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BOUNDED REALIZATION OF [-GROUPS OVER
GLOBAL FIELDS

The method of Scholz and Reichardt
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Abstract. We use the method of Scholz and Reichardt and a transfer principle
from finite fields to pseudo finite fields in order to prove the following result.
THEOREM Let G be a group of order I, where | is a prime number. Let Ko
be either a finite field with |Ko| > 1" or a pseudo finite field. Suppose that
l # char(Kp) and that Ko does not contain the root of unity ; of order l. Let
K = Ko(t), with t transcendental over Ko. Then K has a Galois extension L
with the following properties: (a) G(L/K) = G; (b) L/Ky is a regular extension;
(c) genus(L) < 2nl®"; (d) Kolt] has exactly n prime ideals which ramify in L;
the degree of each of them is [Ko((in) @ Ko]; (e) (t)so totally decomposes in L; (f)
L= K(xz), with irr(z, K) = X" + a1 ()X "L+ -+ am(t), 0 < deg(a1(t)) <
1nl*" and deg(ai(t)) < deg(ai(t)) fori=1,...,0".

Introduction

Scholz [Sch] proved that if [ is an odd prime, then each I-group occurs
as a Galois group over Q. Here @ is an [-group if the order of G is a power
of I. Independently, Reichardt [Rei] gave a simpler and shorter proof to the
same theorem. One can find a modern presentation of Reichardt’s proof in
Serre’s course on Galois theory [Sel, §2.1].

The reason why the method of Scholz and Reichardt does not work for
[ = 2 is that the primitive root of unity of order 2, namely —1, belongs to
Q. The same reason forced Rzedowski-Calderén and Villa-Salvador [RCV]
to exclude all primes [ with (; € Fy, when they proved that each [-group
occurs as a Galois group over [Fy(t). Here ¢ is a power of a prime p # [ and
(; is a primitive root of unity of order .

Shafarevich [Sh1] has overcome this difficulty. He used refined combi-
natorial arguments to prove that for an arbitrary prime number [, for each
number field K, and for each [-group G, there exists a Galois extension L
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of K such that G(L/K) = G. In a later work [Sh2], Shafarevich pointed
out how to correct an incomplete group theoretic argument in his earlier
work for the case [ = 2.

However, Shafarevich had to pay a price for his generalization. The
combinatorial arguments forced him to allow an exponentially growing num-
ber of primes of K which may ramify in L. In contrast, as Serre [Sel, p. 9]
emphasizes, the method of Scholz and Reichardt gives for a group G of
order [", with | odd, a Galois extension L of QQ in which only n primes
ramify.

Although Rzedowski-Calderén and Villa-Salvador [RCV] use the meth-
od of Scholz and Reichardt they do not try to bound the number of ramified
primes. Indeed for a given I-group G with [ { ¢ and (; ¢ F,, they construct
a Galois extension L of F¢(t) such that G(L/F4(t)) = G and the genus of L
is large. Here and in the sequel, t is a transcendental element over the base
field. By the Hurwitz-Riemann genus formula, this means that the number
of primes of Fy(t) which ramify in L is also large.

The goal of this work is to use the method of Scholz and Reichardt to
realize each I-group G over an arbitrary global field with bounded ramifi-
cation.

THEOREM A. Let K be a global field and let | be a prime number
such that | # char(K) and (; ¢ K. Then there ezists a nonnegative integer
r = r(K) such that for each group G of order I™ there exists a Galois
extension L of K with G(L/K) = G and |[Ram(L/K)| <n+r.

Here Ram(L/K) denotes the set of primes of K which ramify in L. If
K = Q or K = Fy(t), then 7(K) = 0. In the former case we therefore
reproduce the result of [Sel]. In the latter case we improve the result of
[RCV].

The extension L/K which Theorem A gives can actually be constructed
to satisfy given ‘local conditions’. See Theorem 7.4 for the exact formula-
tion. )

Serre uses cyclotomic fields in his proof. Rzedowski-Calderén and Villa-
Salvador use Carlitz’ analog of cyclotomic fields over Fg4(t). Both type of
fields are useless for the construction of l-extensions with bounded ramifica-
tion over an arbitrary global field K. We replace their use by a systematic
application of class field theory.
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I-GROUPS OVER GLOBAL FIELDS 15

In the function field case, we supplement Theorem A with bounds on
various invariants of the extension L/K. We prove that for each large
multiple k of [Fq({in) : Fyl, the field L can be chosen such that deg(p) = k
for each prime p € Ram(L/K) and

(0.1) 291 — 2 < I"(29K — 2+ (n + 7(K))k).

Here gx (resp., g1) is the genus of K (resp., L). See Theorem 8.6 for more
details.

The bounds of Theorem 9.6 become more explicit if K = Fy(t). For
example, Theorem 9.1 improves (0.1) in this case to

291, — 2 <1™(nk — 2).

Theorem 10.5 does even better under the assumption that q > [4"+4,

It produces absolutely irreducible polynomials f, g € Fq(T, X) with coeffi-
cients of bounded degrees such that L is the splitting field over K = F,(t)
of both f(t,X) and ¢(t, X) and Ram(L/K) consists of those prime of K
which divide the discriminants of both f(¢,X) and g(¢,X). Of course,
G(L/K) = G. Moreover, (t)o totally decomposes in L, g; < %nl%,
|Ram(L/K)| = n, and deg(p) = [Fq({in) : Fy] for each p € Ram(L/K).

It is therefore possible to write down a sentence 6(I, n) in the first order
language of the theory of fields, such that if ¢ > I*"*4 then K = Fq(t) has
a Galois extension as in the preceding paragraph.

This has an immediate consequence for the infinite models of the theory
of finite fields. They are called pseudo finite fields. For example, each
nonprincipal ultraproduct of finite fields is pseudo finite. Also, if F is
a countable Hilbertian field (e.g., F = Q or F = F(t)), then F(o) is
pseudo finite for almost all o in the absolute Galois group G(F') of F' [Jal,
Thm. 3.5]. Here F(0) is the fixed field of o in the algebraic closure F of F.

THEOREM B. Let Ky be a pseudo finite field and let | be a prime
number such that | t char(Ky) and {; ¢ Ko. Let G be.a group of order I™.
Then K = Ky(t) has a Galois extension L which is regular over Kg such
that G(L/K) = G, |Ram(L/K)| = n, gr < 3nl®", (t)so totally decomposes
in L, and deg(p) = [Ko((») : Ko] for each p € Ram(L/K).

Note that each pseudo finite field Ky is PAC. That is, each absolutely
irreducible variety over Ky has a Kp-rational point. It is known for an
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arbitrary PAC field Ky and for each finite group G that there exists a Galois
extension L of Ky (t) which is regular over Ky such that G(L/K) = G. This
was first proved by Fried and Volklein [FrV] in characteristic 0. In the
general case it follows from a theorem of Harbater [Ja2, Thm. 2.6] which
has been recently reproved in an elementary way by Haran and Volklein
[HaV]. However, none of the proofs of this theorem supplies a bound for
|[Ram(L/K)|. Theorem B does it in a very special case.

§1. Global fields

Consider a global field K. Thus, K is either a number field, that is,
a finite extension of Q, or K is a function field, that is, K is a regular
extension of transcendence degree 1 of a finite field F; with g elements. We
denote the set of primes of K by P = P(K). In the number field case, P
has a finite subset P, the set of archimedean primes, which correspond
to the embeddings of K into C. Each archimedean prime p is a divisor of
the unique archimedean prime oo of Q and we write p|co. All other primes
of K are nonarchimedean. In particular, if K is a function field, then K
has only nonarchimedean primes and we let Py, = 0.

Fix a prime number ! which does not divide char(K'). For each n choose
a root of unity (j» of order [™. Most of our results will assume that (; ¢ K.
If K is a number field, we denote the finite subset of P that consists of all
prime divisors of [ by P;. If K is a function field, we let P, = 0.

Denote the completion of K at a prime p by K, and let I_(p be its
- residue field. If p is archimedean, then K, is either R (p is real) or C (p
is complex). In each case we let U, = K,f be the multiplicative group of
K, and set m, = 1. If p is nonarchimedean, then K, is a complete discrete
valuation field. We denote its normalized valuation by v, and choose a
prime element 7, in Kj, that is vp(m,) = 1. Let Uy, be the group of units
of K, and Uy its group of 1-units. Then K, & (mp) x U, and Uy /Uy, is
isomorphic to K ;(. If K is a number field, then I—{p is a finite extension of
Fp, where p is the rational prime that lies under p. If K is a function field,
then K, is a finite extension of F, and (K, : F,] = deg(p). In both cases
U, is a pro-p group, where p = char(K,).
The group Ik of ideles of K is the restricted product of the multiplica-
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tive groups K, px with respect to the subgroups Uy. Thus

Ig = {a € HKPX | ap € Uy for all but finitely many p € ]P’}.
peP

A basis for the topology of I consists of all sets [V, such that V, is open
in K, ; and V}, = U, for almost all p. In particular, the group of unit ideles

U=]]0-

This group is the kernel of the divisor map div: Ix — Div(K) = @p){oo Z-p
which is defined by div(a) = >, vp(ap)p. The image of the divisor map
is the group of divisors Div(K) of K.

One embeds K* diagonally in Ix and calls Cx = Ix/K* the idele
class group of K. Its factor by UK* /K is the ideal class group of K:

is open in Ig:

(1.1) CIU(K) = Ix /UK = Div(K)/div(K*).

If K is a number field, then Cl(K) is a finite abelian group, whose order
hg is the class number of K. If K is a function field, then we define the
degree function for ideles deg: I — Z by deg(a) = 3, cpvp(ay) deg(p)
and consider the group of ideles of degree 0:

I?( = {a € Ix | deg(a) = 0}

The product formula implies that K> < I?(. Also, U < I%. So, we may
consider the group of idele classes of degree 0: Clo(K) = I%/UK*.
Then CI(K)/Cly(K) = Z, but Clo(K) is a finite abelian group whose order
hx is the class number of K. More important for us is the [-class rank
of K:

rank;(K) = dimy, CI(K);

Here CI(K); is the [-torsion part of the finite abelian group Cl(K).

To each finite nonempty subset S of P that contains P, one associates
the group Kg of S-units. Thus Kg consists of all elements = € K such that
vp(z) = 0 for all p ¢ SUP.,. By Dirichlet’s unit theorem, Kg = pg x ZI51=1
where pg is the finite cyclic group of roots of unity of K [CaF, p. 72]. If K
is a function field, then px = Fy. If K is a number field and S = Po, we
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call ranko, (K) = |Poo| — 1 the unit rank of K and Ex = Kp_ is the group
of units of K. If K is a function field, we let Ex = px and rank(K) = 0.
The group of S-ideles of K is the direct product

(1.2) Igs = l_IK';< X H Up.

pesS pgsS

It contains U and satisfies
(1.3) KSIIK,SHKX.

The restricted topology of Ik induces the usual direct product topology on
Ik s. In particular, if h is a homomorphism of Ik s into a finite group C
such that h is continuous on K, for each p € S and h([Ipgs Up) = 1, then
h is continuous.

Data 1.1. (Basic set) If K is a number field, choose ideles a;, ..., ap,
which represent Ix modulo UK *. Let Sy be the set of archimedean primes
and those nonarchimedean primes p for which vy (0 ) # 0 for at least one i.
Then Sy is a finite set and each set of primes S which contains Sy satisfies

(1.4) Iy =IK’5KX.

If K is a function field, then we choose ap € Ik of degree 1 and ay, ..., apy,
which represent I?{ modulo UK. Let Sy be the set of primes p such that
vp(a;) # 0 for at least one i. Again, Sp is a finite subset of P and each set
So C S C P satisfies (1.4). It follows from (1.3) and (1.4) that

(1.5) Cg :IK,S/KS

We increase Sy now by adding P; to it, if K is a number field, and possibly
finitely many additional primes which we choose at will. Then we call Sy a
basic set and fix it for the rest of this work.

Ezample 1.2. (The cases K = Q and K =F,4(t)) For K = Q the u-
nique factorization in Z implies that Ip = UQ* and therefore hg = 1.
We may therefore choose a; = 1 and Sy to be any finite set of primes that
contains {oo,l}.

For K =TF4(t) we may choose ag as the idele whose component at the
pole of ¢ (which we denote by (t)s) is ¢t~ and otherwise is 1. Again, the
unique factorization in Fy[t] implies that I% = UK and hx = 1. We may
therefore choose Sy to be any finite set of primes of K that contains ()eo.
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§2. Class field theory

Class field theory teaches us that the idele class group Ck controls the
abelian extensions of K. Specifically, for each finite abelian extension L/K
the reciprocity law gives a continuous epimorphism

(2.1) Y:Cx — G(L/K),

whose kernel is N,/ C, and which is functorial in L. For details, we refer
the reader to chapters 4 (Serre: local class field theory) and 5 (Tate: global
class field theory) of [CaF] and also to [Neu| (which however handles only
the class field theory of number fields).

