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Abstract We construct local and global metaplectic double covers of odd general spin groups, using the

cover of Matsumoto of spin groups. Following Kazhdan and Patterson, a local exceptional representation
is the unique irreducible quotient of a principal series representation, induced from a certain exceptional

character. The global exceptional representation is obtained as the multi-residue of an Eisenstein series: it

is an automorphic representation, and it decomposes as the restricted tensor product of local exceptional
representations. As in the case of the small representation of SO2n+1 of Bump, Friedberg, and Ginzburg,

exceptional representations enjoy the vanishing of a large class of twisted Jacquet modules (locally), or

Fourier coefficients (globally). Consequently they are useful in many settings, including lifting problems
and Rankin–Selberg integrals. We describe one application, to a calculation of a co-period integral.
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Let Gn = GSpin2n+1 be the split odd general spin group of rank n+ 1. Its derived group is

G ′n = Spin2n+1, the simple split simply connected algebraic group of type Bn . The group

Gn occurs as a Levi subgroup of G ′n+1. For a local field F of characteristic 0, let G̃ ′n+1(F)
be the metaplectic double cover of G ′n+1(F) defined by Matsumoto [59]. We can obtain

a double cover G̃n(F) of Gn(F) by restriction.

Following Banks et al. [10], we define a section s and a 2-cocycle σ of G ′n+1(F),
representing the cohomology class in H2(G ′n+1(F), {±1}) of G̃ ′n+1(F). We show that the

restriction of σ to Gn(F)×Gn(F) satisfies a block-compatibility relation, with respect

to standard Levi subgroups. This is a useful condition for studying parabolically induced

representations.

Fix a Borel subgroup in Gn(F). The preimage T̃n+1(F) of the maximal torus Tn+1(F)
in the cover is a two-step nilpotent subgroup; its irreducible genuine representations are

parameterized by genuine characters of its center CT̃n+1(F). The analogous theory for

covers of GLn was developed by Kazhdan and Patterson [47], who studied a special class

of genuine characters which they called ‘exceptional’. In our setting these are characters

χ of CT̃n+1(F) satisfying χ(α∨∗(x l(α))) = |x | for all simple roots α of Gn and x ∈ F∗, where

α∨
∗ is a certain lift of the coroot α∨ to the cover and l(α) is the length of α.

We use an exceptional character χ to construct a genuine principal series representation

of G̃n(F), which has a unique irreducible quotient denoted 2 = 2Gn ,χ . The quotient 2

is an exceptional representation, or a small representation in the terminology of Bump

et al. [17]. Our purpose is to develop a theory of these representations.

Let O be a unipotent class of Gn ; it corresponds to a partition of 2n+ 1 for which an

even number appears with an even multiplicity. Let VO be the corresponding unipotent

subgroup. We consider certain characters of VO(F), called ‘generic’. Roughly, a character

ψ of VO(F) is generic if it is in general position. The definitions are similar to those of

Bump et al. [17] (see also [20, 22]) for SO2n+1, and are given in § 2.3.2. The following

result characterizes the sense of ‘smallness’ of 2.

Theorem 1. Assume that F is a p-adic field with an odd residual characteristic. Let

O0 = (2n1) if n is even; otherwise, O0 = (2n−113). Let O be any class greater than or

non-comparable with O0, and let ψ be a generic character of VO(F). The twisted Jacquet

module of 2 with respect to VO(F) and ψ is zero.

Theorem 1 is proved in § 2.3.2. To remove the restriction on the residual characteristic,

we only need to know that exceptional representations of the double cover of GLn(F)

https://doi.org/10.1017/S1474748015000250 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748015000250


The double cover of GSpin(2n+ 1) and small representations 611

(with the [47] parameter c = 0) do not have Whittaker models, also for n > 3 and even

residual characteristic; this is an expected result ([19, p. 145]; see [25, Lemma 6]).1

The local theory has a global counterpart. Let F be a number field with a ring of adèles

A. Let 2 = 2Gn ,χ be the exceptional representation of G̃n(A) defined with respect to a

global exceptional character χ . It has an automorphic realization as the multi-residue of

an Eisenstein series with respect to the Borel subgroup. Also 2 ∼=
∏
′

ν 2Gn ,χν (restricted

tensor product). The analogs of the Jacquet modules are Fourier coefficients, over the

quotient VO(F)\VO(A), with respect to generic characters of VO(A) trivial on VO(F).
See § 3.4.4 for the definitions. The local–global principle (see, e.g., [39, Proposition 1])

immediately implies the following global corollary of Theorem 1.

Theorem 2. Let O be any orbit greater than or non-comparable with O0. Any Fourier

coefficient with respect to O and a generic character vanishes identically on the space

of 2.

