties occurs with probability proportional to the

similarity or dissimilarity of network vertices. Homophily therefore refers to one of

many possible factors that determine network structure. On the other hand, the term

“segregation” is descriptive. Following Freeman (1978), a segregated network is one

where linkages are observed to be concentrated among vertices with similar traits—a

characteristic that has sometimes been referred to as observed homophily (Kossinets

& Watts, 2009). Homphily is a natural explanation for segregation, and both

empirical and theoretical research shows that even very weak forms of homophily

can be a powerful force in the emergence of network segregation (Bramoullé et al.,

2012; Henry et al., 2011b; Kossinets & Watts, 2009).

On the other hand, segregation may be produced through pathways other than

homophily. In particular, many segregated networks emerge in the context of

attributes that are malleable and shaped in part by the influences of other network

vertices. Influence is therefore a potentially important mechanism of network

evolution—under influence, the neighbors of a particular vertex will exert a changing

force on that vertex’s attribute, making connected vertices more similar over time.

Influence processes have been studied in many contexts including social learning and

opinion formation (DeGroot, 1974; Friedkin & Johnsen, 2011; Golub & Jackson,

2012), the diffusion of technological or policy innovations (Valente, 1995) and the

adoption of culture or behaviors among human and non-human animals (Danchin

et al., 2004).

These mechanisms of network evolution—homophily and influence—are often

studied in isolation, however these are often not independent processes. For example,

research on social networks suggests that the degree to which two individuals

exercise an influence on one another is proportional to the similarity of these

individuals (Centola, 2011). Moreover, in many contexts link structures and vertex

attributes co-evolve with one another (Lazer, 2001). Studies such as Aral et al. (2013)
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underscore the importance of considering both processes occurring in tandem; these

authors show that homophily in a social network can change the efficiency of

interventions meant to promote the spread of new technologies or behaviors.

Co-evolutionary models of homophily and influence are emerging (Centola et al.,

2007; Dandekar et al., 2013; Henry, Pra�lat, 2013; Lewis et al., 2012). We advance

work in this area by proposing a general mathematical model of network evolution

where linkages are cut and formed through homophily, and where network vertices

take on the attributes of others they are connected to. Our results show that even a

minimal diffusion of attributes across linkages are sufficient to prevent the emergence

of network segregation, even when individual vertices have a strong preference for

segregation. We prove this result mathematically for all large network structures.

2. A mathematical model of network self-organization

The network evolution process analyzed here P(G0, ω0, �, q, r, K) = (Gt, ωt)
∞
t=0 is

defined as a Markov chain and generates a stochastic sequence of networks (also

referred to here as graphs). At each time step t, the process produces a graph

Gt = (Vt = V , Et) consisting of n = |Vt| vertices (also referred to as nodes) and

m = |Et| links (also referred to as edges).2 The total number of vertices and linkages

does not change during the network evolution process; thus, our attention focuses on

the changing distribution of links and vertex attributes in the space over time, rather

than on the growth of the network as studied in other lines of research (Barabási &

Albert, 1999; D’Souza et al., 2007; Aiello et al., 2009; Cooper & Pra�lat, 2011).

2.1. Measuring network segregation

During the network evolution process, individual vertices use their attributes to assess

their similarity to or difference from other vertices, and vertex attributes also change

as a result of influences exercised within network connections. Vertex attributes at

time t are represented by the function ωt : V → [0, 1]r , where r ∈ � represents

the fixed dimensionality of attributes. The assumption that vertex attributes are

multi-dimensional allows for more flexibility in modeling real-world processes where

several unique attributes may exercise parallel influences on network structure. The

similarity between any two network vertices is captured by a normalized measure

of attribute distance, defined as d : [0, 1]r × [0, 1]r → [0, 1]. For x ∈ �, �x� and

�x	 are defined as the smallest integer being greater than or equal to x and the

largest integer being smaller than or equal to x, respectively. Following (Henry et al.,

2011b), attribute distances are converted into a discrete measure dK (·, ·) by fixing

K ∈ � and partitioning all distances into K bins such that

dK (x, y) =

{ �Kd(x,y)�
K

if d(x, y) > 0,
1
K

otherwise.

The purpose of discretizing distances by introducing K bins is only to simplify

calculations in this paper; our results do not depend on this approach. It should

2 It should be noted that the set of vertices does not change over time.
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also be noted here that the actual distances d(x, y) are assumed to fall in the interval

[0, 1], which ensures that any discretized distance dK is no more than 1 and no less

than 1/K . Using this distance function, the case where K = 1 puts all attribute

distances in the same bin, therefore “erasing” the effect of attributes on network

structures.

The term edge length refers to the attribute distance of vertices that are connected

by a particular network link—thus, actors with very similar attributes are connected

by “short edges” whereas actors who are very different are connected by “long

edges.”

Networks comprised primarily of short edges are indicative of network segre-

gation, which coupled with a multi-modal distribution of attributes, also implies

the existence of a community structure. Two additional variables help to track the

emergence or suppression of network segregation. The global center of mass Mt is

unique to each network Gt and is defined as the mean attribute across all vertices at

time t,

Mt =
1

n

∑
v∈Vt

ωt(v).

The local center of mass Mt(v) is unique to each network vertex v at a particular

time step, and is defined as the mean attribute of that particular vertex’s neighbors

in the network

Mt(v) =
1

|Nt(v)|
∑

u∈Nt(v)

ωt(u)

provided that |Nt(v)| � 1. Nt(v) = {u ∈ Vt : vu ∈ Et} denotes the set of v’s neighbors

at time t.

2.2. Dynamics of the evolutionary process: Homophily and influence

The evolutionary process begins at t = 0, with an initial network G0 = (V0 = V , E0)

on n = |V | vertices, m = |E| edges and with initial vertex attributes ω0 : V → [0, 1]r .

The network G0 may have any structure and vertices might be distributed in any

way in the attribute space. Time-step t, for t � 1, is defined to be the transition

between Gt−1 and Gt.

At time t, and independently of the history of the process prior to t, the network

undergoes one of two processes: a rewiring process, where a random link is rewired

via homophily, and an influence process, where attributes are transmitted through

network ties. At each time step, influence occurs with probability � ∈ (0, 1); otherwise

(that is, with probability 1 − �) the rewiring process is performed. The parameter �

is important because in most networks there will be far fewer vertices than linkages,

and � allows us to adjust the relative speed of influence and rewiring processes in

terms of the proportion of all vertices and links that have been updated by these

processes at least once. More information about the behavior of � with respect to the

relative speed of influence and rewiring is provided in the Supplemental Information.

When influence occurs, a random vertex v ∈ Vt−1 is chosen. Since influence is

interpreted as a process of adopting the attributes of one’s network neighbors, we

assume that v’s neighbors exert a force that pulls v towards its own local center of

mass (that is, the average attribute of v’s neighbors). The degree to which vertex
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Fig. 1. Network evolution process at time t. The figure depicts a schematic of the process

for parameters q = 0.5 and K = 8. Attributes are represented in the horizontal position of

vertices. At time t, either a single vertex is selected for influence (probability �) or a single edge

is selected for rewiring (probability 1 − �). Under influence, the vertex selected for influence

(A in the figure) is pulled to its local center of mass Mt(A), or the average attribute of all

neighbors. The attribute of A then shifts q(Mt(A)−ω(A)), or from ω(A) = 0.5 to ω(A) = 0.604

in this example. Under rewiring, an edge (AD) is selected uniformly at random and is deleted

with probability dK (ω(A), ω(D)) = 0.375 (proportional to its edge length). A and D are then

chosen with equal probability to rewire the link. The selected vertex (A in this case) assesses

all possible edge lengths in the network and, under homophily, is more likely to create a link

with a vertex having similar attributes than with a dissimilar vertex.

v fully adopts the attributes of its neighbors may vary, and is captured by an

additional parameter q ∈ (0, 1]. If q = 1, then v jumps immediately to its local

center of mass; for q < 1, on the other hand, v will move only part way. Thus, the

parameter q represents the degree to which attributes are resistant to change. More

precisely, if Nt−1(v) is non-empty, then

ωt(v) = (1 − q) · ωt−1(v) + q · Mt−1(v);

otherwise (that is, when Nt−1(v) = ∅), ωt(v) = ωt−1(v). Attributes of other vertices

do not change. A schematic of the influence process is depicted in the top panel of

Figure 1.

Homophily is modeled in the network rewiring process. When rewiring occurs, a

random edge uv ∈ Et−1 is chosen uniformly at random. The vertices u and v assess

their attribute distance dK (ωt−1(u), ωt−1(v)), and make a choice to rewire the linkage

or to leave it in place. Due to homophily, vertices are assumed to prefer linkages

with other vertices holding shared or similar attributes—thus, we assume that ties

are rewired with probability proportional to their edge length (meaning that linkages

between vertices with dissimilar attributes are more likely to be rewired). Specifically,

the probability of tie deletion between u and v is dK (ωt−1(u), ωt−1(v)).3 When a tie

is deleted, it is then rewired by selecting one of its endpoints with equal probability

(set w := u or w := v according to the choice made), removing uv, choosing a vertex

x ∈ Vt−1 at random, and then finally adding wx. The vertex x is selected so that

3 Note that dK (ωt−1(u), ωt−1(v)) ∈ [1/K, 1] so the probability distribution is well-defined.
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creating short edges is more probable than creating long ones. Formally, the vertex

x ∈ Vt−1 is chosen with probability proportional to 1/dK (ωt−1(w), ωt−1(x)); that is,

with probability equal to

1/dK (ωt−1(w), ωt−1(x))∑
v∈Vt−1

1/dK (ωt−1(w), ωt−1(v))
�

1∑
v∈Vt−1

K
=

1

Kn
.