For each prime p of K we consider K, as the subgroup of Ix which
consists of all ideles whose q coordinate is 1 for each q # p. Under this
identification K, N K* = 1. So, we may and we will consider K, also as a
subgroup of Ck. The restriction of ¥ to K ,;( gives a continuous epimorphism

(2.2) Wp: K — Dy(L/K)

whose kernel is Ny /g, L;. Here, Ly is the completion of L with respect
to a prime p’ of L which lies over p and Dy(L/K) is the decomposition
group of p in L. Since L/K is abelian, both the norm group and the
decomposition group do not depend on p’. The fixed field of Dy(L/K) is
LNK,. It is the maximal subfield of L /K in which p completely decomposes.
In particular p completely decomposes in L if and only if Dy(L/K) = 1.
The homomorphism v, maps Uy onto the inertia group I,(L/K) of L/K
whose fixed field is the maximal subfield of L/K in which p is unramified.
Thus I,(L/K) = 1 if and only if p is unramified in L. If ¢ is unramified at p,
then 1y (mp) = (L/TK) is the Frobenius automorphism of L/K at p. Finally,
the condition Dy(L/K) = I,(L/K) is equivalent for nonarchimedean p to
Ly, = K,.

Let K (resp., Ks) be the algebraic (resp., separable) closure of K and
let G(K) = G(Ks/K) be the absolute Galois group of K. We embed K
into K p, thereby extending p to K. Then KN Ky = Kj . is a Henselian
closure (resp., real closure) of K with respect to p if p is nonarchimedean
(resp., archimedean). Its absolute Galois group G(Kj ai¢) is the absolute
decomposition group of p. We denote it by D,. By Krasner’s lemma,
KKy, = Ky ,. Hence, resk,: G(Ky) — D, is an isomorphism. We iden-
tify G(K,) with D, under this map. We denote the maximal unramified
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extension of K, by Kp . (if p is archimedean, we set Ky v = Kp) and let
I, = resk,(G(Kpur)). This is the absolute inertia group of p. If p is
nonarchimedean, then the quotient group Dy/I; = G(Kj w/K}) is isomor-
phic to 7, and the Frobenius automorphism Froby is a canonical generator
of this group.

Whenever we consider a homomorphism ¢: G(K) — G into a finite
(not necessarily abelian) group G, we assume that ¢ is continuous. Then,
the fixed field L of Ker(¢) in K, is a finite extension of K. The prime
p totally decomposes in L if and only if ¢(Dp) = 1, ie., L C K,. We
then say that ¢ totally decomposes at p. Similarly, we say that ¢ is
unramified at p if p is unramified in L, that is, if p(I;) = 1. In this case ¢
induces a homomorphism of G(Kj ;) onto G(L/K) which maps Frob, onto
Lé,K ] of G(L/K), where p’ is the prime of L which
is determined by the embedding of L into K, p- If p is nonarchimedean and

the Frobenius element [

|I,| is relatively prime to char(K,), then ¢ is tamely ramified at p. We
denote the finite set of primes at which ¢ ramifies by Ram(y) and also by
Ram(L/K). Finally, ¢(I,) = ¢(Dy) if and only if L, = K,. Note that all
these concepts are independent of the embedding of K into K p-

We choose a multiplicative copy C; of the cyclic group of order I. Let
Hom be the functor of continuous homomorphisms. Then the reciprocity
law gives a commutative diagram

v
Hom(G(K),C;) —— Hom(Ck, C;)

)
(2.3) Hom(Dy, C;) —— Hom(K}, C))

N\
Hom(Iy, C;) —— Hom(U,, C))

in which the horizontal maps are isomorphisms and the vertical maps are
the natural restriction maps. Both ¥ and ¥, map epimorphisms onto epi-
morphisms. If h € Hom(Dy, C;) is trivial on I, and n = ¥y(h), then 7 is
trivial on Uy. In this case h induces a homomorphism h: G(Kpu/Kp) — C)
such that h(Froby) = n(m).
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83. Embedding problems; Scholz extensions

An l-group is a group G whose order is a power of [. Such a group
has a central sequence all of its factors are of order [. We consider central
embedding problems for G(K) of the following type:

G(K)
(3.1) lﬂ
G

1 C G

Here the lower sequence is exact, p is surjective, and C} is contained in the
center of G. A weak solution to (3.1) is a homomorphism ¢: G(K) — G
such that a0 = p. If ¢ is in addition surjective, we call ¢ a solu-
tion. In this case let L (resp., L') be the fixed field in K of Ker(p) (resp.,
Ker(¢)). Then p (resp., ¢) induces an isomorphism p: G(L/K) — G (resp.,
@:G(L'/K) — Q) such that pores;, = ao@. The embedding problem splits
if the short exact sequence splits. This is the case if and only if G = C; x G
and « is the projection onto the second factor. Each epimorphism from
G(K) onto C; can then be multiplied with p to yield a solution to (3.1) and
each solution of (3.1) is of this type. In the general case, if ¢ is a weak
solution to (3.1), then C; - p(G(K)) = G and hence the index of ¢(G(K))
in G divides I. Since G is an l-group, ¢(G(K)) is normal in G. Hence,
if (3.1) does not split, then C; < ¢(G(K)) and therefore ¢ is a solution
o (3.1). In this case, if n: G(K) — C is a homomorphism, than the map
¢': G(K) — G defined by ¢'(c) = n(o)¢(c) for o € G(K) is also a solution
o (3.1). Moreover, each solution to (3.1) is obtained in this way. We write
o' =n-.

For each prime p of K, (3.1) gives rise to a local embedding problem:

Dy
(3.2) lf’v

Qp

Here D, is the absolute decomposition group of p (Section 2), py = p|p,,
Gy = p(Dp), Gy = o }(Gy) and o = alg,. If (3.1) is central, then so is
(3.2). However, even if (3.1) does not split, (3.2) may split.
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Class field theory reduces the solvability of the global embedding prob-
lem (3.1) to the solvability of all local embedding problems induced by
(3.1) (as we shall see in the proof of Lemma 4.3). This led Scholz to try
to construct the map p: G(K) — G with conditions that will impose the
solvability of all local embedding problems (3.2). Before we reformulate
Scholz’s conditions we fix some ’local data’ which we would like to impose
on .

Local data 3.1. A set {¢p:Dp — G | p € Sp} of homomorphisms is
a local data for an [-group G and a positive integer n if it satisfies the
following conditions:

(3.3a) p(Iy) =1 for each p € Py,
(3.3b) if p € Sp and @p(Ip) # 1, then (n € Ky and @p(Iy) = @p(Dy).
We fix the local data for G for the rest of this work.
Our definition of a Scholz extension depends on a finite set S; of

rank;(K) + rank., (K) ‘exceptional primes’ of K which is disjoint from Sp.
We choose such a set in §5. It depends on K and on [ but not on G.

DEFINITION 3.2. (Scholz extension) Let n be a positive integer and let
¢ be an epimorphism of G(K) onto an l-group G equipped with a local data
as in Local data 3.1. We say that ¢ is n-Scholz if

(3.4a) (i € Ky, for each p € Ram(p),

(3.4b) @(Ip) = ¢(Dy) for each p € Ram(yp), and

(3.4c) |p, = ¢p for each p € S (Thus, ¢ respects the local data.)
(3.4d) @(Ip) = @(Dy) for each p € S;.

We say that a finite Galois extension L/K is an l-extension, if G(L/K) is
an [-group. In this case L/K is n-Scholz if res;: G(K) — G(L/K) is an
n-Scholz epimorphism.

By (3.3a),  ramifies at no p € P;. In other words, if p € Ram(y), then
© is tamely ramified at p. By (3.3b), ¢ is unramified at each archimedean
prime if I” # 2. Condition (3.4a) then means that p totally decomposes
in K(¢). By Hensel’s lemma, it is also equivalent to (;» € I_(p and also
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to Np = 1 mod ™ (Recall that Np is the cardinality of K,). Condition
(3.4b) means that the inertia group of each prime of L which ramifies over
K coincides with its decomposition group. If ¢, = 1 for some p € Sp,
then Condition (3.4c) means that p totally decomposes in L. If on the
other hand, ¢,(Ip) # 1, then Condition (3.4c) implies that p € Ram(yp).
Thus, Ram(p) N Sp is a priori determined by the local data. Note that all
conditions are independent of the particular embedding we have chosen for
K into f(p.

In the notation of (3.1), the local data for G induces a local data for
G. This is the set {py = a0, | p € Sp}. (Note that Condition (3.3) is
satified for the pp’s.) If ¢ is a solution for the embedding problem (3.1) and
 is n-Scholz, then p is n-Scholz. But even if p is n-Scholz, ¢ need not be
n-Scholz itself. So, in order to continue the induction on the order of G, we
multiply ¢ by an appropriate homomorphism 7: G(K) — Cj such that it
will be n-Scholz. We do it in two steps. First we change ¢ in this way such
that Ram(p)US; = Ram(p)US;. Then we change the resulting ¢ such that
Ram(p) U Sp U S; = Ram(p) U {q} U Sp U Sy where q is an additional new
ramified prime which arises from an application of the Chebotarev density
theorem. At this step we use the assumption (; ¢ K. Thus, if the order of
G is [, then we finally realize G as the Galois group of a Galois extension
L/K with |[Ram(L/K) ~ (Sp U S1)| =n.

Note the difference between the roles of the finite sets Sy and S;. The
set Sy must contain some basic primes but otherwise we are free to make
it arbitrarily large and we are completely free to determine ¢|p, for each
p € So. In particular, we can assume that ¢(I;) = 1 for each p € Sp
and then ¢ will be unramified at each p € Sy. The behaviour of ¢ at
p € 51 on the other hand is out of our control. In particular we can
not determine whether or not ¢ is ramified at a given p € S;. However,
|S1| = rank;(K') + rank.(K) does not depend on G.

§4. Existence of a solution

The first step toward an n-Scholz solution of embedding problem (3.1)
is to find a solution which need not be n-Scholz. The easier case is when
(3.1) splits. In this case (Lemma 4.2) we need to make no assumptions on
p. In the more difficult case (Lemma 4.3) we have to assume that p is an
n-Scholz epimorphism.
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LEMMA 4.1. Let q be a prime of K which does not belong to PyUP,.
Suppose that ¢ € Kq. Then Uq/Ucl, = (.

Proof. We have assumed in the function field case that | # char(K).
Hence, in both cases | # char(Kj). Hence (; € K;. By Hensel’s Lemma
Uga SUCII. Hence Uq/Ué%K;/(I_(cf)l ~ (. 0

LEMMA 4.2.  Suppose that embedding problem (3.1) splits. Then it
has a solution.

Proof. Denote the fixed field of Ker(p) by L. Then assume without
loss that G = G(L/K), G = C;x G(L/K), p = resy, and « is the projection
on the second factor.

As K is Hilbertian [FrJ, Cor. 12.8], every finite abelian group is re-
alizable over K [FrJ, Thm. 24.48]. In particular suppose that C]* is the
maximal l-elementary abelian quotient of G(L/K). Let N be a Galois ex-
tension of K with G(N/K) = C;*"'. Then N has a subfield M which is
linearly disjoint from L over K and G(M/K) = C). So, L' = LM satis-
fies G(L'/K) = G(M/K) x G(L/K) and resp: G(K) — G(L'/K) gives a
solution to (3.1).

Alternatively, let S = Ram(L/K)USgUS;. Choose generators ay, .. ., as
for Kg modulo K fg and consider the Galois extension N = K((,/ai, ...,
Vas) of K. Apply the Chebotarev density theorem to choose a prime q ¢ S
such that (ﬂéﬁ) =1,1e., N C Kq. In particular, v4(a;) = 0 and a; € Ufl,
i=1,...,s. Also, q1t!. Hence, by Lemma 4.1, there exists a continuous
epimorphism hq: Uy — C). Define a continuous homomorphism

hilgs=[[KS xUsx [ Up—C
peS pgSU{q}

by h(K,) = 1for p € S, hly, = hq, and h(Up) = 1 for p ¢ S U {q}.
Since a; € Ucll, i=1,...,s, h(Kgs) = 1. Hence, h induces an epimorphism
h:Ck = Ik s/Ks — C) which satisfies h(K,) = 1 for p € S, h(Uy) = C},
and h(Up) =1 for p ¢ SU {q}.

The reciprocity law (2.3) transfers h to an epimorphism 7: G(K) — C)
such that n(ly) = C;. Let M be the fixed field of Ker(n) in K;. Then
G(M/K) = Cj and q is ramified in M. Since q is unramified in L, we have
M N L = K. Conclude the proof as in the second paragraph. 0
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The following local global principle is implicit in [Rei], [Ko, p. 35], and
[Se, Lemma 2.1.5]. We include a proof of this principle for the convenience
of the reader.

