
Appendix B 
The rotation functions 

A state of angular momentum J, and z component of angular 
momentum m, is transformed under a rotation by the Euler angles 
a, fJ, y according to (see Edmonds (1960) p. 54) 

J 
D(a,fJ,r)IJm)= ~ IJm')(Jm'ID(a,fJ,y)IJm) (B.1) 

m'=-J 

where the rotation operator is 

D(a,fJ,y) = f}a.Jzf}PJuf}'YJz (B.2) 

i.e. a rotation by angle y about the z axis, followed by a rotation by fJ 
about they axis, followed by a further rotation by a about the z axis. 

Since the eigenvalue of .fs ism, the matrix elements of D(a, fJ, y) can 
be written 

(Jm'l D(a,fJ,y) IJm) = f!Nn•m(a,fJ,y) (B.3) 

= eim'a.d~·m (/1) eim-y (B.4) 

where the rotation matrices are defined by 

d~·m(fl) = (Jm'l &PJu IJm) (B.5) 

These matrix elements can readily be evaluated for J = ! by sub­
stituting the Pauli matrix for J11 and expanding the exponential (see 
(B.19) below), and then higher J values can be derived using the 
Clebsch-Gordan series (see for example Wigner (1959) p. 167). It is 
found that (Edmonds (1960) p. 57) 

dJ. (fJ) = [(J +m')l (J -m')l]t ~ ( J +m ) (J -m) ( _ 1)J-m'-O' 
mm (J+m)l(J-m)l 0' J-m'-u u 

( fl) 2o'+m' +m ( • fl) 2J -20'-m' -m 
x cos- sm-

2 2 
(B.6) 

If the scattering plane is taken to be the x-z plane, then the angle 
fJ here corresponds to the scattering angle f) between the directions of 
motion in the initial and final states, and it is more convenient to write 
the rotation matrices as functions of z = cos f) rather than 0. Also for 
two-particle helicity states m' and m correspond to the helicity 
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THE ROTATION FUNCTIONS 427 

differences A and A' defined in (4.4.15). So we shall usually replace 
(B.6) by df).•(z) from now on. 

The functions defined by (B.6) satisfy the symmetry relations 

dfA.·(z) = ( -1)A.-A.' d-!_).-A.•(z) = ( -1)A.-A.' dfa(z) } 
(B.7) 

dfA.·(1T-0) = ( -1V-"d-!_A..t·( -0) = ( -1V-"df·-.t(O) 

The expression (B.6) can be rewritten in terms of Jacobi poly­
nomials p~a,b>(z) as 

dJ () = [ (J+A)!(J-A)!]!(1-z)t<A.-A.'>(1+z)t<A+.t'lp<.t-A.',.t+.t'>() 
A..t' z (J +A')! (J -A')! 2 2 J-A. z 

(B.8) 

but this is only valid for non-negative values of A-A' and A+A'. 
Other values can be obtained from (B.8) using the symmetry relations 
(B. 7), which may be incorporated by writing 

dJ ·() = (-1)A [(J +M)! (J -M)!]! c p<IA.-A.'J,JA+.t'J) 
A..t Z (J +N)! (J -N)! !:>U' J-M 

(B.9) 

where 

M = max{IAI, IA'I}, N = min{IAI, IA'I}, A= !(A-A' -lA-A'!) 

(B.10) 
and the 'half-angle factor' is defined by 

(1- z)tl.t-.t'l (1 + z)tl.t+.t'l 
Su·(z) = - -2 2 

(B.11) 

Equation (B.9) is a very convenient representation because for integer 
J- M the Jacobi function is an entire function of z, so the only possible 
singularities of dfA.'(z) in z stem from the behaviour of the half-angle 
factor (B.11) at z = ± 1. 

