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A CLASS OF NONCONVEX FUNCTIONS
AND MATHEMATICAL PROGRAMMING

T. WEIR AND V. JEYAKUMAR

A class of functions, called pre-invex, is defined. These functions are more general than
convex functions and when differentiable are invex. Optimality conditions and duality
theorems are given for both scalar-valued and vector-valued programs involving pre-invex
functions.

1. INTRODUCTION

Let X and Y be real normed spaces of any dimension and let K C F be a closed
convex cone. Let S C X . The function / : S —* Y is said to be K-convexlike (see for
example [10, 13, 15]) if for any x, y £ 5 and 0 ̂  A ^ 1 there is a z 6 S such that

(1.1) A/(z) + ( l -A) / (» ) -f{z) 6 K.

If 5 is a convex set and if / is a /^-convex function, then clearly / is A'-convexlike.
Any real valued function is R+ -convexlike.

Elster and Neshe [10] considered convexlike mathematical programs and obtained
a saddlepoint optimality condition. Hayashi and Komiya [13] also considered con-
vexlike mathematical programs and established a theorem of the alternative involving
convexlike functions and considered Lagrangian duality.

Following [8], a function / : S —* Y is called K-invex, with respect to a function
t]: S x 5 —* X , if, for each x , y £ 5

(1.2) f(x)-f(y)-f'(yMx,y)£K,

where /'(•</) denotes the Frechet derivative of / at y. If Y — R and K — R+ , then
/ is called invex. Invex functions were first considered by Hanson [11] who showed
that if, instead of the usual convexity conditions, the objective function and each of the
constraints of a nonlinear program are all invex for the same r/(x,y) then the sufficiency
of the Kuhn-Tucker conditions [17] and weak (Wolfe[24]) duality still holds. Moreover,
Craven and Glover [0] (also Ben-Israel and Mond [1], Martin [19]) showed that the class
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178 T. Weir and V. Jeyakumar [2]

of real valued invex functions is equivalent to the class of functions whose stationary
points are global minima.

Following Ben-Israel and Mond [1] and Hanson and Mond [12] consider a function
/ : 5 —> Y having the property that there exists a function 77: 5 x 5 —> X such that,
for each x , y G S and 0 ^ A ̂  1, y -f- \r](x,y) S S and

(1.3) A/(«) + (1 - X)f(y) - f(y + Xr,{x,y)) e K.

It is to be observed that if / is Frechet differentiate and satisfies (1.3) then / also
satisfies (1.2). This can be seen by rewriting (1.3) as

- [f(y + *v{x, y)) - /(y)] e K

and then dividing by A > 0 and taking the limit as A —» O4. gives

In view of this observation functions satisfying (1.3) will be called K-pre-invex. It is
to be noted that the set S should have the "connectedness" property that y + \rj(x,y) 6
S for x , y 6 S and 0 < A ^ 1. Note also that if i](x,y) = a(x,y)(x — y) where
0 < a(x,y) < 1 then S should be star-shaped [16].

If Y = R and K = R+ and if / satisfies (1.3) then / will be called pre-invex.

If rj(x,y) = x — y then clearly / is convex and 5 is a convex set; however there
are functions which are pre-invex but not convex. For example, consider the function
/ : R —> R defined by f(x) = —\x\. Then / is not convex but is pre-invex with r\ given

by

{ x - y i i x ^ O , y ^ O

x -y if x ^ 0, y ^ O

y — x otherwise.

It is easy to see that a pre-invex function is also R+-convexlike; however pre-invex
functions have some interesting properties that are not generally shared by the wider
class of convexlike functions. For example, as for convex functions, every local minimum
of a pre-invex function is a global minimum and non-negative linear combinations of
pre-invex functions are pre-invex.

THEOREM 1.1. Let f: S —» R be pre-invex. Then any local xninimum of f is a
global minimum.