LEMMA 4.3. If each of the embedding problems (3.2) has a weak so-
lution, then the embedding problem (3.1) has a solution.

Proof. By lemma 4.2 we may assume that (3.1) does not split. So, by
the discussion in the first paragraph of §3, we have to prove that (3.1) has
a weak solution.

To this end let K’ = K((;) and apply class field theory to write a
commutative diagram of cohomology groups:

res

T BAGK),C) —2 HAG(KY),C)

2@G,c
(4. 1) J/ lres lres
[T #2(Gy, ) —— [] H2(G(Ky), 00 — T BA(G(Ky), 1)
p p P

The Brauer-Hasse-Noether theorem for Brauer groups [CaF, p. 185] implies
that the right vertical map in (4.1) is injective. Since [K’ : K] is relatively
prime to [, the upper res map in (4.1) is injective [CaF, p. 105]. Hence, the
middle vertical map in (4.1) is injective.

Denote now the element of H?(G,C;) (resp., H*(Gy,C;)) which cor-
responds to the short exact sequence by e (resp., €y). A necessary and
sufficient condition for (3.1) (resp., (3.2)) to be weakly solvable is that
p*(e) = 1 (resp., py(ep) = 1) [Hoe, Lemma 1.1] (Note that C; is a multi-
plicative group).

It follows from the preceding paragraph and from the weak solvability
of each of the local embedding problems that (3.1) is weakly solvable.  []

LEMMA 4.4. Let L/K be an n-Scholz extension with G = G(L/K).
Suppose that the central embedding problem (3.1) does not split and that the
exponent of G is at most I". Then (3.1) has a solution.

Proof. By Lemma 4.3, it suffices to prove that each of the local em-
bedding problems (3.2) that (3.1) induces is solvable. To this end we put
L, = LKy, replace G, by the group G(Ly/Ky), Dy by G(K,), and p, by

resg, .
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If L,/ Ky is an unramified extension, then p, decomposes through a map
Pp: Z = G(Kyu/Ky) — G(Ly/K,) and therefore (3.2) is weakly solvable.

If Ly /Ky is ramified, then by (3.4b) and (3.4a), it is totally ramified and
(n € Ky. By (3.3a) | # char(K,) and therefore the ramification is tame.
Hence Ly is a cyclic Kummer extension. Since G(L,/K}) is isomorphic to
a subgroup of G and since the exponent of G is at most ["~!, the order
of G(Ly/Ky) is at most "~1. Thus L, = K,(""\/a) for some m < n
and a € Ky with vy(a) = 0 [CaF, p. 32]. If (3.2) splits, then it certainly
has a weak solution. If (3.2) does not split, then Gy is a cyclic group of
order I™. Then L), = Ky('V/a) is a cyclic extension of K, of degree I™
which contains Ly. The composition of res: G(Ky) — G(Ly,/Kp) with an
isomorphism G(Ljy,/Ky) — Gy which maps generators of both groups to the
same generator of G(Ly/Kp) solves the local embedding problem (3.2). [J

85. Linearly disjoint fields; an exceptional set of primes

The condition that Lemma 5.1 imposes on the subgroup A of ]le to be
nontrivial is translated in Lemma 5.2 to {; ¢ K. This condition restricts
the Scholz-Reichardt method of realizing I-groups over K to the case where
¢ ¢ K. In particular, as (2 = —1 belongs to every field, the method fails
for [ = 2.

The introduction of an ‘exceptional set of primes’ (Definition 5.4, Lem-
ma 5.5, and Data 5.6) allow us to handle number fields and the case l|h k.
To find such a set and also for further applications we construct a special
Galois extension N* of K. Then we use the Chebotarev density theorem
and find primes of K whose Artin symbol is the conjugacy class of a given

element of G(N*/K) and therefore have specific decomposition behaviour
in N*.

LEMMA 5.1.  Let A be a nontrivial subgroup of F) which acts on the
direct product C = CJ™ in a natural way: (ci1,...,cm)* = (c§,...,c%).
Then the semidirect product G = C x A has no nontrivial quotients of order
l.

Proof. Let h:G — C; be a homomorphism. Then the order of h(A)
divides both ! and ! — 1, and therefore h(A) = 1. Let now 1 # a € A and
c € C. Then h(c)* = h(c®) = h(a"tca) = h(a) " h(c)h(a) = h(c) and
hence h(c) = 1. Conclude that h = 1. 0
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Let S be a finite set of primes of K and consider elements a1, ..., as of
Kg. We say that aq,...,a, are multiplicatively independent modulo
K fq if each relation

5.1 alt ...l = ¢l
1

with l4,...,ls € Z and b € Kg implies that [|l;, i = 1,...,s. Replace ‘b €
Kg’ by ‘b € K*’ to define the expression multiplicatively independent
modulo (K*).

LEMMA 5.2. Let S be a finite set of primes of K. Let ay,...,as be
multiplicatively independent elements of Ks modulo K fg Then the fields
K(G,V/a1),...,K(G,Vas) are linearly disjoint and of degree | over K(().

Further, suppose that (; ¢ K. Let L be an l-extension of K and let n be
a positive integer. Then, the fields L((n,/a1), ..., L((n,/as) are linearly
disjoint and of degree | over L((;»). In particular, [L({in,/a1,...,Vas) :
L(Gn)] = 1°.

Proof. Observe that aj,...,as are even multiplicatively independent
modulo (K*)!. Indeed, let l1,...,ls € Z and b € K* such that (5.1) holds.
Then lvy(b) = 0 and therefore vy (b) = 0 for each p ¢ S. So, b € Ks. Hence
[ divides [y, ...,[,, as desired.

It follows that ai,...,as are also multiplicatively independent modulo
(K(¢)*). Indeed, k = [K(;) : K] divides | — 1 and is therefore relatively
prime to I. If in (5.1) b € K((;), we take the norm of both sides to obtain

o+t = (Niq/xd)'

By the preceding paragraph [|kl;. Hence I|l; for i = 1...,s, as desired.

By Kummer theory [Lan, p. 220, Thm. 14], the fields K({;,/a1),.- ..,
K ({i,\/as) are linearly disjoint and of degree ! over K({;). Hence M =
K((,y/ai,...,{/as) is a Galois extension of K and G(M/K) is the semidi-
rect product of G(M/K(Vai,...,Yas)) with G(M/K((;)) = F;. The for-
mer group is isomorphic to G(K({;)/K) and therefore to a subgroup of
F)* which acts on the latter group by scalar multiplication. Indeed, if
o € G(M/K({ax,...,{a;)) satisfies (f = ¢f for some s € F and 7 €
G(M/K(()), then 7110 = 7.

We may write K((n) = K({;)K' where K’ is a cyclic extension of K
of degree I™ with m < m — 1. So, LK’ is an l-extension of K. Since, by
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assumption, G(K({;)/K) is nontrivial, M /K has no Galois subextension of
degree | (Lemma 5.1). Hence M N LK’ = K and therefore M N L({jn) =
K(G). Tet N = L(Gm, /@i, .., /@s). Then G(N/L(Gn) = G(M/K(G)).
In particular L({,\/a1),. .., L({i,/as) are linearly disjoint and of degree
I over L(¢).

M N

K(G,v/a:) L(Gn, v/ai)

K@) —— L(G)

L(Gr)

K — L —— LK’ U

Remark 5.3. Under the assumption of Lemma 5.2 suppose that L is
a function field over a finite field Ko. Then N = L((j»,+/ax,...,\/as) is a
regular extension of Ko((n)

Indeed, let L({j~) = L({;,{2,¢3,-..). Since n is arbitrary in the last
paragraph of the proof of Lemma 5.2, we have that M N L((e) = K({).
Since Ko({j) has no l-extensions and M/K((;) is an l-extension, this im-
plies that M N LKy = K(¢). Hence N N LKy = L((n). Since L/Kj is

regular, L({n) N Ky = Ky(¢n). Conclude that N N Ky = Ko((n), that is
N/Ky((n) is regular.

DEFINITION 5.4. (Exceptional set of primes) Let » = rank;(K) and
choose ay, ..., in Ik (resp., I?{) which represent a multiplicative basis
over F; for CI(K); (resp., Clo(K);) if K is a number field (resp., function
field). By definition there exist u; € U and a; € K* such that

(5.2) ol = pal, i=1,...,7
We call a},...,a; an l-basis for K and fix it for the whole work. We also
choose fundamental units of K. These are elements wy,...,ws € Eg, with

s = rankeo(K'), which generate Ex modulo ug. We fix them too for the
whole work. We also fix the following basic Galois extension of K:

N* = K((n,{/ak, ..., a, /w1, ..., \/ws).
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By (5.2), Ram(N*/K) C P; U Py.
An n-exceptional set of primes of K is a set of finite primes

(5.3) S1={pl,...,pr a1, ., a5}
which is disjoint from Sy such that for all 7,5’ € {1,...,7} and all 5,5’ €
{1,...,s} we have
* l . -/, * l
aiEKpf,@z#z, aiEKq;,
(5.4) wj € Kl;  wj € K <= j#j, and
i i

Gn € Kpr, Gn € Kgr.

LEMMA 5.5. (Characterization of exceptional set) Let

N; = K(Qn,v/a5,...,4/al_4, VAIRPR Vax, Ywi, ..., Y ws),

i=1,...,r
N]/ = K(Cl”’ \l/ a*a'”,\l/ ar, lwl)'“7\l/wj—1>\l/wj+1a"'7\/l ’11)3),
i=1...,s

Then

(a) N*/N; and N*/Nj are cyclic extensions of degree I, N*/K is a Ga-
lois extension of degree [K (') : K|I'**, N;/K and N}/K are Galois
extensions, and

(b) the set Sy (of (5.3)) is exceptional if and only if it is disjoint from Sp,
and

(5.5) DpZ(N*/K) =G(N*/N;) and Dq;(N*/K) = Q(N*/N]{),
fori=1,...;randj=1,...,s.

Proof. Let S = Po. Once we prove that aj,...,ak, wi,...,ws are
multiplicatively independent modulo K*, (a) will follow from Lemma 5.2
with L = K. Since the fixed field of the decomposition group of a prime p in
N*is N*N Ky, statement (b) will then also hold. Note that since G(N*/N;)
and G(N*/N;) are normal subgroups of G(N*/K), (5.5) is independent of

the embedding we have chosen for K in Kyx.
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Suppose therefore that kyi,..., k-, {1,...,ls are integers and b € K*
such that

(5.6) (a$)f .- (af)erwh -l = B,
Then, by (5.2),
(5.7) Ml'kl NN M;krwil . wlss = (al—kl - O{;krb)l,

Since the left hand side of (5.7) belongs to U, so is its right hand side and
therefore a’fl ---afb~1 € U. Hence a]fl ..ok € UK*. By the choice of

ai,...,o each k; is a multiple of [.
It follows from (5.6) that there exists ¢ € K* such that wl - - wls = ¢.
Hence ¢ € Ei and since wq,...,ws are multiplicatively independent over

Z and generate Ex modulo pk, each I; is a multiple of [. Conclude that
aj...,ak, wy,...,ws are multiplicatively independent modulo (K* )l. 0

Data 5.6. (Exceptional set of primes) Choose a generator o for G(N*/
N;j), let Con(o}) be the conjugacy class of ¢} in G(N*/K) and apply the
Chebotarev density theorem to choose p; € P ~ Sy such that (M) =

b;
Con(o7), ¢ = 1,...,r. Similarly, choose a generator 77 for G(N*/Nj)
and q; € P~ Sp such that (N;4 ) = Con(r}), j = 1,...,s. Since the
7

Artin symbol of a prime generates its decomposition group in N*, (5.5)
holds and therefore, by Lemma 5.5, the set S; of (5.3), chosen in this
way is exceptional. We fix it for the rest of this work and note that
|S1] = ranke, (K') + rank;(K).

Note that if K is a number field, then S; is empty exactly if either K =
Qand! # 2, K = Q(v/—3) and l # 2, 3, or K is another imaginary quadratic
field with [ # 2 and [ t h. If K is a function field, then rank.(K) = 0 and
|S1| = rank;(K). In this case S; = 0 is equivalent to  { hk.

§6. Getting rid of extra ramification

The second step in the solution of embedding problem (3.1) is to change
the solution ¢ we have found in Lemma 4.4 such that in addition to the
primes of Ram(p) the only primes of K at which the solution ramifies belong
to the exceptional set S; which we have chosen in Data 5.6.

LEMMA 6.1. Let S be a finite set of primes which is disjoint from the
exceptional set Sy. For each prime p € S let hy: Uy, — Cj be a continuous
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homomorphism. Suppose that {; ¢ K. Then there exists a continuous
homomorphism h: Cgx — Cj such that h|y, = hy for eachp € S and h(Up) =
1 for each prime p ¢ S U Sy

Proof. We break the proof into five parts.
Part A. (Definition of hy for p € S1)

By (5.4), ¢, € Uy. Hence, by Lemma 4.1, Up/Ué 2 C;. Hence, for
each u € Up Ué and each ¢ € C] there exists a continuous homomorphism
h': Uy, — Cj such that h'(u) = c.