A minimal representation is a representation supported on the minimal coadjoint

orbit. If n > 4, Vogan [84, Theorem 2.13] proved that SO2n+1 (or its cover groups) does

not afford such representations. Bump et al. [17] constructed a local and global ‘small’

representation 2SO2n+1 of SO2n+1. It is a representation of a cover S̃O2n+1(F); this cover

was obtained by restriction of the fourfold cover of SL2n+1(F) of Matsumoto [59]. In the

cases when n = 2, 3, it is in fact the minimal representation. It is small in the sense that

it is supported on the orbit O0 [17, 18]. The use of the fourfold cover implies a minor

technical restriction on the field, namely that −1 is a square.

The arguments of Vogan [84] apply also to Gn ; that is, for n > 4 there is no minimal

representation. It is reasonable to call 2 a small representation of Gn .

Our local and global results are parallel to those of [17, 18], and are obtained using

similar methods. For example, because the unipotent subgroups of Gn are in bijection

with those of SO2n+1, manipulations on Jacquet modules are similar. One notable

difference is in the restriction of the cover to Levi subgroups. In contrast with the cover of

SO2n+1, here, direct factors of Levi subgroups do not commute in the cover. This implies

that representations of Levi subgroups cannot be studied using the usual tensor product.

In this property, as well as in other details, the cover of Gn is more related to the cover

of GLn than to that of SO2n+1.

Let Qk = Mk nUk be a maximal parabolic subgroup with a Levi part Mk isomorphic to

GLk ×Gn−k . In the particular case of k = n, G̃Ln(F) and G̃0(F) do commute, and we can

define a tensor product. Let χ (1) be an exceptional character in the sense of Kazhdan and

Patterson [47], and let 2GLn ,χ (1)
be the corresponding global exceptional representation

of the double cover G̃Ln(A) of [47]. Also, let χ (2) be a genuine character of G̃0(A) (this

cover is split). Assume that χ = χ (1)⊗χ (2); for the precise meaning of this equality, see

§ 3.3. We compute the constant term of an automorphic form θ in the space of 2 along

the unipotent radical Un , and prove the following result.

1Since the time of writing this paper we proved this result in [44, Theorem 2.6], so Theorem 1 holds in
general.
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Theorem 3. The function m 7→ θUn (m) on M̃n(A) belongs to the space of

2GLn ,|det|−1/2χ (1) ⊗2G0,χ (2)
.

The definition of the constant term θUn and the proof of the theorem occupy § 3.4.3.

Note that |det|−1/2χ (1) is also an exceptional character.

For SO2n+1 and any k, the mapping m 7→ θUk (m) belongs to the space of the tensor

product 2GLk ⊗2SO2(n−k)+1 , for a uniquely determined exceptional representation 2GLn

(2SO2(n−k)+1 is unique). This was conjectured in [17] and proved for k = 1, and in general

proved in [45]. We mention that for the current applications the case of k = n is sufficient.

For the lifting results of [18] (see below) the constant term was not used.

We will study representations of Mk using a ‘larger’ induced representation, similar to

the construction of Kable [42]; see § 2.2.4. A metaplectic tensor product for cover groups

of GLn has been studied in [24, 42, 62, 78, 81], but will not be used here. Refer to the

discussion in § 2.2.5.

There are several applications to our work. Essentially, one can simply replace 2SO2n+1

with 2. This has the benefit of removing the restriction on the field with respect to the

fourth roots of unity.

We describe one application, whose details are given in § 4. In general, let G be a split

reductive algebraic F-group, where F is a number field. Let Q = M nU be a maximal

parabolic subgroup of G with a Levi part M , and let τ be an irreducible unitary cuspidal

globally generic automorphic representation of M(A). Denote the central character of τ

by ωτ . Denote by E(g; ρ, s) the Eisenstein series corresponding to an element ρ in the

space of the representation of G(A) induced from τ ; g ∈ G(A) and s ∈ C. For s0 ∈ C,

let Es0(g; ρ) denote the residue of E(g; ρ, s) at s0. The space spanned by the residues

Es0(·; ρ) is called the residual representation Eτ .
Periods of automorphic forms are often related to poles of L-functions and to questions

of functoriality. Ginzburg et al. [29] described such relations in a general setup, and

considered several examples. They conjectured [29, Conjecture 1.4] that the pole at s = 1
of a partial L-function corresponding to τ is related to the non-triviality of certain period

integrals, the existence of a residual representation, and the existence of a representation

τ0 such that τ is the Langlands functorial transfer of τ0.