In order to get an upper bound, note that

1/dK (ωt−1(w), ωt−1(x))∑
v∈Vt−1

1/dK (ωt−1(w), ωt−1(v))
�

K∑
v∈Vt−1

1
=

K

n
.

Thus, when a link is deleted, it is randomly assigned to one of the actors in the

dyad, who then creates a new link with another network vertex chosen on the basis

of attribute similarity.4 This rewiring process is depicted in the bottom panel of

Figure 1.

3. Results

As typical in random graph theory (Janson et al., 2000), all results are asymptotic,

that is, for m tending to infinity, and thus for n tending to infinity as well. We say

that an event holds asymptotically almost surely (a.a.s.) if it holds with probability

tending to one as m → ∞. Throughout, we will use the stronger notion of with

extreme probability (w.e.p.) in favor of the more commonly used a.a.s., since it

simplifies some of the proofs. We say that an event holds w.e.p. if it holds with

probability at least 1 − exp(ω(m) lnm) as m → 1 (ω(m) is any function tending to

infinity together with m). Thus, if we consider a polynomial number of events of

which each holds w.e.p., then w.e.p. all events hold. For technical reasons, we will

assume in our theorems that ln7 n � m/n � n/ ln3 n.

This basic model framework allows for a rigorous analysis of systems characterized

by varying levels of homophily and influence operating in tandem. Before moving

to the technical arguments needed to analyze this model, it is useful to provide a

brief synopsis of the main results.

3.1. Synopsis of findings

We show that even minute levels of influence are ultimately sufficient to cause vertex

attributes to converge to a single point, even in the presence of strong homophily

processes. This will happen more or less quickly under different scenarios, and in

some cases it is possible to predict with greater precision the process by which vertex

attributes converge.

When the process begins at t = 0, vertex attributes may follow any distribution

and the network G0 may take on any initial structure. As the network undergoes

subsequent rewirings, eventually each endpoint of each link has been rewired at

least once—we call this time T . At this point, a sufficient amount of randomness

has been introduced into the process, and we are able to predict the behavior of the

4 This model allows loops and multiple edges, however there will typically be very few of these and
their exclusion will not greatly affect the conclusions.
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model with high probability. We are able to establish an upper bound for T that is

of order m logm (see Lemma 1).

After time T , it is useful to split the analysis of the network evolution process into

two cases: first, where network rewirings do not take into account vertex attributes

(the “zero homophily” case where K = 1, in which all edges are assigned the same

distance, and thus independently of the underlying network, a rewiring is chosen

uniformly at random), and second, where vertices cut and form ties on the basis

of attribute similarity (the “homophily” case where K � 2; in which a rewiring is

more likely to appear between close vertices). Analyzing the zero homophily case

is useful as results from this more specific model may be applied to the analysis of

models with either weak or strong homophily processes (K � 2 with K small or

large, respectively).

In the zero homophily case, we can predict the specific process by which attributes

converge. After time T , the local center of mass of each vertex is equal to the global

center of mass in expectation, and in fact with high probability all local centers

of mass are well concentrated around the global center of mass (see Lemma 2(i)).

This means that the attributes of any given vertex’s neighbor are similar to a

random sample of vertex attributes drawn from the entire network. At this point

in time, network structures will be similar to binomial random graphs. While vertex

attributes have not necessarily converged at this point, these results imply that by

time T any segregation seen in initial network conditions will have been destroyed

by the influence processes without homophily supporting cross-group partitions.

After at most T̃ = Θ(�−1n ln n) more steps, all vertex attributes have then finally

converged to the global center of mass. This result is given in Theorem 3.

In the homophily case, Lemma 2(ii) demonstrates that by time T , the local

centers of mass are being pushed away from their boundaries towards the global

center of mass. This means that the local centers of mass will typically be some

fraction of the distance between that vertex’s attribute and the global center of mass.

We can specify an upper bound on this distance, which increases as the tendency

towards homophily increases (that is, as K gets larger). Networks at this point

exhibit network segregation as studied in (Henry et al., 2011b) in that linkages in

the network tend to be “short,” that is, connecting vertices with similar attributes.

If vertex attributes ωt(v) maintain a multi-modal distribution at this point, then a

clear community structure will emerge.

In both cases (that is, for any value of K), vertex attributes begin to converge

after time T up to some time T + T̃ . In the absence of homophily, all vertex

attributes at time T + T̃ will be very close (within o(ln−2 n) = o(1)) of the global

center of mass (see Theorem 3).5 The bigger n is, the closer all vertex attributes

will be. This is because, for large n, the concentration results are stronger and the

behavior of the whole network is even more predictable. An upper bound for T + T̃

is identified in Theorem 3. Moreover, we are able to predict precisely the process

by which this convergence to the global center of mass takes place, in terms of

5 We use the following standard asymptotic notation: f(n) = o(g(n)), if limn→∞ f(n)/g(n) = 0, and
f(n) = O(g(n)) if there exists some n0 so that for all n � n0, f(n) � Cg(n) for some absolute constant
C > 0. Similarly, if f(n) = O(g(n)), then g(n) = Ω(f(n)), and if both f(n) = O(g(n)) and g(n) = O(f(n))
hold, then f(n) = Θ(g(n)).
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how the average distance between each individual vertex and the global center of

mass changes over time. The behavior of this random variable is predicted using the

differential equation (DE) method and is specified in Theorem 12.

In the presence of homophily, we determine an upper bound for the time when

all vertex attributes are within 1/K of each other (see Theorem 5). At this point, the

attributes of vertices are within a small enough interval that the distinctions between

vertex attributes begin to disappear, meaning that homophily no longer exercises

a noticeable influence on the network structure. From this point on, findings from

the K = 1 case may be applied to show that, after another T time steps, the local

centers of mass are well concentrated around the global center of mass as shown in

Lemma 2(i).

The following sections analyze the model in more depth by asking (and answering!)

a series of questions about the model’s behavior with some constraints placed on

parameters. Ultimately, these answers allow us to make precise predictions about how

the model behaves without any parameter constraints. Much of the mathematical

logic underlying these results is contained in the proofs, which are included in the

Supplemental Information for interested readers.

3.2. How long does it take to rewire each edge endpoint at least once?

Each time a rewiring occurs, an edge is selected uniformly at random (that is, a

given edge is selected with probability 1/m), and then one of the endpoints of this

edge is selected uniformly at random (that is, with probability 1/2). So in each

rewiring step, one of the 2m edge endpoints is selected uniformly at random and

is associated with a random vertex. Although vertices that are more similar to the

selected endpoint have a higher probability of being chosen, a given vertex is always

selected with probability at least 1/(Kn). These steps occur independently of the

history of the process.

Based on the following lemma, we know that the time at which each edge endpoint

has been rewired at least once is no later than T̂ , which is of order m lnm. A proof

of Lemma 1 is provided in the Supplemental Information.

Lemma 1

Consider the evolutionary process P(G0, ω0, �, q, r, K) = (Gt, ωt)
∞
t=0. Let ω(m) be any

function that tends to infinity as m → ∞, and let T be the first time every edge has

both endpoints rewired at least once. Then, a.a.s.

T �
2Km

1 − �
(lnm + ω(m)) = Θ(m lnm). (1)

It should be noted that this upper bound is a function of both K and �. This

is because, in addition to linkages being rewired, vertex attributes are also being

updated as a result of the influence process. If the only process occurring were the

rewiring of links, then from the well-known coupon collector problem it would be

sufficient to wait (1 + o(1))2m logm time steps to rewire all 2m edge endpoints.6 But

6 Let c ∈ �. From the coupon collector problem, it follows that after 2m(ln(2m) + c) rewirings, with

probability tending to e−e−c
, every endpoint is rewired at least once. From this, it follows that if

c → ∞, then after 2m(ln(2m) + c) rewirings, a.a.s. every endpoint is rewired at least once.
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since some time steps are used for influence rather than rewiring, it is necessary to

wait (1 + o(1))(2m/(1 − �)) logm rounds to ensure enough endpoints are rewired.

Finally, since edge endpoints are not selected uniformly at random (i.e. endpoints

associated with long edges have a higher chance of being selected), it is necessary

to wait even slightly longer (a multiplicative factor of K is sufficient) to make sure

that the endpoints of short edges are rewired as well.

3.3. Where are local centers of mass relative to the global center of mass?

After the rewiring of every edge endpoint at time T , we can begin to estimate the

distance between the global center of mass at time t (Mt) and the average attribute

of vertex v’s neighbors (v’s local center of mass, denoted Mt(v)).

Suppose first that K = 1. In this situation, attributes’ differences are irrelevant and

edges are rewired without any tendency towards homophily; that is, regardless of

whether the selected edge is long (connecting vertices with very different attributes)

or short (connecting vertices with very similar attributes). The random graph at

time T is relatively easy to study. In particular, for a given edge e ∈ E0 from the

initial network G0, t � T , and any two vertices x and y, the probability that e

connects x and y at time t is 2/n2. Indeed, with probability 1/n2 the first endpoint

was associated with x and the second one with y, at the last time they were rewired.