By (5.2) and (5.4), p; € Up: ™ Ué:. Hence, there exists a continuous
homomorphism hp:_f: Up» — C) such that

(6.1) (H h,,(u,-,p)> g (pige) =1,  i=1,...,7

peS

Here, p1;p is the p-th component of y;. For the same reason, there exists a
continuous homomorphism hq;: Uq; — C) such that

(6.2) (H hp(wj)> che(w) =1, j=1,...,s

peS

This completes the definition of hy for each p € S;.
By (5.2) and (5.4), u; € Ué and therefore

(6.3) hy(pip) =1 for each p € Sy~ {p;}
By (5.4), w; € Ué and therefore
(6.4) hy(w;) = 1 for each p € S1 ~ {q;}

Part B. (Definition of f" on UK* /K *)
The formula

(6.5) Fwy =TI ()

peSUS

defines a continuous homomorphism f from the open subgroup U of Ik
into Cj that is trivial on U, for each p ¢ SUS; and coincides with hy on U,
for each p € SU S;. By (6.2) and (6.4), f(w;) =1 for j =1,...,s. Since
|pk] is relatively prime to I, f is trivial on pg. It follows that f is trivial
on Ex = UNKX. So, f defines a homomorphism f:U/Ex — C; which
we compose with the isomorphism UK*/K* = U/Ek to get a continuous
homomorphism f:UK*/K* — C;.
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Part C. (Claim: T} KX NUK* = U'KX - [T0—, (1))

Indeed, as p; = al(af)™!, by (5.2), the right hand side is contained
in the left hand side. Each element of the left hand side has the form
£ = ola = pb with a € Ig, a,b € K*, and u € U. Thus of = pba™! €
UK*. If K is a function field, then ! deg(a) = deg(u) + deg(ba™!) = 0
and hence deg(a) = 0, so that o« € I%. So, in any case o = ve[[i_; o
for some v € U, c € K*, and k; € Z, i = 1,...,r. It follows from (5.2)
that & = vi(c [T7_,(a})*) [T;—, 4% belongs to the right hand side. This
concludes the proof of the claim.

Part D. (Definition of g on IL.UK* /K*)

By (6.1) and (6.3), f(u;) =1,7=1,...,r. Hence, by Part C, f is triv-
ial on (ILK*NUK*)/K*. So, f’ extends to a continuous homomorphism
g: ILUK*/K* — C; which is trivial on It K*/K*, coincides with h, on
U, for each p € SU Sy, and is trivial U, for each p ¢ SN S;.

LK* —— ILUKX

ILK*NUK*X —— UK*

Part E. (Conclusion of the proof)

Finally observe that Ix /UK is a finitely generated abelian profi-
nite group (Section 1). Hence, ILUK*/I%K* is an open subgroup of
Ck/ Cé(. The latter group may be considered as a vector space over IF; and
I %U K*/K* has a closed complement in it. So, g extends to a continuous
homomorphism h: Cx — Cj. N

LEMMA 6.2.  Suppose that the central embedding problem (3.1) does
not split. Assume that {§ ¢ K. If the central embedding problem (3.1)
has a solution g, then (3.1) also has a solution ¥: G(K) — G for which
Ram(y) C Ram(p) U S;.

Proof. Let S = Ram(tp) ™ (S1 URam(p)). If p € S, then p(Iy) =1
and therefore ¥o(fp) < C). (Actually, as p € Ram(vy), we have 1)p(I,) # 1
and therefore ¢o(Iy) = C;.) The reciprocity law (2.3) associates with o]z,
a continuous homomorphism hy: Uy, — C;. By Lemma 6.1 there exists a
continuous homomorphism h: Cx — Cj such that h|y, = hy for each p € S
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and h(Uy) = 1 for each p ¢ SU S;. Apply again the reciprocity law to
obtain a continuous homomorphism 7: G(K) — Cj such that 1|5, = oy,
for each p € S and n(Ip) = 1 for each p ¢ SU S;. Consider the solution
¥ =n"1-9 to (3.1). Then, ¥(Iy) = 1 for each p € SU[P (Ram(poUS1))].
Hence, Ram(¢) C (P~ S) N [Ram(tg) U S1] € Ram(p) U Sy, as desired. []

§7. Scholz solution of a nonsplitting embedding problem

The last step in the solution of embedding problem (3.1) is to multiply
the solution which Lemma 6.2 gives with a homomorphism n: G(G) — C;
such that the resulting solution will be n-Scholz.

LEMMA 7.1. Let S be a finite set of primes of K which contains Sy.
Let L be a finite l-extension of K and let n be a positive integer. For each
p €S let hy: K — C; be a homomorphism. Suppose that §; ¢ K.

Then there exists a prime q of K and there exists a continuous homo-
morphism h: Cg — C; such that

(a) g € S and L(Gn) € Ky,
b) h|K>< = hy for eachp € S,

(
(c) h(Ug) = C,
(d) h(Up) =1 for each p ¢ SU {q}.

Proof. We break the proof into five parts.

Part A. (Reduction of the lemma to constructing a homomorphism g: I s/
Ks — Cp)

Let (Kg : ng) = [%. Choose generators az,...,as for Kg modulo ng.
For each q ¢ S we can decompose Ik g as

Iks =[] B xUsx [ Up
pes pgSU{a}

Use a bar to denote the reduction of elements and subgroups of Ix s modulo
I }(’ g- In particular!

(7.1) fK,San—g‘xﬁqx I o

peS pgSU{q}

Do not confuse K_; = Ky /(Ky ) with the multiplicative group of the Ky of the
residue field Ky, for p ¢ Po.
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and
(7.2) K5= <dl,...,ﬁs>

Also, hy: K, — C; induces a homomorphism hyp: K¢ — Ci. Then Ik,5/Ks
= (Ix,s/Tk 5)/ (Kslk g/I% ) is a quotient of Cx = Ix s/Ks (See (1.5)).
Hence, it suffices to find a prime q of K which satisfies (a) and to construct
a homomorphism g: J, k,s — Cj such that

(7.3a) g[Ep;(— =hy, foreachp€ S,
(7.3b) 9(Uy) = Ci,

(7.3c) g(Uy) =1 foreach p ¢ SU{q}.
(7.3d) g@)=1 fori=1,...,s.

By (7.1) and (7.3), g will induce a homomorphism §: I 5/Ks — C; which
will compose with the canonical homomorphism Cx — I K,S/R' s to the
desired homomorphism h.

Part B. (Presentation of @; as an idele)

For each ¢ between 1 and s and each p let a;, be a; considered as an
element of K, and let

(7.6) b = H hyp(asp)

pes

If q satisfies (a), then aq,...,a,,( € Uy and Uy = C; (Lemma 4.1). Choose
a generator %, of U;. For each 7 there exists then 0 < 3; < I such that

Qiq = ﬂg". The representation of @; as an idele will therefore take the form:

(7.7) ai=[Jaw-af- [ aw
pes pESU{p}

Conditions (7.3a) and (7.3c) force that g(@;) = h(a;) for p € S and
g(aip) =1 for p ¢ SU{q}. Condition (7.3b) is equivalent to g(@,) # 1. We
have therefore to choose q such that (a) will hold and to define g(iq) as a
nonzero element of C; such that (7.3d) will be satisfied.

If6; =1fori=1,...,r we may use the Chebotarev density theorem
to choose q ¢ S such that

(7.8) N = L(¢m,ar, ..., /ag) C K.
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In particular (a) holds and a,q € Ué so that §; = 0 for i = 1,...,s. We
therefore define g(@y) to be a generator of C; and derive from (7.7) that
g(a;) = ;- g(uq)? = 1, so that (7.3d) holds.

Part C. (The main case)
We may and we will from now assume that

(7.9) 6 #1

Under this assumption there exists 0 < &; < [ such that in C;
(7.10) 5 =6, i=12...,s

In particular e; = 1. Define

(7.11) by = a; and b; = a;/af’, fori=2,...,s.

As aq,...,as are multiplicatively independent modulo Kg, so are by, ..., bs.
By Lemma 5.2, L(Cjn, /1), ..., L((n,/bs) are linearly disjoint fields of de-
gree | over L((jn).

Part D. (Choosing q)

Part C allows us to choose 0 € G(N/L((»)) with o\/a; = (\/a1 and
oV/b; = /b, i=2,...,s.

Chebotarev density theorem gives a prime q ¢ S such that (LV_Q_K) =
Con(c). Thus, L({in) € K4 but Kq((n,/a1) is an unramified extension of
K, of degree [. In particular a; € Uy ~ Ucll. On the other hand b; € Ué and
therefore, by (7.11)

(7.12) diq = a?q 1=2,...,8.

Part E. (Definition of g)
By Part B, a1q = ﬂ?q with 0 < 8 < [. We may therefore define g(u,)
as the element of C; that satisfies

(7.13) g(ig)’ = 67

In particular g(ig4) # 1. By (7.12), @iq = ﬂgs", 1=2,...,8. Ase; =1 the
latter equality also holds for ¢ = 1. This gives (7.7) the following form:

(7.14) a; = [Jaw-af™ ] aw

pes pgSu{q}
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Apply g on (7.14) and use (7.3a), (7.3c), (7.6), (7.13), and (7.10) to get

that
9(a;) = (H 9(6‘%)) - g(ug)’ = 657 = 1.
pes
So (7.3d) holds and the proof is complete. 0

LEMMA 7.2.  Suppose that (3.1) is a central embedding problem such
that p is an n-Scholz epimorphism which respects the local data {p, = aopy, |
p € So}. Suppose further that {; ¢ K and that (3.1) has a solution 1
such that Ram(y) U S; = Ram(p) U S;. Then there exists a prime q ¢
Ram(vy)USoUSy at which p totally decomposes and there exists an n-Scholz
solution ¢: G(K) — G to (3.1) which respects the local data {p, | p € So}
such that Ram(p) U Sy = Ram(v) U {q} U So.

Proof. Let L (resp., L') be the fixed field of Ker(p) (resp., Ker(¢)))
in K,. For each p € S = Ram(¢)) U Sp U S; we define a homomorphism
np: Dy — C as follows:

If p € (Ram(yp) ~ Sp) U S, then p € Ram(p) U S;. Choose a lifting of
Froby to an element o, of Dy. Since p is n-Scholz, we have a o ¥(op) =
p(op) € p(Dyp) = p(Iy) = aoY(I,). Hence, there exists 7 € I, and v, € C
such that 1 (oy) = 7,9 (7). Replace oy by 0,77}, if necessary, to assume
that ¥(oy) = vp. Now define a homomorphism 7, from (Froby) = Dy /I, =
Z to C; by 7(Froby) = v, ! Then compose 7lp, with the canonical map
Dy — Dy /I, to a homomorphism n,: Dy — C). It satisfies

(7.15) np(Ip) =1 and ny(0p) = (0p) .

If p € So, then a0 9|p, = pp = a0y Hence @y = ny - |p, with
a map np:Dp, — (). Since Cj is contained in the center of G, 7, is a
homomorphism.

Lemma 7.1, applied to L’ instead of to L and the reciprocity law (2.3)
supply a prime q € P and a continuous epimorphism 7: G(K) — C] such
that

(7.16a) q ¢ S and L'((;n) C Kg; in particular ¢(Dg) = 1,
(7.16b) n|p, = ny for each p € S,
(7.16¢c) n(Iy) = Cj, and
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(7.16d) n(Ip) =1 for each p ¢ S U {q}.

We prove that ¢ = n-¢: G(K) — G satisfies the requirements of the
lemma. To this end, let p be a prime of K. We have to prove that if p ¢ Sy,
then ¢(Ip) # 1 if and only if ¥(Ip) # 1 or p = q. In addition, if p(Iy) # 1
or p € Sy, then ¢(Iy) = ¢(Dy) should hold. Finally, we have to prove that
¢|p, = @p for each p € Sy. We distinguish between several cases:

Case A. (p € (Ram() ~ Sp) U 1)

Then, by (7.15), ¢|r, = nl1, - ¥l1, = ¥l1,. So, ¥(Ip) # 1 if and only if
o(Iy) # 1. Also, by (7.15) and (7.16b) ¢(op) = ny(0p)¥(0p) = 1. Hence,
@(Dp) = ©((op, Ip)) = o(Ip).

Case B. (p € Sp)
By (7.16b), ¢|p, = mp - ¥|p, = @p. So, @ respects the given local data.