P R O O F : Let / attain a local minimum p 6 S; assume that f(x) < f(p) for some
x € 5 . Since / is pre-invex there exists 77: S x S —» X such that

Xf(x) + (1 - A)/(p) ^ f(p + \v(x,p)), 0 < A < 1.
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Thus

f(p+\r£x,p)) - f(p) ^ X[f(x) - f(p)} < 0

for arbitrarily small A > 0, contradicting the local minimum. I

THEOREM 1.2 . Let fi: S —* R b e p r e - i n v e x (with respect to -q), i = l,2,...,k.
k

Then ^2 yifi(x) is pre-invex (with respect to r\), where yi > 0 , i = 1, 2,. . ., k .

P R O O F :

k k

A ^ > i / i ( z ) + (1 - A) ^
t=i t=i

k

t = l i=l

I
Consider now a function / : 5 —> Y . Then / is directionally differentiable at a € 5

if, for each x € S, the limit

f'(a,x)-lima~1[f(a + ax)-f(a)]

exists in Y . When Y = R this reduces to the usual definition of directional differen-
tiability.

THOEREM 1.3. Let f: S —> Y be directionally differentiable at each point in each
direction, and let f be K-pre-invex. Then, for all a, x £ S,

f(x)-f(a)-f'{a,r,(*,a))eK.

PROOF: Since / is iiT-pre-invex then for all a, x € 5 there exists TJ(X,a) such
that

/(*) - f(a) - X-'ifia + Xr,(x, a)) - /(o)J G K.

Letting A J. 0 gives the desired result. I

2. PRE-INVEX FUNCTIONS AND MATHEMATICAL PROGRAMMING

In this section we discuss some applications of pre-invex functions in mathematical
programming. The discussion begins with an alternative theorem due to Hayaslii and
Komiya [13] (see also Jeyakamur [15]) established for convexlike functions which, of
course, must also hold for pre-invex functions. From this alternative theorem we will de-
duce a saddlepoint theorem and Lagrangian duality theorem. We will also discuss Fritz
John and Kuhn-Tucker conditions in terms of directional derivatives of the objective
and constraint functions.
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THEOREM 2.1. Let X , Y be real normed linear spaces and let K be a closed

convex cone in Y with nonempty interior; let S C X . Suppose that f: S —> Y is

K-pre-invex. Then exactly one of the following holds:

(i) (3a; G S) - f(x)eintK,

(ii) (30^peA-*)(p/)(S)CR+,

where hit denotes interior and K* is the dual cone of K.

This result is a special case of the convexlike results of Hayashi and Komiya [13]

and Jeyakumar [15]. The following saddlepoint and duality theorems follow from the

alternative theorem in a manner analogous to those in [15] for convexlike programs.

Consider the following programs:

(P) minimise f(x) subject to — g(x) G A ,
where X , Y are normed linear spaces, K C }' is a closed convex cone with nonempty
interior; 5 C A', / : S -> R is pre-invex (with respect to 77) and g: S —> Y is A-
pre-invex (with respect to 77). The hypotheses stated here will be assumed to hold
throughout the remainder of this section.

(D) maximise <p(v) subject to v G K* ,

where ip(u) = inf {f(x) + vg(x)} .

The program (P) is said to satisfy the generalised Slater condition if there is x € S

such that — g(x) G hit A".

THEOREM 2.2. If (P) attains a minimum at x = x0 G 5 and if the generalised
Slater condition is satisfied, then there is a i'o G K* such that the Lagrangian 4'{xtv) =

f(x) + vg(x) satisfies the saddlepoint condition at (xo,Wo)-

(2.1) (VzGS, W G A * ) , 1>{xo,v)^i>(xQ,vo)m>(x,vo).

Furthermore, if (2.1) is satisfied for some (."Co,fo) then XQ is a minimum for (P)-

Remark. The saddlepoint condition (2.1) is sufficient without any pre-invexity as-

sumptions.

THEOREM 2.3. Assume f is pre-invex (with respect to 77) and that g is K-

pre-invex (with respect to 77). Assume also that (P) satisfies the generalised Slater

condition. Then (D) is a dual for (P).

We now turn our attention to local necessary optimality conditions and in particular
the Fritz John and Kuhn-Tucker conditions. We consider the program (P) where now
SCX is an open set and where / and g are directionally differentiable at each point
in each direction.
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THEOREM 2.4. For the program (P) let f and g be directionally differentiate.