Among the examples given in [29] is the case of G = SO2n+1 and M = GLn . Let A+

be the subgroup of idèles of F whose finite components are trivial, and Archimedean

components are equal, real, and positive. Assume that ωτ is trivial on A+. The pole of

the Eisenstein series at s = 1/2 is determined by the presence of a pole of the partial

symmetric square L-function at s = 1. In [45] we elaborated on this case and proved a

result relating a co-period integral∫
SO2n+1(F)\SO2n+1(A)

E1/2(g; ρ)θ(g)θ ′(g) dg

to the ‘theta period’ integral∫
GLn(F)\GLn(A)1

ρ(b)θUn (b)θ ′Un (b) db.
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Here, θ (respectively, θ ′) is an automorphic form in the space of 2SO2n+1,ϑ (respectively,

2SO2n+1,ϑ−1), where ϑ is a character of order 4 of the group of fourth roots of unity (ϑ is

implicit in the notation 2SO2n+1); GLn(A)1 is the kernel of |det| on GLn(A).
Bump and Ginzburg [19] constructed a Rankin–Selberg integral representing the partial

symmetric square L-function. In particular, they showed that, if this function has a pole

at s = 1, a certain period integral does not vanish. Their period integral was related

in [45], under an additional assumption on ωτ , to the theta period above.

Using the exceptional representation 2, this result can be put in a more general setting

of Gn , and, in particular, will hold for any number field. Let τ be as above (but without the

assumption that ωτ |A+ = 1), and let η be a unitary Hecke character. The Eisenstein series

E(g; ρ, s) is now defined with respect to Gn and the parabolic subgroup Qn . According to

Hundley and Sayag [37], the series E(g; ρ, s) is holomorphic at <(s) > 0 except perhaps

for a simple pole at s = 1/2. The existence of this pole is determined by the presence

of a pole of the partial L-function L S(s, τ, Sym2
⊗ η) at s = 1 (in [37], the twisting is

with respect to η−1, but their conventions are different; see Remark 4.1). Takeda [82]

constructed a Rankin–Selberg integral for this function and proved that, if S is large

enough and ω2
τη

n
6= 1, then L S(s, τ, Sym2

⊗ η) is holomorphic at s = 1. In particular, the

series is holomorphic at s = 1/2 unless ω2
τη

n is trivial on A+.

Denote the center of Gn(A) by CGn(A). We select global exceptional characters χ and

χ ′ such that χ ·χ ′ · η = 1 on CGn(A). Let θ (respectively, θ ′) belong to the space of 2Gn ,χ

(respectively, 2Gn ,χ ′). Here is our result, which follows by a minor modification to [45].

Theorem 4. Consider the co-period integral

I(E1/2(·; ρ), θ, θ
′) =

∫
CGn (A)Gn(F)\Gn(A)

E1/2(g; ρ)θ(g)θ ′(g) dg.

Assume that ω2
τη

n is trivial on A+. Then the following hold.

(1) There is a normalization of measures (explicitly given in the proof) such that

I(E1/2(·; ρ), θ, θ
′) =

∫
K

∫
GLn(F)\GLn(A)1

ρ(bk)θUn (bk)θ ′Un (bk) db dk.

Here, K is the product of local maximal compact subgroups.

(2) The co-period I(E1/2(·; ρ), θ, θ
′) is non-zero for some (ρ, θ, θ ′) if and only if∫

GLn(F)\GLn(A)1
ρ1(m)θ1(b)θ ′1(b) db 6= 0

for some cusp form ρ1 in the space of τ , and θ1 (respectively, θ ′1) in the space of

2GLn ,|det|−1/2χ (1) (respectively, 2GLn ,|det|−1/2χ ′(1)).

The proof is given in § 4. Note that, according to Theorem 3, the function θUn belongs

to the space of an exceptional representation on G̃Ln(A).
Theorem 4 motivates a local counterpart, which will be used as an ingredient in a

proof of a conjecture of Lapid and Mao on Whittaker–Fourier coefficients [55], for even
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orthogonal groups. Let ε be Arthur’s elliptic tempered parameter for SO2n , and let Sε be

the corresponding group [3]. Assume that we have an irreducible automorphic cuspidal

(ψ-)generic representation π of SO2n(A) in the A-packet associated to ε (π is expected to

be unique). Further, let W and W∧ be two global Whittaker–Fourier coefficients on the

spaces of π and π∧ (π∧ is the contragradient representation). The conjecture of Lapid

and Mao relates the product W (e)W∧(e) to the size of Sε. The exceptional representation

of Gn can perhaps be also used to prove the conjecture for GSpin2n .

The minimal representation for the group SO7, which is a representation of S̃O7, was

constructed and studied by Roskies [69], Sabourin [70], and Torasso [83]. It was used by

Bump et al. [16] to construct a Rankin–Selberg integral for the 14-dimensional irreducible

representation of the L-group of SO7, corresponding to the third fundamental weight.