The same property holds when x is swapped with y. It follows that

�(xy ∈ Et) = 1 −
(

1 − 2

n2

)m

= 1 − exp

(
−2m

n2
+ O

( m

n4

))

=
2m

n2
+ O

(
m2

n4

)
=

2m

n2

(
1 + O

( m

n2

))

= (1 + o(ln−3 n))
2m

n2
(2)

provided that m = o(n2/ ln3 n).

In this situation, the expected degree of vertices in the network is (1 + o(1))2m/n,

and networks exhibit properties similar to those observed in binomial random graphs

G(n, p) with p = 2m/n2. In particular, the local centers of mass will be very close to

the global one, provided that the network is dense enough to ensure that a given

vertex’s neighbors are representative of the entire set of network vertices.

Suppose now that K � 2. In this case, network rewiring is driven by some degree

of homophily where long edges (connecting dissimilar vertices) are terminated with

higher probability than short edges, and where short edges are formed with higher

probability than long edges. This process tends to generate segregated, “attribute-

close” networks where most edges are short, connecting vertices with similar or

shared attributes; see (Henry et al., 2011b) for more details. Therefore, it is expected

that the local center of mass of a vertex v lies between v and the global center of

mass.

Indeed, we are able to specify more precisely the distance between the local centers

of mass and the global center of mass, in both the K = 1 and K � 2 cases. Since

each dimension may be treated independently, we assume without loss of generality

that r = 1. These distances are specified in Lemma 2.
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Lemma 2

Consider the social process P(G0, ω0, �, q, 1, K) = (Gt, ωt)
∞
t=0. Suppose that d = 2m/n

is such that ln7 n � d = o(n/ ln3 n). Let C > 0. Then, w.e.p. for every T � t � nC

and every v ∈ Vt, the following holds

i. If K = 1, then

Mt(v) = (1 + o(ln−3 n))Mt.

ii. If K � 2, then

Mt(v) � (1 + o(1))K−6Mt + o(ln−5 n)

and

Mt(v) � 1 − (1 + o(1))K−6(1 − Mt) + o(ln−5 n).

At this point, it is possible to have local centers of mass that are outliers, in the

sense that vertices are closer to the global center of mass than their neighbors. In

this case, local centers of mass can be pulled away from the global center because

of the influence of their neighbors, but this does not substantially affect the global

dynamics. However, once all vertex attributes are trapped in a particular interval,

they will always remain within that interval. This observation—which we elaborate

on in the following sections—tells us that local centers of mass that are outliers and

close to the boundaries will tend to be pushed towards the global center of mass,

causing the length of this interval in which all vertex attributes are “trapped” to

shrink over time.

3.4. How quickly do vertex attributes converge in the absence of homophily?

We now consider the model’s behavior in the absence of homophily—that is, when

K = 1 and edge rewirings are independent of vertex attributes. These results may

then be applied with some modifications to the unconstrained case, where K � 1.

For the sake of brevity, we state the final result for the K = 1 case here as Theorem 3.

The Supplemental Information contains a formal proof of Theorem 3 as well as a

full explanation of the logic of how this result is obtained through the analysis of a

series of more simple models.

Theorem 3

Consider the evolutionary process P(G0, ω0, �, q, r, 1) = (Gt, ωt)
∞
t=0. Suppose that

d = 2m/n is such that ln7 n � d = o(n/ ln3 n) and � � n−C for some C � 1, and

recall the definition of T in Equation (1). Then, a.a.s.

‖ωT+T̃ (v) − MT‖ = o(ln−2 n) = o(1)

for every v ∈ VT+T̃ , where T̃ = �−1(2 + ε)n ln n for some ε > 0.

Note that a.a.s.

T + T̃ = Θ(m lnm) + Θ(�−1n ln n) = O(nC+1 ln n).

Theorem 3 says that, at time T + T̃ and for K = 1, the distance between each

vertex’s attribute and the global center of mass is o(ln−2 n); in words, the bigger
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n, the closer all vertex attributes are. The intuition behind this is that as the value

of n grows, the process becomes more predictable (since the variance decreases by

the law of large numbers). More precisely, all vertex attributes are in some interval

(a, b) of length o(ln−2 n) and, once all attributes are in this interval, they will always

remain there.

3.5. What is the process by which attributes converge in the absence of homophily?

Above, we demonstrated that vertex attributes will converge when K = 1. Addition-

ally, it is possible to predict the convergence process between time T and T + T̃ .

This is done using the DE method (Wormald, 1999), which allows us to show that

a.a.s. the average distance between vertex attributes and the global center of mass

at a given time period decreases in a predictable way. An introduction to the DE

method is provided in the Supplemental Information.

Formally, let

Wt =
∑
v∈Vt

|ωt(v) − Mt|.

The random variable Wt represents the overall deviations between the global

center of mass and all individual local centers of mass at time t. Corollary 4 specifies

how this random variable behaves over time.

Corollary 4

Consider the evolutionary process P(G0, ω0, �, q, r, 1) = (Gt, ωt)
∞
t=0. Suppose that

d = 2m/n is such that ln7 n � d = o(n/ ln3 n) and � � n−C for some C � 1. Then,

a.a.s.

Wt = (1 + o(1))WT exp

(
−q�(t − T )

n

)
for every t such that T � t � T + tf , where T is defined in Equation (1) and

tf =
n

q�

(
ln ln n − ln

(
n

WT

))
.

This result is a corollary to Theorem 12, which is explained in further detail (and

proven) in the Supplemental Information.

3.6. Model behavior with homophily, K � 2

In a homophilous network, there is a bias for the termination of long edges and the

creation of short edges. Suppose that all vertex attributes lie in the interval [a, b]

(as usual, we may treat all dimensions independently and so it is enough to focus

on one dimension). It follows from Lemma 2(ii) that when vertex v is selected for

influence at time t � T , it is moved away from at least one border of the attribute

space (i.e. the value a or b). While the exact updated attribute of each vertex selected

for influence cannot be predicted, it is known that the global center of mass is

positioned far enough from one end of the interval such that all vertices selected for

influence are pushed away from that end. Unfortunately, the global center of mass

might be shifting during this process, and it is likely impossible to precisely predict
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how the global center of mass moves over time. This is in contrast to the result for

the K = 1 case (see Theorem 3), which says that the global center of mass does not

drift substantially between times T and T + T̃ .

Fortunately, it is possible to show that after at most 3�−1n ln n steps, w.e.p. the

maximum distance between any pair of vertices shrinks (in each dimension) by a

multiplicative factor of at least ε := q(13K12n ln n)−1. That is, if the distance is D

at some time t, at time t + 3�−1n ln n it is w.e.p. at most D(1 − ε). This is an upper

bound only, and it is expected that the convergence process is in fact more rapid. A

proof of Theorem 5 is provided in the Supplemental Information.

Theorem 5

Consider the evolutionary process P(G0, ω0, �, q, r, K) = (Gt, ωt)
∞
t=0. Suppose that

d = 2m/n is such that ln7 n � d = o(n/ ln3 n) and � � n−C for some C � 1. Then,

a.a.s. for every pair u, v ∈ Vt we have

|ωt(u) − ωt(v)| �
√
r
(

1 − q

13K12n ln n

)��(t−T )/(3n ln n)	

�
√
r exp

(
−q��(t − T )/(3n ln n)	

13K12n ln n

)

for every t such that T � t = O(�−1n2 ln2 n) (the random variable T is defined in

Equation (1)). In particular, if t = cq−1�−1n2 ln2 n for some constant c > 0, then

a.a.s. for every pair u, v ∈ Vt we have

|ωt(u) − ωt(v)| � (1 + o(1))
√
r exp

(
− c

39K12

)
.

This result implies that at some time

T̂ �

(
1

2
ln r + lnK + 1

)
39K12(q−1�−1n2 ln2 n) = O(�−1n2 ln2 n)

a.a.s. all vertex attributes are within distance 1/K of each other. At this point, the

attributes of vertices are within a small enough interval that the distinctions between

vertex attributes begin to disappear, meaning that homophily no longer exercises

a noticeable influence on the network structure. From this point on, findings from

the K = 1 case may be applied to show that, after another T time steps, the local

centers of mass are well concentrated around the global center of mass as shown in

Lemma 2(i). With this result in hand, the behavior of the process can be predicted

quite easily, and a.a.s. all the vertex attributes converge to a single point.

Corollary 6

Consider the evolutionary process P(G0, ω0, �, q, r, K) = (Gt, ωt)
∞
t=0. Suppose that

d = 2m/n is such that ln7 n � d = o(n/ ln3 n) and � � n−C for some C � 1. Let T̂

be the first time all pairs of vertices are within distance 1/K (or T̂ = ∞ if this never

happens). Then, a.a.s.

T̂ �

(
1

2
ln r + lnK + 1

)
39K12(q−1�−1n2 ln2 n) = O(�−1n2 ln2 n).

Moreover,

Wt = (1 + o(1))WT̂+T exp

(
−q�(t − T̂ − T )

n

)

https://doi.org/10.1017/nws.2016.1 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2016.1


94 A. D. Henry et al.

Fig. 2. Upper bounds on attribute convergence speeds for varying levels of influence and

homophily.

for every t such that T̂ + T � t � T̂ + T + tf , where T is defined in Equation (1)

and

tf =
n

q�

(
ln ln n − ln

(
n

WT̂+T

))
.