However, we shall also wish to continue in J, and for this purpose 
it is more useful tore-express (B.9) in terms of the hypergeometric 
function (see Andrews and Gunson 1964) 

J A [(J +M)! (J -M + IA-A'I)!]t 1 
du.(z) = ( -1) (J -M)! (J +M -lA-A'!}! IA-A'I! 

x Su·(z)F( -J +M,J +M + 1, IA-A'I + 1; (1-z)/2) (B.12) 

The hypergeometric function is an entire function of J, so the only 
singularities stem from the square bracket, when the factorial func­
tions have poles for negative integer values of their arguments. 
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Also from the asymptotic form of the hypergeometric function we 
find 

df).·(z)----+ ( -1)A 
z ...... 00 

(2J)! 
X [(J +M)!(J -M + IA.-A.'j)!(J -M)!(J +M -IA.-A.'j)!]~ 

x gH.(z) (~) J-M (1 + O(z-2)) + O(z-J-1) 

so, since gH.(z) "'zMfrom (B.11) 

df).·(z) "'zJ, for J > -! 

(B.13) 

for J- v =F integer < M where dfA, vanishes (v = 0/l for physical 
J =integer/half-odd-integer, i.e. for evenfodd fermion number). 

These functions also satisfy the orthogonality relations 

J1 dJ dJ' d 2 
_ 1 ..u-(z) ..u-(z) z = 8JJ' 2J + 1 

!1: (2J + 1)df).·(z)df).·(z') = 8(z-z') 
J 

1: df).·(z) df).·(Z) = 8 ;..· )." 
;._ 

Some useful special values are 

a;,o(z) = G~ ~:~:]~ PJ(z) 

d{[o(z) = PJ(z) 
for integer J, and 

d~() 1+z 10 d~ 1-z . 10 Hz = -2- = cos2 ' ~-~= -2- = Sln2 

(B.14) 

(B.15) 

(B.16) 

(B.17) 

(B.18) 

(B.19) 

We shall also make use of the second-type rotation functions ef).•(z), 
analogous to the second-type Legendre functions Q1(z) introduced in 
Appendix A (see Andrews and Gunson 1964). They are defined in 
terms of the second-type Jacobi functions Q~a,b)(z) by 

J ( ) = (- 1)A+A-A' [(J + M)! (J- M)!]~ 1: ( ) Q<IA-A'I,IA+A'I) ( ) 
e;._;._• z (J +N)! (J -N)! !:>U' z :r-M z 

(B.20) 

For integer J- M ~ 0 they are related to the df).• by the generalized 
Neumann relation 

gu,(z) ef).·(z) = -2
1 J1 dz', df).·(z') gu,(z') (B.21) 

_1z-z 
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and they satisfy the symmetry properties 

efA.(z) = (- 1 )A-A' e~A-A'(z) = (- 1 )A-A' ef,A (z) 

efA.( -z) = ( -1V-A+Ief-,~:(z) 

429 

(B.22) 

(B.23) 

Equation (B.20) can be re-expressed in terms of the hypergeometric 
function as 

1 
efA·(z) = (- 1 )A (2J + 1 )! [(J + M)! (J- M)! (J + N)! (J- N)!]! ~,t}. (z) 

1(z-1)~~~ ( 2) x 2 - 2- F J-M+1,J-M+jA-A'j+1,2J+2, 1 _z 

(B.24) 

which gives the J-plane singularities directly, and since F---'?- 1 as 
Z---'?-00 the asymptotic behaviour is 

J ( ) ( 1)!(A-A') 1 
eu· z ;=: - (2J + 1)! 

X [(J +M)! (J -M)! (J +N)! (J -N)!]!~ (i) -J-l (B.25) 

and, cf. (A.31), 

efA.(z)-+ - e-<J+!Wz>, arg J < 7T (
7T)! e±itr(A-A') 1 

J~oo 2 J! (z2-1)i 
(B.26) 

where {;(z) =log [z+ (z2-1)!], and we use ± for Im{z}:;:: 0. 
For half-odd-integer values of J- v they obey the symmetry relation 

efA.(z) = ( -1)7.-A' e,tf,-1 (z) (B.27) 

Also, analogous to (A.18), there is the relation 

dfA.(z) efA.(z) e=f.:=J,(z) 
sin 7T(J- A) = 7T cos 7T(J- A) 7T cos 7T(J- A) 

(B.28) 

and we find (B.29) 

for J ---'?-integer (J0- v) when J0 < - M, and similar poles or (J- J 0)-! 
factors for integer (J0 - v), - M ~ J0 < M, from (B.24) (Andrews and 
Gunson 1964). 
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