Assume, also, that f and g are pre-invex and K-pre-invex (with respect to 7/) re-

spectively and that (P) attains a minimum at x — XQ . Then there exist T £ R + and
A £ K* not both zero such that

(2.2) {Tf + \g)'{x0,x)>0 VsceS,

(2.3) Xg(x0) = 0.

PROOF: Since — g(x) £ K implies that f(x0) — f(x) < 0 for all x £ S, then there
is no solution x £ 5 to the system

-(/(*) - f(xo),g(x)) e int (R+ x.K).

Then by Theorem 2.1 there exists r £ R+ , A £ K* , not both zero, such that for all

xes

Since — g(xo) £ K, Xg(xo) = 0. Therefore, for all x £ S,

rf(x) + \g{x) - [rf(x0) + \g(x0)} > 0.

This gives, for all x £ 5 ,
(Tf + Xg)'(xo,x) >0

since the functions are directionally differentiable. |

The Fritz John conditions (2.2) and (2.3) lead to appropriate Kuhn-Tucker condi-
tions under any assumption that implies r ^ 0. Moreover, the Kulm-Tucker conditions
are also sufficient.

THEOREM 2.5. For the program (P), let f and g be directionally differentiable at
each point in each direction. Assume also that f is pre-invex (with respect to rj) and
that g is K-pre-invex (with respect to TJ) and that the generalised Slater condition is
satisfied. Then (P) attains a minimum at x = xo if and only if there exists X £ A'*
such that

(2.4) (f + X9)'{x0,x)>0 Vx£S

(2.5) Xg{xo) = O.

PROOF: ( =*• ) Assume that (P) attains a minimum at x = x0 . Then the
Fritz John conditions (2.2) and (2.3) must be satisfied at x = x0 for some r £ R+ ,
A £ A'* not both zero. If T = 0, then A jk 0 and (Xg)'{xo,x) ^ 0 for all z £ S
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and Xg(xg) = 0. Since g is iiT-pre-invex it follows that Xg(x) ^ \g(xo) = 0; this
contradicts the generalised Slater condition by Theorem 2.1. Hence T ^ 0 and we may
assume r = 1; (2.4) and (2.5) then follow directly from (2.2) and (2.3).

( <== ) Let x be feasible and assume that (2.4) and (2.5) are satisfied. Then

f(x) - /(.-co) ^ f'(x0, IJ(Z,Z0)) (by Theorem 1.3)

> -{Xg)'(xo,V{x,xo)) (by (2.4))

^ — \(g(x) — g(xo)) (since g is if-pre-invex)

= — Xg(x) (since \g(xo) = 0)

^ 0 (since A £ K*, -g{x) £ A').

Hence f(x) >f(x0). |

It is to be noted that, for a related convexlike program, the Kuhn-Tucker conditions

may not be sufficient for a minimum. However, for pre-invex programs the Kuhn-Tucker

conditions are both necessary and sufficient. This extends a well-known result in convex

programming (see for example Rockafellar [20]).

Now, in relation to (P) consider the program

(Dl) maximise f(u) + Xg(u),

subject to (f + Xg)'(u,x) ^ 0 , A £ K*, u £ 5 . Vz e S.

We show that (Dl) is a dual to (P).

THEOREM 2.6. In (P), let f and g be directionedly differentiable at each point

in each direction. Let f be pre-invex (with respect to TJ ) and let g be K-pre-invex

(with respect to rj). Let (P) attain a minimum at x0 £ S, and let the Kuhn-Tucker

conditions (2.4) and (2.5) hold at x0 . Then (Dl) is a dual to (P).

PROOF: Let -g(x) e K and let A g K* . Then

f(x) - [f(u) + \g(u)} > / ' (u .^z .u ) ) - \g{u) (by Theorem 1.3)

> — X(g(u) + g'(u,T](x,u))) (substituting from the constraint of (Dl))

^ — Xg(x) (since Xg(-) is pre-invex and by Theorem 1.3)

> 0 since —g{x) £ K and A £ K*.