In particular, at time T̂ + T + tf = O(�−1n2 ln2 n) the average distance between

vertices is o(1).

4. Examining dynamics through computational simulation

This analysis shows that, for all network structures, very small amounts of influence

will lead to a convergence in attributes over time even when homophily (a polarizing

force) is very strong. Thus, in theory, even small amounts of influence are sufficient

to overcome strong patterns of network segregation. The speed of convergence in

attributes will of course depend on the relative strength of homophily and influence.

The preceding results allow us to predict with more precision the behavior of the

system over time, in terms of how quickly the local centers of mass converge to

the global center of mass for a given network. These dynamics are illustrated in

Figure 2, which plots the maximum distance between local and global centers of

mass over time, for (1) varying strengths of influence for a given level of homophily

(left panel), and (2) varying levels of homophily for a given influence parameter

(right panel).

The mathematical model developed here allows for a strong, generalized prediction

about the behavior of networked systems over time. At the same time, the methods

used here require limiting our attention to relatively simple network evolution

processes, -meaning that we face a fundamental trade-off between model complexity

and strength of predictions. Computational simulations are one way to introduce

more complexity into these models, and also illustrate the evolutionary dynamics

discussed in this paper. Thus, to complement the main mathematical model, we
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conducted a series of computational simulations of the influence and network

rewiring process in small, random networks.7

4.1. Computational model setup

Our computational simulations begin with small, undirected random networks on 30

vertices and 44 edges (yielding a fixed network density of about 0.1). At initialization

agents are assigned, uniformly and at random, an attribute value of 0 or 1. Links

are then assigned with probability proportional to attribute similarity, so that initial

networks exhibit high degrees of segregation and community structure (see, for

example, the top panel of Figure 4). By starting with highly segregated initial

network structures, we create conditions that are most favorable for the maintenance

of network segregation over time.

With the initial networks in place, at each time step the system undergoes an

influence process (where randomly selected vertices update their attributes based on

network position), followed by an edge rewiring process (where randomly selected

edges are deleted and reallocated to non-adjacent vertices).8 When a vertex i is

selected for influence, it moves a fraction of the distance between its own attribute

and i’s local center of mass (i.e. the average attribute of vertex i’s neighbors). This

fraction is governed by a model parameter q ∈ [0, 1] as defined above.

Edge rewiring, on the other hand, progresses in a slightly different manner from

the mathematical model presented in this paper. When an edge is selected for

rewiring, it is randomly rewired by choosing a pair of non-adjacent vertices with

probability proportional to the attractiveness of that pair. In order to account for

more drivers of network formation, attractiveness of a potential link between two

vertices i and j is allowed to be a function of three factors, including the similarity

of vertex attributes (representing the tendency towards homophily), the number of

paths of length 2 between i and j (representing the tendency towards transitivity, or

so called triadic closure), and the degree of vertices i and j (representing the tendency

towards forming linkages with high-degree actors, as in a preferential attachment

model). In general, the attractiveness of a link between non-adjacent vertices i to j

is assumed to be

ai→j =
1

dK (i, j)
+ pclosureT (i, j) + pdegreed(j),

where K is a simulation parameter representing the strength of the homophily

effect, dK (i, j) is the discretized distance between vertices i and j (as described

earlier), pclosure is a simulation parameter representing the strength of triadic closure,

T (i, j) is the number of paths of length 2 between vertices i and j, pdegree is a

simulation parameter representing the strength of vertex degree and d(j) is the

degree of j, that is, the number of vertices adjacent to j.

Thus, the attractiveness of two non-adjacent vertices depends on their distance,

the degree of the incoming vertex, and the number of common neighbors of

7 Agent-based models were programmed in R (R Core Team, 2012). Visualizations presented here made
use of the R sna package (Butts, 2012).

8 At each time step, three vertices are selected uniformly at random for influence and nine edges are
selected uniformly at random for rewiring. Among the selected vertices and edges, the influence and
rewiring processes occur simultaneously. This setup was chosen to speed computation times.
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Fig. 3. How simulation parameters change the relative attractiveness of pairs of vertices.

i and j. When an edge is selected for rewiring, the attractiveness scores of non-

adjacent vertices are calculated. The resultant set of attractiveness scores is then

converted into a probability distribution from which a particular dyad is selected—

the edge selected for rewiring is then relocated to this randomly-chosen dyad.

The attractiveness of pairs of vertices based on these effects is illustrated in

Figure 3. From the perspective of a particular vertex (labeled Ego in Figure 3),

different potential linkages (non-adjacent vertices in the far left panel) have varying

levels of attractiveness. Potential links are depicted as dashed lines, and their

attractiveness depends on the three simulation parameters triadic closure, degree

and homophily (K).9 With higher triadic closure parameters, Ego will tend to view

linkages that create triangles as more attractive, and therefore Ego will want to

form a link with A in this schematic. With higher degree parameters, Ego will tend

to view linkages with high degree vertices (e.g. vertex B) as more attractive. With

higher homophily parameters, Ego will tend to view links as more attractive when

the linkage reduces the difference between Ego’s attribute and Ego’s local center of

mass (e.g. a link with vertex C).

4.2. Simulation results

Figure 4 displays one typical simulation run. On the left side of the figure are

depictions of the network realized at each time step. In this diagram, the shade of

vertices indicate their starting attribute (0 or 1), and vertex sizes are proportional to

the vertex’s local center of mass and the network’s global center of mass. The right

side of the figure displays the distribution of the local centers of mass of each vertex,

relative to the global center of mass (the global center of mass is indicated by the

vertical reference line in the distribution plot). In this particular example, the local

centers of mass collapse around the global center of mass after 65 time steps. This

is also seen in the network diagrams, which show the decay of segregation around

shared attributes early in the process to a well-mixed network where linkages are

independent of starting attributes (vertex shade) in the final time step.

Approximately 1,800 simulations were run with three model parameters—

homophily, transitivity and degree— assigned uniformly at random from [0, 100] and

9 The homophily parameter is analogous to the parameter K in the main mathematical model.
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Fig. 4. Evolution dynamics for a typical simulation run: the depicted simulation has

parameters homophily (K) = 10; triadic closure (pclosure) = 30; degree (pdegree) = 30.
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Fig. 5. Aggregate simulation behavior over time.

q assigned uniformly at random from [0.15, 1] at each simulation run. Consistent with

our findings reported earlier, these simulations show that in all cases—even when

additional network evolution dynamics are taken into account—vertex attributes

always converge such that local centers of mass eventually collapse to the global

center of mass. These dynamics are summarized in Figure 5. This figure plots the

distribution of maximum distance between all local centers of mass and the global

center of mass, for each simulation, and at different stages of the process. In order

to visualize all simulations on a common scale, the distributions are represented at

the initial time step in the far left, and subsequent distributions are for one-tenth

of the final time step, two-tenths of the final time step and so on. In the final time

step, the maximum distance between the global and local centers of mass is no more

than 0.05.

Figure 5 shows a large amount of variation in convergence patterns, however in

aggregate we see a clear trend towards attribute convergence. But while attributes

tend towards a single point, it is useful to examine how variation in the simulation

parameters explain the speed of attribute convergence. Figure 6 summarizes these

patterns by fitting an OLS linear regression model with time to convergence as the

dependent variable, and simulation parameters as independent variables. Specifically,

we model time to convergence as a linear combination of simulation parameters

using the individual simulation run as the unit of analysis

Y = b0 + b1 · pclosure + b2 · pdegree + b3 · K + b4 · q + e,

where Y is a simulation’s time to convergence, b0, b1, b2, b3 and b4 are constant

coefficients, e is an error term, and pclosure, pdegree, K and q represent (respectively)
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Variable DV = Time to 
a�ribute convergence 

Network evolu�on 
parameters 

 

 Degree 
(pdegree) 

-0.135 *** 
(0.017) 

 Triadic closure 
(pclosure) 

0.031 # 
(0.017) 

 Homophily  
(K) 

0.046 ** 
(0.017) 

Influence parameter  
 Strength of influence 

(q) 
-105.746 *** 

(1.975) 
   
 Constant 150.069 
 R2 0.619 
 N  

(simula�on runs) 
1823 

  
Note: Standard errors are given in parentheses. 
Stars indicate significance levels: *** p < 0.001; 
** p < 0.01; * p < 0.05. Hash mark (#) indicates 
p < 0.1. 

 

Fig. 6. Ordinary least squares regression model of effect of computational simulation

parameters on time to attribute convergence.

the model parameters described above: the tendency towards triadic closure, the

tendency to form ties with high-degree actors, homophily and influence.

These results indicate that triadic closure and homophily have complementary

effects on convergence speeds; both are positive, with roughly the same magnitude.

This means that homophily and closure both tend to increase convergence times—

that is, network segregation will take longer to disappear when tie formation is

driven by homophily and triadic closure. This does make intuitive sense. If a

network exhibits segregation, then triadic closure will tend to amplify the formation

of ties among similar vertices because neighbors of neighbors will also tend to have

similar attributes. On the other hand, introducing triadic closure does not prevent

attributes from converging any more than homophily does.

Seeking out vertices with high degree appears to speed the process of convergence.