Case C. (p=1q)

By (7.16a), ¥(Dq) = 1 and hence, by (7.16¢c), ¢(I;) = C;. Also, for
each o € Dy we have (o) = n(0)-1 € Cj. Hence C) = ¢(I) < ¢(Dyq) < C).
So, ¢(Ig) = ¢(Dq)-

Case D. (p ¢ SU{q})
Then |7, = |1, - Y|, = 1.
In each case all the requirements are fulfilled. 0

We combine Lemmas 4.2, 4.3, 6.2, and 7.2:

PROPOSITION 7.3. (Solution of an embedding problem) Let K be a
global field and let | # char(K) be a prime such that {; ¢ K. Let Sy be
a basic set of primes (Data 1.1), let n be a positive integer, and let Sy be
an n-exeptional set of primes (Data 5.6). Consider an embedding problem
(3.1) for G(K) for which G is an l-group of exponent I". Let {¢p | p € So}
be a local data for G and n. Suppose that p is an n-Scholz epimorphism
which respects the local data {a o @y | p € So}. Then there exists a prime
q ¢ Ram(p)USgU S, and there exists an n-Scholz solution ¢ for (3.1) which
respects the local data {¢p | p € So} such that

(7.17) Ram(p) U Sy U S; = Ram(p) U {q} USpU Sy

THEOREM 7.4. (Realization of I-groups) Let K be a global field and
let I # char(K) be a prime such that ( ¢ K. Let So be a basic set of
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primes (Data 1.1), let m < n be positive integers, and let S; be an n-
ezeptional set of primes (Data 5.6). Consider a group G of order I™ and
a local data {@p: Dy — G | p € So} for G. Then K has a finite Galois
extension L which is n-Scholz such that G(L/K) = G, for each p € S
the map res: Dy — Dy(L/K) coincides with ¢p, and there exist m primes
q1,---,qm € P\ (So U S1) such that

(3.18) Ram(E/K)USOUSl:{ql,...,qm}USouSl.
In particular, if each p € Sy completely decomposes in L, then
(3.19) m < |Ram(L/K)| < m + rank;(K) + ranke (K).

Proof. Suppose without loss that m > 1 and embed C) in the center
of G, let G = G/Cy, and let a: G — G be the canonical map. Induction on
the order of the group gives an n-Scholz epimorphism p: G(K) — G which
respects the local data {a o ¢y | p € So} such that |[Ram(p) \ (So U S1)| =
m — 1. This creates an embedding problem (3.1). Proposition 7.3 supplies
an n-Scholz solution of this problem such that (7.17) holds. Conclude that
(7.18) is true. As |S;| = rank;(K) + rank.,(K), this gives the estimates
(7.19). U

Ezample 7.5. (Necessity of many ramified primes) We prove in this ex-
ample that if L/K is an [-elementary abelian extension, then Ram(L/K)
must be ‘big’. More precisely, we compute a constant ry such that if
[L: K]=1" and ! is unramified in L, then |Ram(L/K)| > r — ro.

Indeed, let T be a finite set of m primes which is disjoint from P; U P
and let S = P,UP,UT. Let r be the maximal integer for which K admits a
Galois extension N which is unramified outside S such that G(N/K) = CJ.
Class field theory suggests a bound on r which does not depend on 7.

CLAaM. The following inequalities hold for a number field K:
(7.20a) r < [K : Q]+ |Py| + rank;(K) +m, if | # 2;

(7.20b) r < [K : Q] + |P2| + #real archimedean primes + ranky(K) + m, if
l=2

(7.20c) r<14m, if K=Q and | # 2,
(7.20d) r=24+m,if K=Q and | =2,
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The following inequalities hold for a function field K:
(7.20e) 7 <1+ rank)(K)+m, if K is a function field,
(7.20f) r<1+4+m, if K =F,(t).

Indeed, let V = Hp¢ s Up. By the reciprocity law (2.3), r is the maximal
integer for which there exists a homomorphism h: Ix — C] which is trivial
on VK*. As V < U (in the notation of Section 1), we have the following
short exact sequence

1 — UK*/VK* — Ix/VK* — CI(K) — 1.

Observe that UK /V K™ is a homomorphic image of U/V & [[ s Up.
Hence

r = dimg, (Ix /VK™)/(Ix /VK")
(7.21) < dimp,(UK*/VK*)/(UK*/VK*)! + dimg, CI(K)/CI(K )’
<Y " dimg, U,/Uj + dimg, CI(K)/CI(K)".
- peS

For each p € P; the dimension of U,,/Ué over F; is [Ky : Q] +1if € K,
and [Kp : Q] if §; ¢ Kp. If p € P, then Uy = U,l, unless [ = 2 and p is real.
In the latter case U, = R* and so dimp, Up/Ug =1. If p ¢ P,UP, then
U, = Ué unless ; € Uy, in which case dimp, Up/Ué = 1. Thus

(7222)  r< > ([Kp:Ql+1)+ (Z 1)

peP; p real
+ m + dimg, CI(K)/CI(K)’
(7.22b) < [K : Q] + |Py| + #real archimedean primes

+ dimg, CI(K)/CL(K)" +m

where the term ‘#real archimedean primes’ appears only if [ = 2.

If K is a number field, then dimg, C1(K)/Cl(K)" = rank;(K). If | # 2,
then we can drop 3, ., 1 from (7.22b). So, (7.20a) and (7.20b) hold.

If K = Q, then CI(K) = 1 and therefore dimy, CI(K)/CI(K)! = 0. If
in addition, [ # 2, that {; ¢ Q; and therefore P, = {l} contributes 1 to the
sum Zpe g dimg, Uy/ Ué. If instead, [ = 2, then #real archimedean primes
= 1. This gives (7.20c) and (7.20d).

https://doi.org/10.1017/50027763000025046 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000025046

40 W.-D. GEYER AND M. JARDEN
If K is a function field, then |P;| = |Ps| = 0 but
dimy, CI(K)/CI(K)! = rank;(K) + 1.

This gives (7.20e). Finally, if K = [Fy(t), then rank;(K) = 0 and so (7.20f)
is true.

Thus, in each case, there exists a constant rg that does not depend on
m such that r <79+ m. If L/K is a Galois extension with G(L/K) = C]
and we take T' = Ram(L/K) \ P, then we find that r — ro < |T'|, which is
somewhat stronger than claimed.

Consider now the case in which [ # 2 and K = Q. Then ry = 1
and Q has a unique extension Ly of degree [ in which [ ramifies. It is
the unique extension of degree ! which is contained in Q((2). No other
prime execpt [ is ramified in Lg. If L is a Galois extension of Q with
G(L/Q) = C7 which does not contain Lo, then G(LLo/Q) & C;*'. Hence,
by the preceding paragraph |Ram(LLy/Q) ~P;| > r. Since Ram(L/Q) and
Ram(Lo/Q) = {l} are disjoint, we conclude that Ram(L/Q) contains at
least r elements.

Similarly, let L be a Galois extension of F4(t) with Galois group iso-
morphic to C] which is regular over FF,;. Then L is disjoint from the unique
unramified extension F of degree | of Fy(t). Asin the preceding paragraph,
[Ram(L/Fy(£))] > r.

Thus, if K = Q or K = F,(t), Theorem 7.4 gives the most economic
realization of C] in terms of number of ramified primes. 0

§8. Estimates

In this section we consider the case where K is a function field of one
variable over the field Ky = [y, where ¢ is a prime power. Our goal is to
estimate some of the invariants of the field L of Theorem 7.4.

Data 8.1.  We fix the following notation for the whole section:

t = transcendental element
over K which we also consider as a variable
K = finite separable extension of Ky(t) which is regular over Ky
gi = the genus of K
d=[K: Ko(t)]
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| = prime element # char(K)

n = positive integer
dp = [Ko(Gn) : Ko
So = basic set for K (Data 1.1); put so = |Sol;
N* = basic extension of K (Definition 5.4)

S1 = exceptional set of primes for K.
Note that s = |S1| = rank;K (Data 5.6).

LEMMA 8.2. Let N be a finite Galois extension of K. Denote the
algebraic closure of Ko in N by K. Let C be a conjugacy class in G(N/K),
and let ¢ = |C|. Let k be a multiple of [K(, : Ko|. Denote the number of
primes q of K which do not ramify over Ky(t) nor in N, are of degree k,
and such that (N{TK
that

) = C by v. Let vy be a positive integer and suppose
(8.1) klogg > max{2log(2gN 4 (d+ D[N : K] +3),
I/()k . /
4log(39k + 1),2log( . [N: K ])}
then v > vg.
Proof. Let K' = KK}y and let m = [N : K']. By (8.1), ¢*/2 > vokm/c

and ¢*/2 > 2gn + 2m + 3. Also, (13.1) holds with K and N, respectively
instead of ¥ and F. Hence, by Corollary 13.5

c 2c
V>%'qk~~k—a~(m+gjv+1)-qk/2
= C k2 k/2 _
- = (q 2(9N+m+1))

>1-1=u.
This proves our claim. 0

For a finite set T of primes of a function field K/ K, we write

deg(T) =) _ deg(p)

peT
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LEMMA 8.3. Let L/K be a finite tamely ramified extension of function
fields of one variable over the same constant field. Then their genera satisfy
the following inequality:

291, — 2

(8.3) L K] < (29K — 2) + deg(Ram(L/K))

Proof. The Riemann-Hurwitz genus formula for L/K is

(84) 20,-2=[L:K](29xk—2)+ Y Y _(e(B/p) - 1)deg(P)

peRam(L/K) Blp

[FrJ, p. 24]. In the second sum P ranges over all prime divisors of L which lie
over p and e(B/p) denotes the relative ramification index. We also denote
the relative residue degree of /p by f(B/p). Then

S S (e(B/p) - 1) deg(P)

peRam(L/K) Blp

< Y (X em/mfep/e) deso)

peRam(L/K) B/p

= Y [L:K]deg(p)
peRam(L/K)

= [L : K]deg(Ram(L/K))

Hence, inequality (8.3) follows from (8.4). 0

LEMMA 8.4. Let T be a finite set of primes of K. Suppose that ; ¢
K. Let L/K be a finite l-extension such that L is regular over Ky and
let S = Ram(L/K)UT. Consider elements ai,...,ar of Kg which are
multiplicatively independent modulo K fg and let N = L((n, /a1, ..., Yar).
Then

(8.5) lzr?_é;v—[(i] < 29K — 2+ deg(S).

Proof. We apply Lemma 8.3 to N/K ((;=) instead of to L/K.

Let K = Ko((n), K’ = K({jn), and L' = L((jn). Then K'/K} is a
regular extension which is obtained from the function field K/Kj by a finite
separable extension of the field of constants. Hence g = gi [Deu, p. 132].
Let S’ be the set of primes of K’/K], which lie over S. Since each prime of
K’ is unramified over K{), we have deg(S’) = deg(S) [Deu, 132].
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By Remark 5.3, N is a regular extension of K and by Lemma 5.2,
[N : K'] =1I"[L : K]. Since [ is relatively prime to char(K), the extension
N/K' is tamely ramified. If a prime p of K’/K|} does not belong to S
and P is an extension of p to L', then vg(a;) = vp(a;) = 0. Hence, P is
unramified in L'(\/a;) (a consequence of [CaF, p. 32, Prop. 1]) and therefore
p is unramified in N. Thus, Ram(N/K’) C §'.

It follows that (8.5) is a consequence of (8.3). U

LEMMA 8.5. Let T be a finite set of primes of K. Suppose that
G ¢ K. Let L/K be a Galois extension of degree I™ such that L is reg-
ular over Ko and let S = Ram(L/K)UT. Consider elements a1,...,as

of Kg which are multiplicatively independent modulo K é‘ and let N =
L((n, /a1, ... ,/as). Suppose that k is a multiple of dp, such that deg(p) < k
for each p € S. Let

(8.6) p=3grx +d+1+15|

and let C be a conjugacy class in G(N/K((;n)). Suppose that
(8.7) klogq > 4log8 + 4(m + s)logl + 41og .

Then there exists ¢ € P\ S such that deg(q) = k and (%) =C.

Proof. Let K| = Ko(¢n) and K’ = K((j»). By Lemma 5.2, [N : K] =
[m™+s If m+s=0,then N = K((j»). Then gy = gx and the constant m of
Lemma 8.2 becomes 1. Let v be the number of q € P such that deg(q) = &

and (ﬂéﬁ) = C. We have to prove that v > |S|. Indeed, the inequality of

Lemma 8.2 simplifies to v > gkk—/z(q’“/2 — 2gx — 2). Since ¢*/2 > 28/2 > k
and ¢*/2 > p? (by (8.7)), we have v > p2 — v > |S|.

So, assume from now on that m + s > 1. By Lemma 8.2, it suffices to
prove (8.1) with vy = |S].

The inequality kloggq > 4log(2gx + 1) follows from (8.6) and (8.7).
Hence, it suffices to prove

k
(8.8) 5 logq > log(2gw + (d + 1)I™** + 3)

(8.9) glogq > log(kI™*5|S)).
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By Lemma 8.4 and by the assumption ‘deg(p) < k for each p € S’ we
have

(810) 20y — 2 < I™*(2gx — 2+ deg(S)) < I™*(2gx — 2+ KIS]).
Since 5 < 2[™*5, (8.10) gives
(8.11) 29N + (d+ )™ +3 <I™5(2gk + k|S| +d +1).