This proves weak duality. Now, from the Kuhn-Tucker conditions for (P), there is a
A £ K * with

(/ + ^d) (xo,x) ^ 0 and X~g(x0) = 0;

so (xo,A) satisfies the constraints of (Dl) and

max (Dl) > /(*„) + Xg{x0) = f(x0) = min (P).

This, with weak duality, shows (xo, A) is optimal for (Dl). |
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3. PRE-INVEX FUNCTIONS AND VECTOR-VALUED PROGRAMMING

Let X and Y be real normed spaces of any dimension and let 5 C X. Let

f:S—>Y and let Q C Y be a closed convex cone. Consider the vector valued problem

(3.1) minimise f(x) subject to x £ T

where T C S. The problem (3.1) has a weak minimum at x = x0 G T (see for example
[3, 5, 6]) if there exists no x £ T for which

/ ( * < , ) - / ( * ) € int Q,

where hit denotes interior. Local weak minima may be obtained from the above with

T fl N replacing T where N is a sufficiently small neighbourhood of Xo •

Consider the problem

(Pi) minimise f(x) subject to — g(x) £ K

where X, Y, Z are real normed vector spaces with S C X; Q C Y and K C Z

are closed convex cones, and f: S —> Y, g: S —> Z. The hypotheses stated will be
assumed to hold throughout this section.

For vector-valued problems it is natural to study a vector-valued Lagrangian gen-
eralising the usual scalar Lagrangian. For convex problems this has been done in finite
dimensions for Pareto optima by Tanino and Sarawagi [21] and White [23] and for weak
optima in infinite dimensions by Weir, Mond and Craven [22]. Other approaches, using
matrix Lagrange multipliers, have been given by Bitran [2], Ivanov and Nehse [14] for
finite dimensions and by Corely [4] for infinite dimensions.

In this section we will use the same vector-valued Lagrangian as in [22] and regard
/ and g as Q-pre-invex and if-pre-invex functions respectively. We will establish
necessary and sufficient conditions for weak minimisation and duality theorems.

First we need some preliminaries. Let X , Y, Z be real normed spaces and S a
subset, of X . Let P C Z be a convex cone and let W be a set in Z. A point w0 £ W
is called an extreme point (see for example [21]) of W with respect to P if there is no
w £ W , u> 7̂  wo , such that w — u>o G int P . The problem (3.1) may thus be interpreted
as that of finding all the extreme points of —f(T) with respect to Q .

For the problem (Pi) with int Q ^ <j> define a Lagrangian Lr: X x K* —> Y by
Lr(x,v) = f(x) + vg(x)r, for a fixed r £ int Q. The point (xo,vo) will be called a
saddle-point of Lr(x, v) if for all x £ S, v £ K* ,

(3.2) Lr{x0,v)- Lr(x0,v0) <£intQ

(3.3) Lr{x0,v0)- Lr{x,v0) <£intQ
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We will now give sufficient and necessary optimality conditions for (PI) in terms
of a vector-valued Lagrangian. As in the case of scalar programming, if (xo,vo) is a
solution of (3.2) and (3.3) for some r £ hit Q then xg is an optimal solution for (PI).
This is established in [22, Theorem 2]. However, as in[22], if xo is an optimal solution
of (PI) a constraint qualification and convexity is required to assure the existence of v0

such that ( so vo) is a solution of (3.2) and (3.3). Here we will show that this convexity
requirement can be weakened to pre-invexity.

THEOREM 3.2. Let f be Q-pre-invex and g K-pre-invex. Suppose xo is an
optimum solution for (PI) such that rf(x0) ^ rf(x) for some 0 ^ r £ Q* and

all feasible x £ 5 . If the generalised Slater condition is satisfied then there exists

Vo £ A* such that the saddlepoint conditions (3.2) and (3.3) hold for some r £ intQ
and vog(xo) = 0.