This also makes intuitive sense, since this is a process that allows ties to be formed

independently of attributes. So while triadic closure will tend to create more short

edges in the presence of network segregation, forming links on the basis of degree

has nothing to do with attributes and provides a way for vertices to “escape” from

homogenous network neighborhoods. The overall effect of degree-seeking is larger

than both the homophily and triadic closure effects, meaning that degree-seeking

behavior will tend to decay network segregation much faster than homophily or

closure can maintain it.

5. Conclusion

This paper shows that influence processes are able to overcome the polarizing effect

of homophily in creating segregated networks, even when strong forms of homophily
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are coupled with a relatively weak influence process. We prove mathematically that

asymptotically almost surely, the size of the interval containing all vertex attributes

tends to zero as t approaches infinity. In other words, the distinctions between

vertices based on malleable attributes eventually disappear, which in turn prevents

homophily from influencing emergent network structures.

Network segregation and related concepts, such as community structure, are well-

studied phenomena in self-organizing networks. But why does network segregation

emerge, and how is it maintained over time? Developing better models of these

dynamics is important because they can suggest ways to manage the problems that

arise from segregated networks—such as conflict or mistrust between social groups,

or difficulties in searching for diverse sources of information.

While small amounts of homophily are sufficient to produce segregated networks

when attributes are fixed, once malleability of attributes is introduced it becomes

difficult to model the persistence of network segregation over time. We show

mathematically that an important class of models, those where attributes move

(potentially very slowly) towards one another, cannot maintain network segregation

indefinitely. While our definition of influence represents one of many possibilities

of how attributes change dynamically, these results are more powerful than those

inferred from simulations that can only investigate a finite number of possible

scenarios (and yet, the results are also supported by computational simulations that

include more complex network evolution processes). With this research, we hope

to provide a baseline for more investigations into the micro-level processes that

generate and maintain the network segregation that is observed empirically across

a wide range of self-organizing networks.
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A. Appendix

A.1. Introduction to the Differential Equation method

The general setting that is used in the DEs method (Wormald, 1999) is a sequence

of random processes indexed by n (which in our case is the number of objects in any

set Vt). The aim is to find properties of the random process in the limit as n → ∞.

The conclusion we aim for is that variables defined on a random process are well

concentrated, which informally means that with high probability they are very close

to certain deterministic functions. These functions arise as the solution to a system

of ordinary first-order DEs. One of the important features of this approach is that

the computation of the approximate behavior of processes is clearly separated from

the proof that the approximation is correct.

To show that the random variables in a process usually approximate the solution

of DEs, we need to use large deviation inequalities. These inequalities are often used

to give an upper bound on the probability that a random variable deviates very far

from its expected value. In a typical situation with a random process, the aim is to

show that the random variable Yt of interest is sharply concentrated. In fact,

Yt − Y0 =

t∑
i=1

(Yi − Yi−1).

If the differences Yi − Yi−1 are independent, then the Chernoff bound is very useful,

see for example, Theorem 2.8 (Janson et al., 2000).

Theorem 7

Let X be a random variable that can be expressed as a sum X =
∑n

i=1 Xi of

independent random indicator variables, where Xi ∈ Bernoulli(pi) with (possibly)

different pi = �(Xi = 1) = �[Xi]. Then, the following holds for t � 0:

�(X � �[X] + t) � exp

(
− t2

2(�[X] + t/3)

)
,

�(X � �[X] − t) � exp

(
− t2

2�[X]

)
.

In particular, if ε � 3/2, then

�(|X − �[X]| � ε�[X]) � 2 exp

(
− ε2�[X]

3

)
. (A.1)

Strong concentration results of a sequence of not necessarily independent random

variables can also be obtained if two consecutive random variables do not differ by

too much and have the same (or similar) expectations. This is formalized using the

concept of martingales, introduced next.
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Definition 8

A martingale is a sequence X0, X1, . . . of random variables defined on the random

process such that

�[Xn+1 | X0, X1, . . . , Xn] = Xn.

In most applications, the martingale satisfies the property that

�[Xn+1 | X0, X1, . . . , Xn] = �[Xn+1 | Xn] = Xn.

As a simple example, consider the following “random walk.” Toss a coin n times.

Let Sn be the difference between the number of heads and the number of tails after

n tosses. Sn is a martingale. Indeed,

�[Sn+1 | Sn] = Sn +
1

2
· 1 +

1

2
· (−1) = Sn.

Clearly, the expected value of Sn is zero. Thus, it is natural to expect that Sn
stays relatively close to zero. The following well-known Hoeffding-Azuma inequality

serves as a tool to investigate this, see for example, Theorem 2.25 (Janson et al.,

2000).

Lemma 9

Let X0, X1, . . . be a martingale. Suppose that there exist constants ck > 0 such that

|Xk − Xk−1| � ck

for each k � n. Then, for every t > 0,

�(Xn � �[Xn] + t) � exp

(
− t2

2
∑n

k=1 c
2
k

)
,

�(Xn � �[Xn] − t) � exp

(
− t2

2
∑n

k=1 c
2
k

)
.

This is often applied with t growing much faster than
√
n and the ck all small

non-zero integers. In the martingale discussed above ck = 1 for all k. Hence,

�(|Sn| � α
√
n) � 2 exp

(
(α

√
n)2

2n

)
= 2 exp

(
α2/2

)
,

which is arbitrarily small for α large enough.

Finally, let us mention that the Hoeffding-Azuma inequality can be generalized in

many ways: an analogous inequality holds for supermartingales (�[Xn+1|Xn] � Xn)

as well as submartingales (�[Xn+1|Xn] � Xn). Our proofs use the supermartingale

method as described in Corollary 4.1 of (Wormald, 1999). We will use the following

lemma, that follows from the generalized Hoeffding-Azuma inequality.

Lemma 10

Let G0, G1, . . . , GL be a random process and Xt a random variable determined by

G0, G1, . . . , Gt, 0 � t � L. Suppose that for some real β and γ,

�(Xt − Xt−1 | G0, G1, . . . , Gt−1) < β

and

|Xt − Xt−1 − β| � γ
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for 1 � t � L. Then, for all ε > 0,

�
(
For some t with 0 � t � L : Xt − X0 � tβ + ε

)
� exp

(
− ε2

2Lγ2

)
.

A.2. The role of the parameter �

The parameter � controls the relative speed of the influence and rewiring process in

the network. Note that setting � = 0.5 (such that influence and rewiring occurs with

equal probability at each time step) will cause attribute updating (via influence) to

occur for a given vertex far more frequently than link rewiring (via homophily) for

a given edge. This is a result of most networks having far more links than vertices.

To allow for the direct specification of the relative speed of rewiring versus

influence, let � = �(n, m) to be a function of the number of vertices and edges, and

let � tend to zero as n → ∞. Let �0 be such that

�0

1 − �0
=

n

m
,

and consider the evolutionary process run with parameter �0. Note that when

t = cn/�0 steps are performed (for some c ∈ (0,∞)), we expect �0t = cn influence

steps and so an 1 − e−c fraction of vertices should be hit. On the other hand, after

t steps, the number of rewirings is expected to be (1 − �0)t = cn(1 − �0)/�0 = cm

and so we expect to hit an 1 − e−c fraction of edges as well. Note also that

�0 = (1 + o(1))n/m = o(1), provided that n = o(m) which is usually the case. For

n = cm for some c ∈ (0, 1), we have �0 = c/(1 + c) > 0. There are three possible

behaviors that might be desired for different scenarios:

• the two processes are of the same speed: � = �0,

• there are more influence steps than rewiring ones: � > �0,

• there are more rewiring steps than influence steps: � < �0.

A.3. Proof of Lemma 1

Lemma 1 specifies the maximum length of time that is required to rewire each edge

endpoint at least one time, and is stated in the main paper. In particular, Lemma 1

says that the time at which each edge endpoint has been rewired at least once is no

later than T̂ , which is of order m lnm.

Lemma

Consider the evolutionary process P(G0, ω0, �, q, r, K) = (Gt, ωt)
∞
t=0. Let ω(m) be any

function that tends to infinity arbitrarily slowly as m → ∞, and let T be the first

time every edge has both endpoints rewired at least once. Then, a.a.s.

T �
2Km

1 − �
(lnm + ω(m)) = Θ(m lnm). (A.2)

Proof

Define T ∗ = 2Km
1−�

(lnm + ω(m)) for some function ω(m) tending to infinity arbitrarily

slowly. Fix a permutation of length 2m of all edge endpoints in the initial network

G0. For i ∈ {1, 2, . . . , 2m}, let Ai be the event that the ith endpoint is not rewired
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after T ∗ steps. Note that at every step of the process, a given endpoint is rewired

with probability at least (1 − �)/(2Km). Therefore, independently of the previous

steps, we have that for every i ∈ {1, 2, . . . , 2m}, and denoting by ω(m) any function

tending to infinity with m arbitrarily slowly,

�(Ai) �

(
1 − 1 − �

2Km

)T ∗

= exp

(
− (1 − �)T ∗

2Km
+ O

(
T ∗

m2

))
= (1 + o(1)) exp (− lnm − ω(m))

= o(m−1).

Therefore, the expected number of endpoints not rewired is 2m · o(m−1) = o(1) and

so a.a.s. every endpoint is rewired at least once by Markov’s inequality. �

A.4. Proof of Lemma 2

After time T , it is possible to make certain inferences about the distance of local

centers of mass from the global center of mass. These results are specified in

Lemma 2.