Nest observe that l-o—g—m— is a decreasing function for £ > e and that

k’—‘iﬁl—e = 1%5—2. Hence, for k£ > 16, logk < %10g2 < glogq. If £ <16, then

by (8.6), # > 2 and then by (8.7), klogq > 4log(8u) > 4logk. Thus, in
each case logk < %log g. It follows from (8.7) that

k
(8.12) logk+ (m+ s)logl+logu < Zlogq—f— (m+ s)logl+ log u

< El + Elo = kl
_40gq 4 gq—zogQ-
Hence, by (8.11)
log(2gn + (d + 1)I™*° + 3)
< (m+s)logl+logk + log(2gx + |S| +d+ 1)
k
=logk + (m + s)logl +log p < Elogq,

which proves (8.8). Finally, (8.9) follows from (8.13) and the inequality
IS| < w. ad

THEOREM 8.6. Let K be a function field of one variable over Fy and
let So and Sy be sets of primes as in Data 8.1. Let G be a group of order
I™ and let n > m. Suppose that (; ¢ K. Then K has an n-Scholz extension
L which is regular over Fq such that G(L/K) = G, |Ram(L/K) U S;| =
m + rank; K, and each p € Sy totally decomposes in L.

Moreover, let u = 39 +d+m+ so+rank; K + 1 and let k be a multiple
of d,, such that

(8.13) klogq > 4log 8 + 4(m + rank; K) log ! + 4 log p.

Then we can choose Sy and L such that deg(p) = k for each peRam(L/K)U
S1. The genus of L is estimated by

(8.14) 291, — 2 <1™(2g9x — 2 + (m + rank;(K))k).
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Proof. Denote F; by Ky. Assume without loss that m > 1. Embed
C; in the center of G and let G = G/C;. By induction, K has an n-Scholz
extension L which is regular over Ko such that G(L/K) = G, and the
above conditions are satisfied for m — 1 instead of for m. Now consider the
following central embedding problem

(8.15) l
1 o G -2 G(LJK) ——1

Lemmas 4.2 and 4.4 give a solution 9 to (8.15), which however, need not
be n-Scholz. Use Lemma 6.2 to replace v by another solution, if necessary,
to assume that Ram(¢) C Ram(L/K)US;. Then Lemma 7.2 gives a prime
q ¢ SoUS; URam(L/K) and an n-Scholz solution 1 to (8.15) such that
Ram(p) = Ram(v¢) U {q}. The fixed field L* of Ker(yp) is an n-Scholz
extension of K with G(L*/L) = G and Ram(L*/K) = Ram(¢) U {q}. In
particular L*/L ramifies. Hence, as L is regular over Ky, so is L*.

Now suppose that (8.13) holds. Then apply Lemma 8.5 to choose the
exceptional set S; with primes of degree k. Here we follow the construction
of Data 5.6 with r = rank;(K) and s = ranke (K) = 0. Let N* and w; be
as in Lemma 5.5. Then we choose a generator 7; for G(N*/N;) and apply
Lemma 8.5 to choose p} € PNRam(N*/K)US, such that (N;{K) = Con(o;),

k3

1=1,...,r.
In order to choose q ¢ SoUS; URam(L/K) as in Lemma 7.2 we have to
apply Lemma 7.1. The latter Lemma chooses generators aq,...,as for Kg

modulo Kls, puts N = L({n, /a7, . ..,\/as) and chooses 0 € G(N/L({n)) in
a special way (Part D, after the proof). Then it applies the Chebotarev den-
sity theorem to choose q € P\ S such that either (ﬂé—fﬁ) =1 (in Part B) or

(E{]—K) = Con(o) (in Part D). Since (8.13) holds, we may apply Lemma 8.5,
which is an effective version of the Chebotarev density theorem, and choose
q such that in addition to the above, deg(q) = k.

Finally, (8.14) follows from Lemma 8.3. U

§9. Field of rational function

The case where K = [Fy(t) is simpler than the general one. In this case,
in the notation of Data 8.1, we have
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(9.1)d =1, hg = 1, N* = F4(t,{n), Ram(N*/K) = 0, rank;(K) = 0,
S; =0, and gxg = 0. We take Sy as a finite set of primes of K/F,
which contains (¢)e.

Note that {; ¢ K is equivalent to I { ¢ — 1 and [ # char(K) is equivalent to
[t q. Thus Theorem 8.6 specializes in this case to the following result:

THEOREM 9.1. Let q be a prime power and let | be a prime such that
1t (q—1)q. Let G be a group of order I™ and let Sp be a finite set of primes
of Fy(t) which contains (t)oo. Then Fq(t) has an n-Scholz extension L which
is regular over Fy such that G(L/F,(t)) = G, |Ram(L/F4(t))| = n, and such
that each p € Sy totally decomposes in L. Moreover, let k be a multiple of
d, such that klogq > 41log(81"™(1 + n + |So|)). Then we can choose L such
that deg(p) = k for each p € Ram(L/K) and 2g;, — 2 < I"(nk — 2).

By the primitive element theorem, there exists a Galois polynomial
f € Fqlt, X] such that G(f(t,X),Fq(t)) = G. The degree of f in X is of
course I™. The following result will enable us to choose f with bounded
degree in t.

LEMMA 9.2. Let Ky be an arbitrary field and consider a Galois ez-
tension L of K = Ky(t) of degree d which is regular over Kp.

(a) Suppose that (t)so totally decomposes in L. Let p be a prime divisor
of L/Ky which divides (t)oo and let z be an element of L such that
(z)oo = kp for some positive integer k. Then z is integral over Ky[t],
L = K(z) and f = irr(z, K(t)) has the form

(9.1) Ft,X) =X+ a () X4+ + ag(t).
with a; € Ko[t] and deg(ai(t)) < deg(ai(t)) =k, i=1,...,d.

(b) Conversely, suppose that x € L and that f = irr(z, K(t)) is given
by (9.1) such that a;(t) € Kolt], deg(ai(t)) > 0, and deg(a;(t)) <
deg(ai(t)), i =1,...,d. Then (t) totally decomposes in L.

Proof of (a). Denote the normalized valuation of L/K{ that corresponds
to p by v. Then v(z) = —k and w(z) > 0 for each other valuation w of
L/Ky. In particular, since v # v, we have v(z° ') = v°(z) > 0 for each
o € G(L/K), o # 1. Hence 2o # x for each o # 1, and therefore
L =K(t,z).
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In addition w(z) > 0 if w(¢) > 0. Hence z is integral over Ko[t]. In
particular f(t,X) = irr(z, K(t)) € Kolt, X] is a monic polynomial in X.
Since L/K is a Galois extension, f(t,X) decomposes into distinct linear
factors over L:

(9.2) &, x)=J[(x-2°

oceG

A comparison of (9.1) and (9.2) gives:

(9.3) ai(t) = (1" Y []=°

SEP; oeS
where P; is the collection of all subsets of G of cardinality :. Note that v
is unramified over K. Hence the restriction of v to K coincides with the
valuation vy, that corresponds to (t)o. Since o = 1 appears at most once
in each of the summands ] .5 27, and since v(z?) = 0 for o # 1, this gives

—deg(a;(t)) = voo(ai(t)) = v(a;(t)) > mm Z —k.
UES

Also, —deg(ai(t)) = vo(a1(t)) = v(~z — 2, 27) = v(z) = —k, as
desired.

Proof of (b). Let k = deg(a1(t)). Then z = z/t* satisfies
(9.4) 204 b ()20 + by (8) 22 4 by(t) =0,

where b;(t) = a;(t)/t**. Asin (a), choose an extension v of v, to a valuation
of L, let e = e(v/vs) and let p be a prime divsior of L/K( that corresponds
tov. Then v(b1(t)) = 0 and v(b;(t)) = e(ik—deg(ai(t))) > 0fori =2,...,d.
Hence reduction of (9.4) modulo p gives 227 1(2+b) = 0 for some 0 # b € Kp.
By Hensel’s Lemma, h(Z) = Z% + b1 (t)Z% 1 + ... + b,(t) has a root in the
completion Ko((t71)) of K with respect to (t)eo. Since L = K (z) is Galois
over K, all roots of h(Z) are in Ko((t7!)). Conclude that (t)o totally
decomposes in L. 0

LEMMA 9.3.  Let Ky be an arbitrary field and consider a Galois exten-
sion L of K = K(t) of degree d which is reqular over Kq. Suppose that ()
totally decomposes in L. Then there exists x € L which is integral over K|t]
such that L = K(z) and f = irr(z, K(t)) = X%4-a1 () X 4 - 4aq(t) with
a; € Kolt] such that 0 < deg(a1(t)) < g + 1 and deg(a;(t)) < deg(ai(t)),
i=1,...,d.
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Proof. Let G = G(L/K). By assumption (t)oo = ), b’ for some
prime divisor p of L and p° # p” if ¢ # 7. In particular deg(p) = 1.
For each k consider the vector space L(kp) = {z € L | (z) + kp > 0}
over K. We have dim £(0 - p) = 1 and dim £((2g — 1)p) = g [FrJ, p. 20],
L((k—1)p) C L(kp) and dim £(lp)—dim L(kp) < |~k if | > k [FrJ, Chap. 2,
Exer. 12]. In particular, dim £(kp) = 1 implies k < g. Hence, the first k for
which dim £(kp) = 2 satisfies k < g + 1. For this k there exists x € L such
that (z)o, = kp. By Lemma 9.2, z satisfies the requirements of the present
lemma. []

§10. Bounds

The goal of this section is to realize a given I-group G over Fy(t) with g
large with a bound on all parameters involved in the realization. This will
enable us to use model theory and to realize G over K(t) for any pseudo
finite field K. In order to do this, we need to speak about the set of
ramified primes in the first order language of fields. So, we have to express
discriminants of field extensions in an elementary way.

Let R be a Dedekind domain with a quotient field K, let L be a finite
Galois extension of K with Galois group G = {o1,...,04}, and let S be
the integral closure of R in L. The discriminant of S/R is the ideal
Disc(S/R) of R which is generated by all determinants Det(o;w;)? where
wi,...,wqg € S are linearly independent over K. If p is a prime ideal of
R, we can compute the p-component of the discriminant by localizing at
p. That is Disc(S/R)R, = Disc(Sy/Ry) [La2, p. 65]. The set of prime
ideals of R which ramify in L coincides with the set of prime divisors of
Disc(S/R) [CaF, p. 22]. In particular, if R = Kj|t] for some field K, and
(t)oo is unramified in L, then Ram(L/K) consists of the prime divisors of
Disc(S/R).

The discriminant of a monic polynomial f € R[X] is given in terms
of its roots 1, ..., o, by the formula Disc(f) = (—1)4@-1/2 [y (i — ).
It is an element of R and equals (—1)44=D/2 N /k f'(x1). One can compute
Disc(f) in terms of the resultant of f and its derivative by the formula
Resultant(f, f') = (=1)%4~1D/2Disc(f) [La4, p. 211]. Resultant(f, f') is a
(2d — 1) x (2d — 1) determinant whose entries are the coefficients of f and
f'. The only nonzero entries in the first column of this determinant are the
leading coefficients of f and f’. In the case where R = Kj[t], this leads to
an estimate on the degree of Disc(f):
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(10.1) Suppose that R = Kp[t] and char(Kp) t d. If f € Kplt, X] is a monic

polynomial of degree d in X and deg,(f) < m, then deg(Disc(f)) <
m2d—2.

If z is integral over K, L = K(z), and f = irr(z, K), then Disc(f) is a
multiple of Disc(S/R). If in addition S = R][z], then Disc(S/R) = Disc(f)R
[CaF, p. 17]. This situation occurs often in the local case as Lemma 10.1
reveals. Together with the local nature of the discriminant, this gives us a
tool to handle disciminants.

LEMMA 10.1. Let R be a discrete valuation ring of a field K with
a mazimal ideal p and a perfect residue field K. Let L be a finite Galois
extension of K with |K| > [L : K]. Denote the integral closure of R in
L by S. Then there exists x € S, such that S = R[z]. Moreover, S
has only finitely many nonzero prime ideals q1,...,q,. If ' € S satisfies
' =zmodg?, i=1,...,r, then S = R[z].

Proof. Denote the valuation of K that corresponds to R by v. The
ring S is a finitely generated R-module [La2, p. 6] and has only finitely
many prime ideals ¢, ..., q,. They correspond to the extensions vy,..., v,
of v to L. In particular each g; is a principal ideal [La2, p. 15].