Remark. A sufficient condition guaranteeing the existence of 0 ^ r £ Q* such that
i~f(xo) ^ T/(,T) for all feasible x £ S is that / is Q-pre-invex, g is A'-pre-invex,
(PI) attains a weak local minimum at x = XQ and that for some sufficiently small
neighbourhood N of Xo the set

C =

is convex, where F = {x : - g(x) £ K} [7].

PROOF: From the assumptions XQ is a solution of the scalar minimisation problem

minimise rf(x) subject to — g(x) £ K

and, since rf is pre-invex and g is A-pre-invex, Theorem 2.2 gives r(f(xo) + vog(xo)r)
^ r(f(xo) + vog(xo)r) ^ T ( / ( X ) + i'og(x)r) for some r £ int<5 chosen such that rr =
1. If (3.2) and (3.3) did not hold then

r(f(x0) + vg(xo)r - {f{x0) + vog(xo)r)) > 0 and

r(f(x0) + vog(xo)r - (f(x) + vog(x)r)) > 0,

a contradiction. I

Consider the two problems

(A) minimise \P(;c) (weakly with respect to some cone C) subject to x £ F

and

(B) maximise $(y) (weakly with respect C) subject to y £ G.
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Problem (B) will be called a dual of (A) if ([6]) there holds.

(i) (weak duality) \t(z) — $(y) ^ — in tC whenever x £ F and y £ G; and
(ii) (strong duality) if (A) attains a weak minimum at some point x = a, then

(B) attains a weak maximum at some point y = b £ G and 9 (a) = <J>(6).

In relation to (PI) consider the problem

(D() maximise H = {£ £ Y: (30 ̂  r £ Q\ v £ S*), T( = in f{r / (z ) : z £ So}}.

The maximisation problem (D' ) is the problem of finding the extreme points of S with

respect to the cone Q .

THEOREM 3.3. (Weak Duality) Let x be feasible for (Pi) and let r\ £ E. Then
f(x)-r, £ - i n tQ

PROOF: For some 0 ^ T G Q* , v £ S* , r?? = iiif{r/(z) + vg(z): z £ Xo}. Hence
rf(x) > rf{x) + vg(x) ^ M{rf(z) + vg(z): z £ 50} = rr,; so r(f(x) - rj) > 0; thus
f{x)-V i intQ. |

THEOREM 3.4. (Strong Duality). Let f be Q-pre-invex and g K-pre-invex. Let
XQ be a solution to (Pi) such that rf(xo) ^ rf(x) for some 0 ̂  T £ Q* and all x £ S.
If the generalised Slater condition is satisfied then there is £o £ !E such that /(xo) = £o
and ô is an extreme point of 5 .

PROOF: From the assumptions xo is a solution of the scalar minimisation problem:

minimise rf(x) subject to — g(x) £ K.

From Theorem 2.3 there exists i>o £ K* such that vog(xo) = 0 and for all a; £ 5

Tf(x0) + vog{xo) ^ rf(x) + vQg(x).

Thus,
rf(x0) < inf{r/(a;) + vog(x)} = r£

for some ( £ Y . From weak duality it follows that rf(xo) = T£ . If there was no f0 6 S
being an extreme point of E such that f(xo) = ô then there would be £o £ H such
that i - f(x0) £ int Q ; hence for all 0 ̂  r £ Q*, T£ > rf(x0). Thus, since £ £Z, for
some f £ Q* , v £ K* , inf{f/(z) + -05(x): x G 50} = f| > ff(x0) > f/(x0) + T>S(»O)

which is a contradiction. |

We now turn our attention to the problem (Pi) where / and g are direction-
ally differentiable on the open set 5 and discuss necessary and sufficient optimality
conditions.
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THEOREM 3.5. For the program (PI), let f and g be directionally differenti&ble

at each point in each direction. Assume that f and g are Q-pre-invex and K-pre-

invex respectively, and that (PI) attains a weak minimum at x = xo • Then there exist

r £ Q* and X £ K*, not both zero, such that

(3.4) (Tf + Xg)'{xo,x) >Q Vz £ S,

(3.5)

PROOF: Since -g(x) £ K implies that f{x0) - f(x) £ intQ for all x £ S, then

there is no solution x £ S to the system

-(f{x) - f(xo),g(x)) emt(Q x K).