Lemma

Consider the social process P(G0, ω0, �, q, 1, K) = (Gt, ωt)
∞
t=0. Suppose that d = 2m/n

is such that ln7 n � d = o(n/ ln3 n). Let C > 0. Then, w.e.p. for every T � t � nC

and every v ∈ Vt, the following holds:

(i) If K = 1, then

Mt(v) = (1 + o(ln−3 n))Mt.

(ii) If K � 2, then

Mt(v) � (1 + o(1))K−6Mt + o(ln−5 n)

and

Mt(v) � 1 − (1 + o(1))K−6(1 − Mt) + o(ln−5 n).

Proof

As noted above, each dimension may be treated independently. Thus, without loss

of generality we may assume that r = 1 and ωt : Vt → [0, 1]. Fix t � T and v ∈ Vt.

Since we consider a polynomial number of events only, it is enough to show that

each of them holds w.e.p.

The proof of part (i) is a simple application of the Chernoff bound. Let

X =
∑

u∈Nt(v)

ωt(u) = |Nt(v)|Mt(v);

that is, X is the sum of distances from the beginning of the interval [0, 1] to all the

neighbors of v. As we already noticed, Mt(v) = X/|Nt(v)|, so it remains to estimate

the random variable X and the degree of v independently. Note that, without loss

of generality, we may assume that Mt = Mt(n) � 1/2, since there is no difference

whether we measure the distance from the beginning of the interval [0, 1] or from
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the end. For any fixed value of Mt, it follows from Equation (2) that

�[X] =
∑
u∈Vt

�(vu ∈ Et)ωt(u)

= (1 + o(ln−3 n))
2m

n2

∑
u∈Vt

ωt(u)

= (1 + o(ln−3 n))
2m

n
Mt

= (1 + o(ln−3 n))dMt.

Hence, �[X] = Θ(m/n) = Θ(d) � ln7 n. It follows from Equation (A.1), applied

with ε = d−3/7 = o(ln−3 n), that w.e.p. X = (1 + o(ln−3 n))�[X]. Finally, using the

Chernoff bound one more time to estimate the degree of v, we get that w.e.p.

|Nt(v)| = (1 + o(ln−3 n))d and the proof of part (i) is finished.

In order to prove part (ii), it is convenient to think about the rewiring process as

before (see the discussion right before Equation (2)). Since each endpoint is rewired at

least once at a given time t � T , we can fix an endpoint of some edge and then focus

on the last attempt to rewire this endpoint. With probability at least 1/K (and clearly

at most 1) the rewiring is performed and a given vertex is chosen with probability at

least 1/(Kn) (at most K/n, respectively). This implies that for any endpoint and any

vertex x with probability at least 1/(K2n) (at most K/n, respectively) this endpoint

is associated with x. Note that these bounds hold independently of the previous

steps already performed. Performing the same calculations as in Equation (2), we

get

�(xy ∈ Et) � 1 −
(

1 − 2

K4n2

)m

= (1 + o(ln−3 n))
2m

K4n2
,

and

�(xy ∈ Et) � 1 −
(

1 − 2K2

n2

)m

= (1 + o(ln−3 n))
2K2m

n2
.

Since Mt(v) � 0 for every v (deterministically), the statement trivially holds when

Mt = o(ln−5 n). Hence, we may assume that Mt = Ω(ln−5 n). Using the notation as

in part (i), we have

�[X] � (1 + o(1))
2mMt

K4n
= (1 + o(1))

dMt

K4
� ln2 n.

It follows from Equation (A.1), applied with ε = ln−1/2 n, that w.e.p. X = (1 +

o(1))�[X]. Similarly, we get that w.e.p. |Nt(v)| � (1 +o(1))K2d and so w.e.p. Mt(v) �
(1 + o(1))Mt/K

6. The second statement of part (ii) is analogous, since there is no

difference whether we measure the distance from the beginning of the interval [0, 1]

or from the end. The proof of part (ii) is complete. �

A.5. Explanation and proof of Theorem 3

To prepare for the slightly technical argument that is required to analyze the original

model, a few simple processes are investigated first in the absence of homophily—

that is, when K = 1 and edge rewirings are independent of vertex attributes. These

results may then be applied with some modifications to the unconstrained case

where K � 1.
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We begin with a modified influence process (Model α) in which a vertex selected

for attribute updating is moved to the global center of mass instead of the local

center of mass. A second model (Model β) investigates a process in which there

is no bias toward short edges (K = 1) and vertex attributes shift rapidly (q = 1)

before generalizing the process (Model γ) to a slower version where attributes are

more resistant to change (q < 1).

Since the first steps of the process are strongly influenced by the initial network

and the initial vertex attributes, the beginning of the process is unpredictable. In the

following analyses, we wait T steps for every edge endpoint to be refreshed at least

once (a.a.s. T = Θ(m lnm) by Lemma 1). As noted above, each attribute dimension

may be treated independently and so, without loss of generality, we assume that

r = 1 and all attributes are in the interval [0, 1]. All of the following results may be

generalized to any dimensionality of vertex attributes r ∈ �.

Model α. For t � T , let Xt be the random variable equal to n times the global

center of mass at time t; that is,

Xt = nMt =
∑
v∈Vt

ωt(v).

We may assume that XT = cn for some c = c(n) � 1/2, since there is no difference

whether we measure the distance from the beginning of the interval [0, 1] or from

the end. At any time t > T of the process, if an influence step is performed then

we assume that a vertex is selected uniformly at random and is moved to the global

center of mass (that is, to Xt−1/n). Network rewiring does not influence the value

of Xt, so it is sufficient to concentrate on influence steps only. It follows from the

well-known phenomenon of the coupon collector that a.a.s. after

T̄ = (n(ln n + ω(n)))/� = Θ(�−1n ln n) (A.3)

steps there are n(ln n+ω(n)+o(1)) influence steps and so a.a.s. every vertex’s attribute

has been updated at least once. At this point of the process, every vertex is very close

to the center of mass. In fact, we want to show that a.a.s. ωT+T̄ (v) = c+ o(ln−2 n) =

c + o(1) for every v ∈ VT+T̄ .

It is easy to see that {Xt}t�T is a martingale. Indeed, by defining Lv(t) as the event

that vertex v was selected for influence at time t, we have

�[Xt − Xt−1|Xt−1] =
∑
v∈Vt−1

(
Xt−1

n
− ωt−1(v)

)
�(Lv(t))

=

(
Xt−1 − ∑

v∈Vt−1

ωt−1(v)

)
1

n
= 0,

provided that an influence step occurs at time t. Moreover, since only one vertex is

affected at this step, |Xt − Xt−1| � 1. It follows from Hoeffding-Azuma’s inequality

(see Lemma 9) that w.e.p. during a period of n(ln n+ω(n) + o(1)) influence steps, Xt

moves from the original value of XT by at most ω(n)
√
n ln n. We get that w.e.p. the

center of mass at any time t (T � t � T + T̄ ) is at most

ω(n)
√
n ln n

n
=

ω(n) ln n√
n

= o(ln−2 n)
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away from the starting point. The claim holds, since a.a.s. the attribute of every

vertex has been updated in the meantime.

Model β. We now consider the process where homophily is not at work (that is,

K = 1) and vertices selected for influence automatically adopt the average attribute

of their neighbors (q = 1). The behavior of this model is very similar to the behavior

observed in Model α. The only difference is that instead of moving to the global

center of mass, vertices selected for influence processes are moved to their respective

centers of mass. It follows from Lemma 2(i), however, that these local centers of

mass are very close to the global center of mass.

In order to obtain a comparable ratio between influence and rewiring steps, we

take � = Θ(�0) = Θ(n/m) (�0 is the threshold defined earlier) and assume that

� � n−C for some C � 1 to cover a reasonable set of �.10 A result for this model is

given in Theorem 11.

Theorem 11

Consider the social process P(G0, ω0, �, 1, r, 1) = (Gt, ωt)
∞
t=0. Suppose that d = 2m/n

is such that ln7 n � d = o(n/ ln3 n) and � � n−C for some C � 1, and recall the

definition of T in Equation (1). Then, a.a.s.

‖ωT+T̄ (v) − MT‖ = o(ln−2 n) = o(1)

for every v ∈ VT+T̄ , where T̄ is defined in Equation (A.3).

Note that a.a.s.

T + T̄ = Θ(m lnm) + Θ(�−1n ln n) = O(nC+1 ln n).

Proof

It follows from Lemma 2(i) that w.e.p. for every T � t � T + T̄ � 2m lnm +

2�−1n ln n � n3C and every v ∈ Vt, we have Mt(v) = (1 + o(ln−3 n))Mt. Hence, we

may assume that this property holds deterministically in the time range we are

interested in. The difference between the global center and the one of a vertex that

is updating its attribute is at most β = o(1/ ln3 n).