For each i let K; be the decomposition field of g; over K and let L; be its
inertia field. Since K is perfect, the residue fields satisfy K; = K = R/p,
L; = S/q;, and [L; : K] = [L; : K;] [Ser, p. 32]. For the same reason
there exists y; € SN L; with L; = K[g;]. Then g; = irr(y;, K;) satisfies
gi = irr(%;, K) and in particular g;’(4;) # 0. Observe that g; € (SN L;)[X].

We may replace each y; by y; + a with a € R. Since g; has [L; : K]
conjugates over K and since Y . ,[L; : K;] < [L : K] < |K|, we may
assume, without loss, that ¢, ..., J, are pairwise nonconjugate over K. In
other words, g1, ..., g, are distinct.

Choose now m; € S such that v;(m;) = 1 and let z; = y; + 7;. Then
gi(z:) = g.(ys)m; + ¢; for some ¢; € S with v;(¢;) > 1. Hence v;(g;(z;)) = 1.
Since R is v;-dense in SN L;, there exists h; € R[X]| such that v;(h;—g;) > 1.
Then v;(hi(z;)) = 1.

Use the chinese remainder theorem to choose z € S such that v;(z —
x;) >1,i=1,...,r. Then x modulo p; = q; N\ R[x] generates L;. Also, with
n, = hi(z) € R|z] we have v;(w]) = 1. It follows that g; = /S = p;S and
hence p1,...,p, are distinct. Since qi,...,q, are the only nonzero prime
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ideals of S and q; N R[z] = ps, q; is the only prime ideal of S which lies
over p;. Also, as S/R|[z] is an integral extension, each nonzero prime ideal
of R[z] lies under some q;. Thus py,...,p, are all nonzero prime ideals of
R]z].

It suffices now to prove that S = R[z|. To this end consider the local
rings R[z|; = R[z]p, and S; = Sy,. Then S; is the unique valuation ring of
L that contains R[z];. It follows that S; is the integral closure of R[z]; in L
[La3, p. 14]. Hence S; is a finitely generated R[z];-Modul. Also, 7] generates
the maximal ideal of S; and 7} € R[z];. By construction, S;/n!S; = L; =
Rz];/piR[z];. It follows that S; = Rz]; + 7,S;. By Nakayama’s Lemma,
Si = R[z];. Conclude that S =(_; Si =i, R[z]; = R[z]. 0

LEMMA 10.2. (Strong approximation theorem) Let L be a function
field of one wvariable over a field Ko. Let Q be a finite set of primes of
L/Ky and let qoo be a prime of L/ Ky which does not belong to Q. Suppose
that for each q € Q we are given an element yq € L and a positive integer
mgq. Suppose also that m satisfies

(10.2) m - deg(qoo) > 291, — 2+ Z mgq deg(q).

9€Q
Then there exists y € L such that vq(y—yq) > mq for each q € Q, vg.. (y) >
—m, and vp(y) > 0 for each prime p ¢ S U {do}.

Proof. Consider the divisor a = Mmoo — Y ,comqq of L/Ko. In the
adele ring A of L/Kj consider the vector space

A(a) = {a € A | vy(a) + vp(a) > 0 for every p}.

By (10.2), deg(a) > 291 — 2. Hence, by the Riemann-Roch theorem,
dim(A/(A(a) + L)) = 0 [FrJ, Sec. 2.6]. It follows that A = A(a) + L.
Define n € A by nq = yq for g € Q and 1, = 0 for p ¢ Q. Then there
exists y € L such that y —n € A(a). This y satisfies the requirements of
the Lemma. O

NotaTiON 10.3. (The set Fi(L/K)) Let Ko beafield, let K = Ky(t),
let L be a Galois extension of K of degree d, and let k be a positive integer.
We define Fi(L/Kj) to be the set of all absolutely irreducible polynomials

WMT,X) =X+ ¢ (T)X4 1+ 4 cq(T)
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with ¢;(T) € Ko[T] such that 0 < deg(ci(T)) < (k + d)?¢, deg(ci(T)) <
deg(c1(T)),t=1,...,d, and L = K(z) with h(t,z) =0.

LEMMA 10.4. Let Ky be a perfect field, R = Ky[t], and K = Ko(t).
Consider a Galois extension L of K of degree d > 1 which is reqular over
Ko and let S be the integral closure of R in L.

Suppose that (t)eo totally decomposes in L, char(Ky) 1 d, and |Ko| > d.
Suppose that F(L/K) contains a polynomial f(T,X) = X% +ay(T) X%+

-+ aq(T) with deg(ai1(T)) = k > 0. Then the following two statements
hold:

(a) There exists g € Fy(L/K) such that
(10.3) Disc(S/R) = ged(Disc(f(t, X)), Disc(g(t, X)))R
(b) Let fi,91 € Fi(L/K) be polynomials such that
1 (t) = ged(Disc(f1 (t, X)), Disc(g (¢, X)))
divides Disc(h(t, X)) for each h € Fi(L/K). Then Disc(S/R) = di(t)R.
Proof of (a). The total degree of f(T,X) is k + d — 1. Hence, by [FrJ,
Cor. 4.8]
(10.4) ng—;-(k+d—2)(k+d—3)< —;—(k+d)2.

Denote the set of prime divisors of K/K which correspond to the irrre-
ducible factors of Disc(f(¢, X)) by P and note that (t)sc ¢ P. By (10.1)

(10.5) Zdeg < deg(Disc(f(t, X))) < k%42,
peEP

For each p € P consider the localization R, and Sy, of R and S, respec-
tively, at p. Then R, is a discrete valuation ring with residue field which
contains Ky, and therefore of cardinality at least d, and S, is its integral
closure in L. By Lemma 10.1 there exists y, € Sp such that S, = Rp[yp].
Moreover, let Q, be the set of prime divisors of p in L. Then, Sy, = Rp[y]
for each y € S, which satisfies vq(y — yp) > 1 for each q € Qp. Since

p= ZQEQp e(q/p)q, we have

(10.6) ) deg(q) < ) e(a/p) deg(q) = deg(p)-

9EQy 9€Qp
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Choose now a prime divsor o, of L which divides (t)oo and let m =
291 — 1+ Tpep Ygcq, 2deg(a). By (10.4), (10.5), and (10.6)

(10.7) m < (k+d)? +2k%2 < 3(k + d)*42 < (k4 d)*

By assumption, deg(qeo) = 1. Hence, by Lemma 10.2 with @ = U,cp @p
and mgq = 2, there exists y € L such that v4(y — yp) > 2 for each p € P
and each q € Qp, vq. (y) > —m, and vq(y) > 0 for each q ¢ Q U {qoo}-
Since vg(yp) > 0 for each p € P and each q € Qp, we have v4(y) > 0 for
each prime of q # qo. Hence y € S. Also, Sy, = Ry[y| for each p € P. In
particular L = K(y). Hence y ¢ K and therefore there exists a positive
integer kg < m such that (y)so = koGoo-

Let g = irr(y, K) € R[X]. Then g(¢, X) is monic and Galois in X, and
since L/ Ky is regular, g(T, X) is absolutely irreducible. By Lemma 10.2(a)
applied to y, g, and ko instead of to z, f, and k and by (10.7), (T, X) =
XO4by (T) X1+ 40y (T) with by(T) € Ko[T'] and deg(b;(T))< deg(b1(T))
= ko < m < (k+d)?? Hence g € Fix(L/K).

In order to conclude the proof of (a) recall first that the left hand
side of (10.3) divides its right hand side. To prove the other direction
consider a prime divisor p # (t)oo of K/Ky. Then we may identify p with
a nonzero prime ideal of R. If p € P, then Disc(S/R)R, = Disc(Sy/Rp) =
Disc(Rp[y]/Ry) = Disc(g(t, X))Ry. If p ¢ P, then vp(Disc(f(t,X))) = 0
and therefore vy (Disc(S/R)) = 0. Thus, in each case the value of v, at both
sides of (10.3) is the same. So, (a) holds.

Proof of (b). Again, Disc(S/R) divides both  Disc(fi(¢t, X)) and
Disc(g1(t, X)) and therefore also dy(t). Conversely, by assumption, dj(t)
divides both Disc(f(t,X)) and Disc(g(t,X)). Hence, by (10.3), di(t)|
Disc(S/R). Conclude that Disc(S/R) = di(t)R, as desired. U

THEOREM 10.5. Let q be a prime power, let G be a group of order I™
with | a prime, and let t be a transcendental element over Fy. Suppose that
1 # char(Fy), ¢ ¢ Fy, and ¢ > 1*"**. Then there exist absolutely irreducible
polynomials f, g € Fy[T, X] which are monic and Galois in X such that

(8) f(T,X) = X" + a1 (T)X" 1+ -+ + ain(T), 0 < deg(a1(T)) < ini?,
and deg(a;(T")) < deg(ar (7)), i =1,...,1",

(b) f(t,X) and g(t, X') have the same splitting field L over K =F4(t); L is
obtained by adjoining one root of f(t,X) or of g(t,X) to K,
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(c) L is a regular extension of Fy and G(L/K) = G,
(d) g € Fy(L/K), where k = deg(ar(T)),

(e) (t)oo totally decomposes in L; in particular, L has I™ prime divisors of
degree 1,

(f) gL < 3nl®™,
(g) [Ram(L/K)| = n and deg(p) = [Fq((in) : Fy] for each p € Ram(L/K),

(h) Let R = Kg[t] and let S be the integral closure of R in L. Then
Disc(S/R) = ged(Disc(f(t, X)), Disc(g(t, X)))R. Thus Ram(L/K) con-
sists of those primes # (t)oo of K/ Ky that divide both Disc(f(t, X)) and
Disc(g(t, X)).

Proof. Assume without loss that n > 1. Since (; ¢ Fy, we have [ > 3
and 2 < d,, = [Fy(¢n) : Fy] < 1™ Then ¢/ > ¢*/2 > 12427 > 81"(2 + n).
Hence, Theorem 9.1 with k = d,, and Sp = {(t)oo} gives a Galois extension
L of K with G(L/K) = G which is regular over F, such that 2g; — 2 <
I"(nd, — 2), |Ram(L/K)| = n, deg(p) = d,, for each p € Ram(L/K) and
(t)so totally decomposes in L. Hence g;, < 3nl®" and so (f) is true. By
Lemma 9.3, there exists € L which is integral over F,[t] such that L =
Fq(t,z) and f(t, X) = irr(z, K) satisfies (a). In particular f(¢,X) is monic
and Galois in X. Since L/F, is regular, f(T, X) is absolutely irreducible.

Since ¢ > 4"t > " = [L : K|, Lemma 10.4, with d = " gives an
absolutely irreducible polynomial g € Fi(L/K) such that Disc(S/R) is the
greatest common divisor of the ideal of IF[t] generated by Disc(f(¢, X)) and
Disc(g(t, X)). Since (t)oo is unramified in L this gives (h) and concludes
the proof of the theorem. g

§11. Pseudo finite fields

A field K is pseudo finite it satisfies one of the following equivalent
conditions [Ax, Thm. 9]:

(11.1a) Ky is a perfect, G(Ko) = Z, and each nonempty absolutely irre-
ducible variety which is defined over Ky has a Ky-rational point
(Thus, in the terminology of [FrJ], Ky is a perfect, 1-free PAC
field.)
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(11.1b) Every elementary statement about fields which is true in all but
finitely many finite fields is true in Kjp.

(11.1c) K is an infinite model of the theory of finite fields.

Fried and Vélklein [FrV] prove that if Ky is a PAC field of characteristic
0 and G is a finite group, then K = Kj(t) has a Galois extension L which
is regular over Ky such that G(L/K) = G. The same result without any
restriction on the characteristic follows from a theorem of Harbater [Har]
(see, [Ja2, Thm 2.6]). However, in none of these results there is a bound on
the cardinality of Ram(L/K) in terms of G. The following result suggests
such a bound in the case where K| is pseudo finite and G is an l-group such
that It char(Kjp) and (; ¢ K.

THEOREM 11.1. Let Ky be a pseudo finite field and let G be a group
of order I with a prime l. Suppose that | # char(Ky) and (; ¢ Ko. Let
dn, = [Ko((n) : Ko]. Then there exist absolutely irreducible polynomials f,
g € Ko[T, X] which are monic and Galois in X such that
(a) f(T,X) = X" + ay(T)X" 1 + -+ + ain(T), with 0 < deg(a1(T)) <

inl?", and deg(a;(T)) < deg(ay(T)), i =1,...,1%

(b) f(t,X) and g(t,X) have the same splitting field L over K = Ky(t);

(c) L 1is a regular extension of Ko and G(L/K) = G;

(d) g € Fr(L/K) where k = deg(ai(T)) (Notation 11.3) and degrg <
(%nl2n+ln)2l";

(e) g1 < gnl®™;

(f) (t)oo totally decomposes in L;

() [Ram(L/K)| = n and deg(p) = [Ko(Grr) : Ko] for each p € Ram(L/K);

(

h) Let R = Ky[t] and let S be the integral closure of R in L. Then
Disc(S/R)=ged(Disc(f(t, X)), Disc(g(t, X))). In particular Ram(L/K)
consists of the primes # (t)oo of L/Ky that divides both Disc(f(t, X))
and Disc(g(t, X)).