Then by Theorem 2.1 there exists T £ Q* and A 6 K* , not both zero, such that for all

x G S

rf{x) + Xg(x) > rf{x0).

Since —g(xo) £ K, Xg(xo) = 0. Therefore, for all x G 5 ,

rf(x) + Xg(x) - [rf(x0) + Xg{x0)} > 0.

This gives that, for all x £ 5 ,

{rf + \g)'(xo,x) ^0

since the functions are directionally differentiable. |

The Fritz John conditions (3.4) and (3.5) will lead to appropriate Kuhn-Tucker
necessary conditions under any assumption giving T ̂  0. Moreover, the Kuhn-Tucker
conditions are also sufficient.

THEOREM 3.6. For the program (PI), let f and g be directionally differentiable
at each point in each direction. Assume also that f is Q-pre-invex and g K-pre-
invex and that the generalised Slater condition is satisfied. Then (PI) attains a weak
minimum at x = xo if and only if there exists 0 ^ T £ Q* X G K* such that:

(3.6) ( r / + Xg)'{xQ,x)>0, Vz G 5,

(3.7) Xg{xo)=O.

PROOF: ( = > ). Assume that (P) attains a weak minimum at x = x0 . Then the
Fritz John conditions (3.4) and (3.5) must be satisfied at x = XQ , for some r £ Q*,

X £ K* not both zero. If r = 0, then A ^ 0 and (Xg)'(xQ,x) ^ 0 for all x £ 5 , and
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Xg(x0) = 0. Since g is If-pre-invex it follows that A<?(x) ^ Xg(xo) = 0 for all x £ S;

this contradicts the generalised Slater condition by Theorem 2.1. Hence, r ^ 0, and

(3.6) and (3.7) follows.

( <— ). Let x be feasible and assume that (3.6) and (3.7) are satisfied. Since

0 / T 6 Q ' and / is Q -pre-invex, then rf is pre-invex. Then

rf(x) - rf(xQ) > (rf)'(xo,V(x,xo)) (by Theorem 1.3)

^ X(g(x) — g(%o)) (since g is /C-pre-invex)

= —Xg{x) (since Xg(xo) — 0)

^ 0 (since A £ if*, -<?(a:) £ K) .

Hence / ( z ) - / ( x 0 ) £ - int Q. |

Using the Kuhn-Tucker conditions for (PI) we will be able to establish a duality

theorem for (PI) and the problem

(Dl1) maximise f(u) + \g(u)r,

subject to {rf + \g)'(u, x) ^ 0 Vice 5,

T e Q*, A G A'*, u e 5, rr = 1,

and r is any fixed element of int Q .

THEOREM 3.7. In (Pi) let f and g be directionally differentiable at each point
in each direction. Let f be Q-pre-invex (with respect to rj) and let g be K-pre-invex
(with respect to r\). Let (PI) attain a weak minimum at XQ £ S and let Kuhn-Tucker
conditions (3.6) and (3.7) hold at x0 . Then (Dl') is a dual to (Pi).

PROOF: Let -g{x) e K and let r £ Q", X £ K* and rr = 1. Then

rf(x) - T[/(U) + Xg(u)r] - rf(x) - rf(u) - Xg(u)

> (r/)'(tt,77(a;,w)) - Xg(u) (by Theorem 1.3)

> -{^g)\u,r){x,u)) - Xg{u)

(substituting from the constraints of (Dl'))

^ — A^(a;) (since Xg is pre-invex and by Theorem 1.3)

^ 0 (since -g(x) £ K and A £ K").

Hence f(x) - \}(u) + Xg(u)r] £ - i n t C j . This proves weak duality. Now, from
Kuhn-Tucker conditions for (Pi) , there is 0 ̂  f £ Q* , A £ K* such that r r = 1 and
(f/ + Xg) (x,x0) ^ 0 and Xg(x0) = 0; so (xo,f, A) satisfies the constraints of (D l ' )
and the values of (PI) and ( D l ' ) are equal. This establishes strong duality. I
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