As in the previous model, we try to investigate the behavior of the random

variable Xt = nMt (t � T ) with XT = cn. Without loss of generality, we may

assume that c = c(n) � 1/2. This time, we need to use the generalized version of

Hoeffding-Azuma inequality (see Lemma 10) that works for random variables that

are not necessarily martingales. Since there are O(n ln n) influence processes, we can

apply the lemma with β = o(1/ ln3 n), γ = 1.1, L = O(n ln n), ε = ε(n) = ω(n)
√
n ln n

(note that there is a lot of room for argument here; in fact, ε could be any function

that is o(n ln−2 n)) to get that a.a.s. for every T � t � T + T̄ , Xt = (1 + o(ln−2 n))XT

(note that Lβ = o(n ln−2 n)). The claim holds, since a.a.s. every vertex was selected

for influence in this time interval. �

10 As noted previously, for a comparable ratio of influence versus rewiring steps, we require � =
Θ(n/m) = Ω(n−1). In such a situation, we may take any C > 1. Larger values of C might be used to
model processes in which influence steps are rare.
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Model γ. This model continues investigating a process without homophily (K = 1),

but this time we relax the condition of rapid attribute updating through influence.

We now consider cases where q < 1. In this case, the global center of mass still does

not change much during the process. While in Model β, it was enough for a vertex

attribute to be updated at least once to arrive close to the global center of mass,

this time the influence process is rather slow, and so each vertex must be selected

many times in order to arrive very close to the global center of mass. The result is

stated in the main paper, as Theorem 3.

To summarize, Theorem 3 tells us that, at time T + T̃ and for K = 1, the distance

between each vertex’s attribute and the global center of mass is of order less than

o(ln−2 n). At this point, all vertex attributes are in some interval (a, b) of length

o(ln−2 n) and, once all attributes are in this interval, they will always remain there.

Theorem

Consider the evolutionary process P(G0, ω0, �, q, r, 1) = (Gt, ωt)
∞
t=0. Suppose that

d = 2m/n is such that ln7 n � d = o(n/ ln3 n) and � � n−C for some C � 1, and

recall the definition of T in Equation (1). Then, a.a.s.

‖ωT+T̃ (v) − MT‖ = o(ln−2 n) = o(1)

for every v ∈ VT+T̃ , where T̃ = �−1(2 + ε)n ln n for some ε > 0.

Note that a.a.s.

T + T̃ = Θ(m lnm) + Θ(�−1n ln n) = O(nC+1 ln n).

Proof

The proof is very similar to the proof of Theorem 11. We use Lemma 2(a) again

to get that w.e.p. for every T � t � T + T̃ and every v ∈ Vt, we have Mt(v) =

(1 + o(ln−3 n))Mt.

We focus on the random variable Xt = nMt (t � T ) with XT = cn. As usual, we

may assume (without loss of generality) that c = c(n) � 1/2. We need to show first

that {Xt}t�T is close to a martingale. Let Lv(t) be the event that v is selected for

influence at time t. For any t, provided that an influence step occurs at that time,

�[Xt − Xt−1|Xt−1] =
∑
v∈Vt−1

((
qMt−1(v) + (1 − q)ωt−1(v)

) − ωt−1(v)
)

�(Lv(t))

=
q

n

∑
v∈Vt−1

(
Mt−1(v) − ωt−1(v)

))

=
q

n

∑
v∈Vt−1

(
(1 + o(ln−3 n))Mt−1 − ωt−1(v)

))

=
q

n

(
(1 + o(ln−3 n))nMt−1 − ∑

v∈Vt−1

ωt−1(v)
))

=
q

n

(
(1 + o(ln−3 n))Xt−1 − Xt−1

))
= o(ln−3 n).

Arguing as before, we obtain that a.a.s. for every T � t � T + T̃ ,

Xt = (1 + o(ln−2 n))XT
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and so the global center of mass does not change much during this time.

Let us focus on some vertex v for now. Let dt = ‖ωt(v) − c‖ be the distance

measured at time t between v and the global center of mass at time T ; in particular,

dT � 1. Note that every time a vertex v is selected during the influence step, the

distance between this vertex and c shrinks by a constant factor. Formally, we know

that

dt+1 = dt(1 − q) + o(ln−2 n) = dt(1 − q + o(1)) � dt

(
1 − q

2

)
,

provided that dt = Ω(ln−3 n). Let ω(n) = Θ(ln ln n) = o(ln n) be a function tending

to infinity as n → ∞ such that (1 − q/2)ω(n) = ln−5/2 n. Since after ω(n) influence

steps dt = o(ln−2 n), it remains to show that a.a.s. every vertex was selected to update

its attributes ω(n) times in this time interval. Let Y = Y (v) be a random variable

counting how many times vertex v was selected. We have

�[Y ] =
T̃ �

n
= (2 + ε) ln n.

It follows from the Chernoff bound (Theorem 7) that

�(Y � ω(n)) = �(Y � �[Y ] − (�[Y ] − ω(n)))

� exp

(
− (�[Y ] − ω(n))2

2�[Y ]

)

= exp

(
− (2 + ε − o(1))2

2(2 + ε)
ln n

)

= exp
(

−
(

1 +
ε

2
− o(1)

)
ln n

)
= o(n−1).

Hence, the expected number of vertices that have updated their attributes at most

ω(n) times is o(1). It follows from Markov’s inequality that a.a.s. every vertex has

updated its attributes at least ω(n) times. The proof is complete. �

A.6. Derivation and proof of Corollary 4

At time T , that is, when every endpoint is rewired at least once, vertex attributes

might still be distributed across the whole space [0, 1]r . On the other hand, Theorem 3

implies that at time T + T̃ a.a.s. all vertices are in a ball of radius o(ln−2 n).

Theorem 12, stated below, investigates the convergence process—that is, how the

process behaves between time T and T + T̃ .

For T � t � T + T̃ , let Zt/n be the average distance between vertices and the

global center of mass at time T ; that is,

Zt =
∑
v∈Vt

|ωt(v) − MT |. (A.4)

It is clear that ZT � n. (In fact, Zt � n for all t � 0.) Suppose that at time t

a vertex v is selected for influence. It follows from the proof of Theorem 3 that

the global center of mass does not move much during the process. Moreover, from

Lemma 2(i), we have that the local centers of mass are close to the global center

of mass. Combining these two results, we get that the distance between the global

center located at Mt and v decreases from its original value of |ωt−1(v) − MT | in a
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predictable way. Namely,

Zt − Zt−1 = −|ωt−1(v) − MT |q + o(ln−2 n).

Hence,

�[Zt − Zt−1|Zt−1] =
∑
v∈Vt−1

(−|ωt−1(v) − MT |q + o(ln−2 n)
)

�(Lv(t))

= −Zt−1

n
q� + o(ln−2 n).

This random variable is analyzed using the DE method (Wormald, 1999). Defining

a real function z(x) to model the behavior of ZT+xn/n, the above relation implies

the following DE:

z′(x) = −q�z(x),

with the initial condition z(0) = ZT/n. The general solution is

z(x) = exp(−q�x + C), C ∈ �,

and the particular solution is z(x) = (Zt/n) exp(−q�x). This suggests that the random

variable Zt should be close to the deterministic function

ZT exp(−q�(t − T )/n).

Theorem 12 below states precisely the conditions under which this holds.

Theorem 12

Consider the social process P(G0, ω0, �, q, r, 1) = (Gt, ωt)
∞
t=0. Suppose that d = 2m/n

is such that ln7 n � d = o(n/ ln3 n) and � � n−C for some C � 1. Then, a.a.s.

Zt = (1 + o(1))ZT exp

(
−q�(t − T )

n

)

for every t such that T � t � T + tf , where T is defined in Equation (1) and

tf =
n

q�

(
ln ln n − ln

(
n

ZT

))
.

Since ZT+tf = n/ ln n, this theorem tells us that, a.a.s., the random variable Zt is

well concentrated around the solution of the DE until it reaches the value of n/ ln n.

Note that tf � T̃ . It should be noted that Corollary 4, stated in the main paper,

holds under this Theorem with Zt replaced by Wt.

Before moving to a proof of Theorem 12, one more useful tool is needed: the

“stopping time.”

A stopping time with respect to a random process is a random variable S with

values in {0, 1, . . . } ∪ {∞} for which it can be determined whether S = t, for any

time t, from knowledge of the process up to and including time t. The name can

be misleading, since a process does not necessarily stop when it reaches a stopping

time. The key result says that if a supermartingale (Xi) is stopped at a stopping time

(that is, (Xi) becomes static for all time after the stopping time), then the result is a

supermartingale; see, for example, (Wormald, 1999) for more details.
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Theorem 13

If, with respect to some process, (Xi) is a supermartingale and S is a stopping time,

then (Xmin{i,S}) is also a supermartingale with respect to the same process.

Now, we are ready to prove Theorem 12:

Proof

Since the random variable Zt does not change during rewiring steps, we focus on

influence steps only. Suppose that the influence process occurs at times T � s1 �
s2 � . . . � st � . . .. Put X0 = ZT and for t > 0, let Xt = Zst . We need to transform

Xt into something close to a martingale. Consider the following random variable:

Ht = lnXt +
qt

n

and the stopping time

S = min
{
t � 0 : Xt <

n

2 ln n
∨ t = tf�

}
.

(Note that Ht is chosen so that it is close to a constant along every trajectory of the

DE z′(x) = −qz(x)).

