Appendix B
The rotation functions

A state of angular momentum J, and z component of angular
momentum m, is transformed under a rotation by the Euler angles
a, B, v according to (see Edmonds (1960) p. 54)

J
D fy)lmy =% |Tm')(Imi| D fy) | Jmy  (B.1)

where the rotation operator is
D(a, B,y) = e*IzelfyelrI: (B.2)

i.e. a rotation by angle y about the z axis, followed by a rotation by £
about the y axis, followed by a further rotation by o about the z axis.
Since the eigenvalue of J, is m, the matrix elements of D(e, 8, v) can

b W (| Dl )| Ty = P (. 8,7) (B3)
= elmedy, (B)elmr (B.4)

where the rotation matrices are defined by
dm(B) = (Tm | &4y | Ty (B.5)

These matrix elements can readily be evaluated for J = } by sub-
stituting the Pauli matrix for J, and expanding the exponential (see
(B.19) below), and then higher J values can be derived using the
Clebsch—Gordan series (see for example Wigner (1959) p. 167). It is
found that (Edmonds (1960) p. 57)

g (J+m ) (J—m")E J+m \(J— o
2t ==y 3 )(75") -0

s \J—m'—0o o

20+m’+m 2J —20—m'—m
X (cos ’g) (sin g) (B.6)

If the scattering plane is taken to be the x—2 plane, then the angle

f here corresponds to the scattering angle @ between the directions of

motion in the initial and final states, and it is more convenient to write

the rotation matrices as functions of z = cos 6 rather than 6. Also for

two-particle helicity states m’ and m correspond to the helicity
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differences A and A’ defined in (4.4.15). So we shall usually replace
(B.6) by d,.(2) from now on.
The functions defined by (B.6) satisfy the symmetry relations

dn(z) = (= 1AV A5 _y(2) = (= 1V dfa(2) } (B.7)
dl(m—0) = (= 1)72dL (= 0) = (= 1)72d5._(6) '
The expression (B.6) can be rewritten in terms of Jacobi poly-
nomials P9 (z) as

Hacle) = [(f}]-:- /\/\’ ;: g — ;/))' !] ' (1 ; z) 1010 (1_-2|-_z) 041

PG+ (z)
(B.8)

but this is only valid for non-negative values of A—A" and A+A'.
Other values can be obtained from (B.8) using the symmetry relations
(B.7), which may be incorporated by writing

AT +M) (] - M)
dfi(2) = (- 1) [(J+N)! J=DN)!

] ! Ean PRGPAHYD (B.9)

where
M =max{|A|,|X'|}, N=min{A],|A|]}, 4=3A-2=|A=X"|)
(B.10)
and the ‘half-angle factor’ is defined by
1— 2\ 3N /1 4 2\ BA+21
Ean(z) = (T) (T) (B.11)

Equation (B.9)is a very convenient representation because for integer
J — M the Jacobi function is an entire function of z, so the only possible
singularities of d,.(z) in z stem from the behaviour of the half-angle
factor (B.11) at z = + 1.

However, we shall also wish to continue in J, and for this purpose
it is more useful to re-express (B.9) in terms of the hypergeometric
function (see Andrews and Gunson 1964)

_ (J+M(J-—M+A=APE 1
) = (= 1) [(J—M)!(J+M—|/\—}L’|)!] [A=2!

xEn@ F(=J+M,J+M+1,|A=X|+1; (1-2)[2) (B.12)

The hypergeometric function is an entire function of J, so the only
singularities stem from the square bracket, when the factorial func-
tions have poles for negative integer values of their arguments.
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Also from the asymptotic form of the hypergeometric function we

find
dfp(2)—> (- 1)*
T+ T =M+ A=A (T =D+ M= A=A}
2\ I—M
xEule) (3) (1406 +06 (B.13)

80, since £,,.(2) ~ 2™ from (B.11)
d(z) ~27, for J >-—1
for J—wv & integer < M where df, vanishes (v = 0/} for physical

J = integer/half-odd-integer, i.e. for even/odd fermion number).
These functions also satisfy the orthogonality relations

| e ati@ s = 85 57 (B.14)
%; (2J + 1) d{\(z)d{p (') = d(z—2) (B.15)
; A (2) da(2) = Syoar (B.16)
Some useful special values are
ta) = [ Py (o (B.17)
d3o(2) = Py(2) (B.18)

for integer J, and

1+2 1-2 .
d}y(z2) = —5— = cos 30, @, = —5— =sin}f (B.19)

We shall also make use of the second-type rotation functions ef).(2),
analogous to the second-type Legendre functions @,(z) introduced in
Appendix 4 (see Andrews and Gunson 1964). They are defined in
terms of the second-type Jacobi functions Q%% (z) by

W(J — !
ehut@) = (~yonex [TERRE= S e apnen
(B.20)

Forinteger J — M > 0 they are related to the dy,. by the generalized
Neumann relation

1 ’
Eueh@ =5 [ ) B2y

—12—2'
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and they satisfy the symmetry properties
efu(2) = (1N ey (2) = (= )" Ve 2) (B.22)
elv(=2) = (= 1)7 M el_u(2) (B.23)

Equation (B.20) can be re-expressed in terms of the hypergeometric
function as
1

edn(2) = (— 1)’1(—27T1—)-! [(J+ M) - M) (J +N)(J = N)EExL (=)
1(z—1\-J-1+M , 2
xé(—z—) F(J—M+1,J—M+|A—/\|+1,2J+2, m)

(B.24)
which gives the J-plane singularities directly, and since F—1 as

z—> o0 the asymptotic behaviour is

, 1
edn(z) —> (- 1)%“_“@‘;1—)!

x [+ M)! (J = M) (T +N)1 (T — )T (%)
and, cf. (4.31),

1
(B.25)

} otin-1) 1
J m*=e —T+3) £6)
€ (z)J_wD (2) e 1)&6 , argd <

(B.26)

where {(z) = log[z+ (22— 1)#], and we use + for Im {2} 0.
For half-odd-integer values of J — v they obey the symmetry relation

elv(2) = (= 1) Vel 1(2) (B.27)
Also, analogous to (4.18), there is the relation
dfv(z) el {1 ) (B.28)
sinm(J—A) wmeosw(J—A) wceosw(J—A) )
ds.
and we find ey () & =22 (=) (B.29)
J—Jy

for J —integer (J,—v) when J, < — M, and similar poles or (J —J,)~%
factors for integer (J;—v), — M < Jy, < M, from (B.24) (Andrews and
Gunson 1964).
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