Proof. Let dy, be a divisor of (I—1)I""! and let 2 < k < 1nl?". Denote
the conjunction of the following elementary statements on Ky by 6(d,, k)
(see [FrJ, proof of Lemma 10.8] for the absolute irreduciblity and [FrJ,
Prop. 18.2] for the statement about the Galois group):

https://doi.org/10.1017/50027763000025046 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000025046

I-GROUPS OVER GLOBAL FIELDS 55

(11.2a) [ # char(Ky), ¢; ¢ Ko, and d,, = [Ko(¢n) @ Ko)-

(11.2b) There exist absolutely irreducible polynomials f, g€ Ko[T, X| which
are monic and Galois in X such that f(T, X) = X" +a;(T) X" 1+
<o+ i (T) with deg(a;(T)) < deg(ai1(T)) = k, @ = 1,...,1",
f(t, X) and g(t, X ) have the same splitting field L over K = Ky(t)
with G(L/K) =2 G, g € Fx(L/K), and d(t) = ged(Disc(f(t, X)),
Disc(g(t, X)) divides Disc(h(t, X)) for each h € Fi(L/K), and d(t)
has exactly n distinct irreducible divisors, each of them of degree
dp.

Let 6 be the disjunction of all the above 6(dy,k)’s. By Theorem 10.5, for
all but finitely many prime powers ¢ the statement 6, with Ky replaced
by Fg, is true in F,. Hence, by (11.1b), @ is true in Ky. So, there exist
dn, and k such that 6(d,, k) is true in Kp. In particular (a), (b), (c), and
(d) are true. By Lemma 9.2 (b), (t)so totally decomposes in L. Hence, by
Lemma (10.4a), and with the notation of (11.2b), Disc(S/R) = d(¢t)R. In
particular the primes in Ram(L/K) correspond to the irreducible divisors
of d(t). Hence (g) is true. Finally, by Lemma 8.3, 2g;, — 2 < [L: K|(—-2 +
deg(Ram(L/K)) = I"(~2 + nd,) < nl**. So, (e) is also true. U

The absolute Galois group G(F') of a field F' admits a unique normalized
Haar measure. In the following Corollary we use the expression “almost all”
with respect to this measure. For each o € G(F') we denote the fixed field
of the unique extension of o to F by F(o).

COROLLARY 11.2.  Let F be a countable Hilbertian field. Then for

almost all 0 € G(F), the field Ko = F(o) satisfies the conclusion of Theo-
rem 11.1.

Proof. By [FrJ, Thm. 18.14], F'(¢) is a pseudo finite field for almost
all o € G(F). Now apply Theorem 11.1. 0

812. Z;-extensions

We have proved that if Ky is a finite field or if Ky = F/(0) where F is
a global field, o € G(F) is taken at random, and (; ¢ Kj, then for each
l-group G there exists a Galois extension L of K = Ky(t) which is regular
over Ky such that G(L/K) = G. We then say that G is regular over K.
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If K is a function field of one variable over a finite field Ko with [ {
char(Kj), then it has no Galois extension L which is regular over Ky such
that G(L/K) = Z; [GeJ, Thm. 1.1]. In particular, Z; is not regular over
K. Since Ky has a unique extension with Galois group Z;, K has a unique
Z-extension.

Iwasaswa proves [Iwa, Thm. 2| that a number field K has at most
n = [K : Q] linearly independent Z; extensions. In particular, Z;’H is not
realizable over K. For a finitely generated field K of positive characteris-
tic [GeJ, Thm. 1.1] says that K has exactly one Z; extension. Thus the
realization results of finite [-groups do not generalize to pro-l groups.

The goal of this section is to prove an analog of these results for almost
all field F'(o), where F is a global field.

LEMMA 12.1. Let K be a function field of one variable over a field
Ky with char(Ky) # l. Let L1/K be a cyclic extension of degree | such that
Ly is regular over Kg. Suppose that Ly is contained in a cyclic extension
L,, of K of degree I™. Suppose that p is a prime of K /Ky which ramifies in
Ly. Then p totally ramifies in L, and its residue field contains Ko((rn). In
particular |Ram(L Ko/ K Kq)| > [Ko(Gr) = Ko.

Proof. Denote Ly, by L. The inertia group I,(L1/K) of p coincides with
G(L1/K). Since rest,,: G(L/K) — G(L1/K) maps I,(L/K) onto I,(L1/K),
we have I,(L/K) = G(L/K). In other words, p totally ramifies in L.

Let K, p be the completion of K at p and let pr = LK, p- Then f,p / K pisa
cyclic totally and tamely ramified extension of complete discrete valuation
fields. Hence (» € Kp [CaF, p. 32] and therefore (j» € K,. It follows that
there are at least [Ko((n) : Ko] distinct primes p of KKy which lie over
p. Each of them totally ramifies in LK, and therefore also in L;Ky. Thus
IRam(LlKo/KKo)‘ Z [KO(Cl") : K()]. D

PROPOSITION 12.2. Let K be a function field of one variable over a
field Ko of characteristic # | such that [Ko({n) : Ko] is unbounded. Then
K has no ramified Galois extension L which is regular over Ky such that
G(L/K) =2 Z;. In particular, Z; is not regular over K.

Proof. Assume that there exists L as above. Then L is the ascending
union of Galois extensions L, of K with G(L,/K) = Z/I"Z. Each L, is a
regular extension of K and for large m, Ly+1/Lm is ramified. Replace K
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by such L,,, if necessary to assume that Lq/K is ramified. By Lemma 12.1,
[Ko(Gn) : Ko] < |Ram(L1 Ko/ K Kg)|, a contradiction.

Finally recall that if K = Ko(t), then L;/K is ramified [FrJ, Prop. 2.15].
Hence, K admits no Z;-extension L which is regular over Kj. 0

PROPOSITION 12.3.  Let F be a global field of characteristic # 1. Then
for almost all o € G(F'), the group Z; is not regular over F (o).

Proof. Let N = F((,{z2,(3,...)- Then N = KL with KNL =
F, G(K/F) = Z;, and G(L/F) = A is a finite group. Thus G(N/F) =
G(N/K)xG(N/L). If H is a finite subgroup of G(N/F), then its projection
on G(N/L) is also finite and therefore trivial. Thus H < G(N/K). It
follows that if for some o € G(F) the degree [F(c)(¢n) : F(0)] is bounded,
then G(N/N N F(c)) is finite and therefore K C F(o). Since K/F is
infinite, almost no ¢ € G(F') satisfies the latter condition. Hence, for
almost all o € G(F), [F(0)((n) : F(0)] is unbounded. For each of these o,
Proposition 12.2, asserts that Z; is not regular over Kj. 0

Appendix. Effective form of the Chebotarev density theorem

Lemma 5.2 uses an effective form of the Chebotarev density theorem
for function fields. One may find such a form in [FrJ, §5.4] and in [HKo].
Unfortunately, the proof of [FrJ, Prop 5.16] applies [FrJ, Lemma 5.14] in a
faulty way. Indeed, on [FrJ, page 63, line —3] d should be replaced by md.
The same mistake occurs in [HKo]. We therefore take this opportunity to

correct the mistake and at the same time to improve the estimate of [FrJ,
Prop 5.16].

Data 13.1.  We fix the following notation for the whole section.

g = a power of a prime number
t = a transcendental element over F,

K = a finite separable extension over IF,(t)

which is regular over F,

d = [K : Fq(t)]

L = a finite Galois extension of K

Fgn  the algebraic closure of F, in L
P(K) = the set of all prime divisors of K/F,
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P'(K) = {p € P(K) | p is unramified over F,(t) or in L}
Pi(K) = {p € P(K) | deg(p) = k}
PL(K) = {p € P'(K) | deg(p) = k}

C = a conjugacy class in G(L/K); ¢ = |C|

CUL/K.C) = o e B(K) | (P45) =)

Our first result improves [FrJ, Lemma 5.14].

LEMMA 13.2.  Suppose that L = KFqn, C = {7}, and 7|p,. = o
Then

(13.1) [#C1(L/K,C) — q| < 2(91/q + g1 + d).

Proof. Note first that C1(L/K,C) = P}(K) and that each p € P(K) is
unramified in L. Thus, P;(K) ~\ C;(L/K,C) consists exactly of all prime
divisors of Different(K /F4(t)). By the Riemann-Hurwitz genus formula,
deg(Different(K/F4(t)) = 2(9x + d — 1) [FrJ, P. 24]. By Weil’s theorem
|#P1(K) — (¢+1)| < 29k /g [FrJ, Thm. 3.14]. Hence, |#C1(L/K,C)—q| <
29Kx+/q+ 1+ 2(9x +d —1). Since gg = gy, this proves (13.1). 0

Next we improve [FrJ, Lemma 5.15]. Here we use the notation ‘a pd b’
to mean ‘a properly divides b’.

LEMMA 13.3. Let K’ be an extension of K of degree km which con-
tains F k. For each q € P(K') we denote the prime of K which lies under
q by qx. Then

(13.2) #{q € P(K') | deg(ax) pd k} < m(¢*/* + (3gx + 1)g**).

Proof. 1f jlk and p € P(K), then Fj; C F x and therefore p decomposes
in KF, into j prime divisors of degree 1. Each of them has exactly one
extension to KT and the latter decomposes in K " into at most m prime
divisors. Hence, by Weil’s theorem

(13.3) #{q € P(K') | deg(ax) pd k} <m 3 S[Py(KF,,)|
J<k/2

1 . )
<m Y =(q +29x¢* +1).
i<kr2?
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Induction on k& shows that for ¢ > 2

j
(13.4) 3o L<g
j<krz

A direct check for & < 5 and an induction for k > 6 shows that for ¢ > %

j

(13.5) Y L« 32,
. J 2
J<k/2

If ¢ is a power of a prime, then ql/2 > /2 > 9/7. Hence, (13.2) is a
consequence of (13.3), (13.4), and (13.5). U

Finally we improve [FrJ, Prop. 5.16].

PROPOSITION 13.4. In the notation of Data 13.1 let a be a positive
integer and let T be an element of C such that ’r|]Fqn = ¢®. Let k be a positive
integer such that k = a mod n. Then

(13.6) [#Ch(L/K,C) = ——=d"]

C
< 1= [0m +291)0*% + m(3gxc + 1)g*/* + 2(gr, + dm)).

Proof. Let n' = nk - ord(r) and extend L to L' = LF . Then (L :
KF ] = [L : KFgn] = m. Since k = a mod n there exists 7' € G(L'/K)
such that 7|, = 7 and 7'|p _, = ¢*. Then ord(') = lem(ord(r), ord(¢*)) =
lem(ord(7), [F o @ Fgk]) - lem(ord(7),n - ord(7)) = n - ord(r). Denote
the conjugacy class of 7/ in G(L'/K) by C’. By [FrJ, Lemma 5.12(c)],
Cy(L'/K,C') = Co(L/K,C).

Denote the fixed field of 7/ in L' by K’. Then K’ﬂ]Fqn/ = K'ﬁli‘q =F
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and K’]Fqn; =I'.

ord(7’) ,
m m
K —— KF, KF
d d
Fy(t) —— Fge (t) —— F (1
F, —— Fp —— F

Then [K': KF] = [L : KF ] = m and therefore [K' : Fex(t)] = dm. By
[FrJ, Cor. 5.11] applied to L', K, C’, {7'}, k instead of F, E, C, C’, r,

L (LK, C) = o7 | CLE /K, (1) > {a € B(K) | des(axe) pd K}

Since [K' : K] = km, we have by Lemma 13.3,
(18.7)  [#C(L//K,C) = -=#C1(L'/K' {})
< o #{a € P(K') | deg(ax) pd k}
< k—% -m(q"? + (3gk +1)g**)
By Lemma 13.2 applied to K', L', n/, 7/, ¢* instead of to K, L, n, 7, ¢
(13.8) [#CUL' /K" {7'}) = ¢*| < 2(9:¢"* + gir + dm).

Multiply (13.8) by %= and replace g;/ by gr. Then replace Cx(L'/K,C’)
in (13.7) by Ci(L/K,C). Finally combine the two inequalities obtained in
this way to (13.6). [

COROLLARY 13.5.  If in the situation of Proposition 13.4

(13.9) klogq > max{2log(gy + dm),4log(3gx + 1)},
then

_C k2 %
(13.10) HOUL/ELC) ~ b < 2o (m + g1+ 1)a2
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Proof. By (13.9), 3gx + 1 < ¢*/* and g1, + dm < ¢*/2. Hence

(m+ 29L)qk/2 +m(3gx + 1)q’°/4 +2(gr +dm) < (m+ 29, + m+ 2)qk/2.

Now combine this inequality with (13.6) to get (13.10). 0
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