Consider the sequence of random variables (Ht : 0 � t � tf�). In order to use the

generalized Hoeffding-Azuma inequality (see Lemma 10), we need to estimate the

expected change:

�[Ht − Ht−1 | Xt−1, t − 1]

=
∑

v∈Vst−1

(
ln

(
Zst−1

− |ωst−1
(v) − MT |q + o(ln−2 n)

)
− lnZst−1

+
q

n

)

· �

⎛
⎝Lv(st)

∣∣∣ ⋃
v∈Vst−1

Lv(st)

⎞
⎠

=
q

n
+

1

n

∑
v∈Vst−1

ln

(
1 − |ωst−1

(v) − MT |q + o(ln−2 n)

Zst−1

)
.

By Taylor expansion,

�[Ht − Ht−1 | Xt−1, t − 1]

=
q

n
+

1

n

∑
v∈Vst−1

(
−|ωst−1

(v) − MT |q + o(ln−2 n)

Zst−1

+ O

(
1

Z2
st−1

))

=
q

n
+

1

n

(
−

∑
v∈Vst−1

|ωst−1
(v) − MT |q

Zst−1

)
+ o

(
1

Zst−1
ln2 n

)

= o

(
1

Xt−1 ln2 n

)
= o

(
1

n ln n

)
,

provided S > t, since then Xt−1 � n
2 ln n

. Similarly, we get that

|Ht − Ht−1| � | ln(Xt−1 − 1) − lnXt−1| +
q

n

= O

(
1

Xt−1

)
+

q

n
= O

(
ln n

n

)
,
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provided S > t again.

Therefore, with i ∧ S denoting min{i, S}, we have

�[Ht∧S − H(t−1)∧S | Xt−1, t − 1] = o

(
1

n ln n

)
and

|Ht∧S − H(t−1)∧S | = O

(
ln n

n

)
.

Now, we may apply Lemma 10 to the sequence (Ht∧S : 0 � t � tf�), and

symmetrically to (−Ht∧S : 0 � t � tf�), with ε = 1/ ln n, β = o(1/(n ln n)), and

γ = O(ln n/n) to show that a.a.s. for all t with 0 � t � tf�, we have

|Ht∧S − H0| = o(1).

(Note that there are L � tf� � T̃ � = O(n ln n) steps and so Lβ = o(1).) As

H0 = lnX0, it follows from the definition of Ht, that a.a.s. ln(Xt/X0) = −qt/n+ o(1)

for 0 � t � S , and thus

Xt = (1 + o(1))X0 exp

(
−qt

n

)
. (A.5)

Now, we will show that a.a.s. S = tf�. The events asserted by the equation hold

a.a.s. up until time S , as shown above. Thus, in particular, a.a.s.

XS = (1 + o(1))X0 exp

(
−qS

n

)

� (1 + o(1))ZT exp

(
−qtf�

n

)

= (1 + o(1))
n

ln n

which implies that S = tf a.a.s., and so a.a.s. Equation (A.5) holds for 0 � t � tf�.

To complete the proof, it is enough to show that the concentration for the random

variable Xt implies the concentration for the original random variable Zt. Fix t such

that T � t � T + tf . It follows easily from the Chernoff bound (A.1) that w.e.p.

from time T until time t there are (t − T )� + O(n2/3) time steps at which influence

processes are performed. As a result w.e.p.

Zt = X(t−T )�+O(n2/3)

= (1 + o(1))X0 exp

(
−q(t − T )�

n
+ o(1)

)

= (1 + o(1))ZT exp

(
−q(t − T )�

n

)
,

and the proof is finished. �

A.7. Proof of Theorem 5

Theorem 14

Consider the evolutionary process P(G0, ω0, �, q, r, K) = (Gt, ωt)
∞
t=0. Suppose that

d = 2m/n is such that ln7 n � d = o(n/ ln3 n) and � � n−C for some C � 1. Then,
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a.a.s. for every pair u, v ∈ Vt we have

|ωt(u) − ωt(v)| �
√
r
(

1 − q

13K12n ln n

)��(t−T )/(3n ln n)	

�
√
r exp

(
−q��(t − T )/(3n ln n)	

13K12n ln n

)

for every t such that T � t = O(�−1n2 ln2 n) (the random variable T is defined in

Equation (1)). In particular, if t = cq−1�−1n2 ln2 n for some constant c > 0, then

a.a.s. for every pair u, v ∈ Vt, we have

|ωt(u) − ωt(v)| � (1 + o(1))
√
r exp

(
− c

39K12

)
.

Proof

As always, we assume that r = 1 and that at some time t0 � T all vertices lie in

the interval [0, 1]. (Note that if the maximum distance in each dimension is at most

x, then the maximum distance is at most
√
rx). Let ε = (12K12n ln n)−1. The proof

strategy is to show that during at most 3�−1n ln n steps the interval shrinks by a

factor of at least (1 + o(1))qε (that is, the length of the interval will be at most

1 − (1 + o(1))qε). Since the time intervals can be treated independently, the result

follows.

Let us consider the following two cases:

Case 1: for every t0 � t � t2 := t0 + 1.5�−1n ln n, we have Mt � K6ε. It follows

from Lemma 2(ii) that w.e.p. for every t in the range under consideration and v ∈ Vt,

Mt(v) � (1 + o(1))K−6Mt � (1 + o(1))ε.

Hence, all vertices selected (during the influence process) between time t0 and t2 are

moved away from 0; in fact, the distance from 0 is at least (1 + o(1))qε. Since during

this time interval there are (1.5 + o(1))n ln n influence steps w.e.p., all vertices are

selected at least once w.e.p. After that, all vertices are in the interval [(1 + o(1))qε, 1]

and the result holds.

Case 2: for some t1 such that t0 � t1 � t2 := t0 + 1.5�−1n ln n, we have Mt1 < K6ε.

Our goal is to show that the global center of mass cannot drift too fast to the other

end of the interval during another 1.5�−1n ln n steps. Since Mt1 < K6ε, at time t1
there are at most 2K6εn vertices at distance at most 1/2 from 1, the other end of the

interval. We will call these vertices red ; the remaining ones are blue. We will couple

the original process with the one in which all red vertices are moved (at time t1) to

1/2. This is the only difference between the two processes; everything else remains

the same, including the rewiring process on the (random) graph Gt. Let ω′
t(v) denote

the position of vertex v at time t in the coupled process; similarly, M ′
t(v) is the

corresponding local center of mass of v at time t. We have ωt1 (v) = ω′
t1

(v) for all

blue vertices; and ω′
t1

(v) = 1/2 � ωt1 (v) for all red ones.

We consider both processes starting from time t1. First, we will show (by induction

on i) that after i < 1.6n log n influence steps, we have the following two properties

w.e.p.:

(i) for every blue vertex, we have |ωt(v) − ω′
t(v)| � 2K12εi,

ii) for every red vertex, we have |ωt(v) − ω′
t(v)| � 1/2.
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The property trivially holds for i = 0. Suppose that the property holds for some i

and vertex v is selected for the influence process at time t. All remaining vertices do

not move (in both processes) and so one needs to show the desired property for v

only. It follows that w.e.p.

|Mt−1(v) − M ′
t−1(v)| �

1

|Nt−1(v)|
∑

u∈Nt−1(v)

|ωt−1(u) − ω′
t−1(u)|

�
1

|Nt−1(v)|
(

(2K12εi)(# of blue neighbors)

+(1/2)(# of red neighbors)
)

�
1

|Nt−1(v)|
(
(2K12εi|Nt−1(v)|) + (1/2)(2K12ε|Nt−1(v)|))

� 2K12ε(i + 1),

since w.e.p. there are at most 2K12ε|Nt−1(v)| red neighbors of v. Indeed, by the upper

and lower bounds for the probability of an edge, there are at most 4K8mε/n red

neighbors, and the size of the neighborhood in total is at least d/K4 = (2m)/(nK4).

Hence, the fraction of red neighbors is at most 2K12ε. It follows that w.e.p. for each

blue vertex we have

|ωt(v) − ω′
t(v)| � q|Mt−1(v) − M ′

t−1(v)| + (1 − q)|ωt−1(v) − ω′
t−1(v)|

� q2K12ε(i + 1) + (1 − q)2K12εi � 2K12ε(i + 1).

Similarly, w.e.p. for each red vertex we have

|ωt(v) − ω′
t(v)| � q|Mt−1(v) − M ′

t−1(v)| + (1 − q)|ωt−1(v) − ω′
t−1(v)|

� q2K12ε(i + 1) + (1 − q)(1/2) � 1/2,

where the last inequality follows by our assumption on i. The claim holds by

induction.

We consider 1.5�−1n ln n steps of the process which selects all vertices w.e.p.

Clearly, in the coupled process, the global center of mass is always in the interval

[0, 1/2] (deterministically). Since (2K12ε)(1.5n ln n) < 1/3, w.e.p. blue vertices in

the original process are close to their counterparts in the coupled one: Indeed,

since the difference of the global center of mass coming from the contribution of

red vertices is at most 2K6ε, and the contribution coming from blue vertices at

most 1/3, the global center of mass in the original process must be smaller than

5/6 + 2K6ε w.e.p. But this implies that once all vertices are selected for the influence

process, all of them must be far away from 1: By Lemma 2(ii), we then have that

Mt(v) � 1− (1+o(1)) 1
6
K−6 +o(1). Hence, the distance of Mt(v) from the right border

of the interval is at least 1
6
K−6 + o(1), and once the vertex undergoes the influence

process, its distance from the right border is thus at least q 1
6
K−6 + o(1). The proof

is finished. �
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