Bump et al. [18] used 2SO2n+1 to construct a lift, with certain functorial properties,

from genuine automorphic representations of S̃Ok(A) to S̃Om(A), for integers k and m
of different parity. Both results can be extended to the context of Gn . In particular,

our results lead to a lift from genuine automorphic representations of G̃Spink(A) to

G̃Spinm(A).
Loke and Savin [57] constructed local and global exceptional representations for simply

connected Chevalley groups. Their approach was different from that of [47]. They started

with defining a global automorphic representation π , which was invariant under the action

of the Weyl group. Their local and global exceptional representations were obtained by

unramified twists of πν or π . The global representation was also realized as a multi-residue

of an Eisenstein series. Their exposition is elegant and applicable to a wide range of

groups.

Our results have some overlap with ongoing work of Loke and Savin;2 we thank them

for informing us about their work. They and the author were working independently. The

approach and techniques are different. For example, they do not use a cocycle.

Minimal representations have been studied and used by many authors. The

fundamental example is the Weil representation of S̃pn , which was used in the theta

correspondence between a pair of dual reductive groups, to lift representations from

one group to another [67]. The Weil representation also played an important role in

the descent method, in the construction of Fourier–Jacobi coefficients [34, 36, 41, 75].

Among the works on minimal representations are [26, 56, 71, 72]. Works on minimal

representations for simply laced groups include [15, 31, 46, 48, 49, 84]. Minimal

representations enjoy the vanishing of a large class of Fourier coefficients, which makes

them valuable for applications involving lifts and Rankin–Selberg integrals [27, 30, 35].

Early works on the metaplectic groups include the work of Weil [85] on S̃pn ,

Kubota [51, 52], who studied the r -fold cover of GL2, and Moore [64] and Steinberg [77],

who studied central extensions of simple Chevelley groups and also considered metaplectic

groups. Matsumoto [59] constructed the metaplectic r -fold cover of any simple simply

connected split group G over a local field. For GLn , the metaplectic groups were

constructed and studied by Kazhdan and Patterson [47]. Over a p-adic field containing

2r different 2rth roots of unity and such that 2r is coprime to the residue characteristic,

2Private communication.
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McNamara [61] constructed G̃ for any split reductive group G, using the results of

Brylinski and Deligne [14] and Finkelberg and Lysenko [23]. Sun [79] studied metaplectic

covers of G, defined using covers of its derived group G ′, assuming that G is also connected

and that G ′ is a simple simply connected Chevalley group.

Banks et al. [10] elaborated on the work of Matsumoto [59], by describing an

explicit section and a 2-cocycle σG representing the corresponding cohomology class in

H2(G(F), µr ) of the cover of [59], where F is a local field and µr is the subgroup of r
rth roots of unity. They proved several compatibility results, which make their cocycle a

convenient choice. For example, if H is a ‘standard’ subgroup of G, which means that H
is a simple simply connected split group generated in G by certain data, the restriction

of σ to H(F)× H(F) is σH . The cocycle σSLn+1 for SLn+1(F) was used in [10] to define a

cocycle on GLn(F), which (in contrast with the cocycle of [47]) is block compatible.

The group GSpinm has been the focus of study of a few recent works. Asgari [4, 5]

studied its local L-functions, Asgari and Shahidi [6, 7] proved functoriality results, and

Hundley and Sayag [37] extended the descent construction to GSpinm .

1. Preliminaries

1.1. The groups

Let F be a field of characteristic 0. For any r > 1, let µr = µr (F) be the subgroup of the

rth roots of unity in F . Put F∗r = (F∗)r . If F is any local field, let (, )r be the Hilbert

symbol of order r of F , and we usually denote by ψ a fixed non-trivial additive character

of F . Then γψ is the normalized Weil factor associated to ψ ([85, § 14]; γψ (a) is γF (a, ψ)
in the notation of [68], γψ (·)

4
= 1). If F is a local p-adic field, its ring of integers is O,

the maximal ideal is P = $O, and |$ |−1
= q = |O/P|.

In the group GLn , fix the Borel subgroup BGLn = TGLn n NGLn of upper triangular

invertible matrices, where TGLn is the diagonal torus. Denote by In the identity matrix

of GLn(F).
We define the special odd orthogonal group

SO2n+1(F) = {g ∈ SL2n+1(F) : t g J2n+1g = J2n+1},

where t g is the transpose of g, and, for any k > 1, Jk ∈ GLk(F) is the matrix with

1 on the anti-diagonal and 0 elsewhere. Fix the Borel subgroup BSO2n+1 = TSO2n+1 n
NSO2n+1 , where BSO2n+1 = BGL2n+1 ∩ SO2n+1 and TSO2n+1 is the torus. If t ∈ TSO2n+1(F),
t = diag(t1, . . . , tn, 1, t−1

n , . . . , t−1
1 ), where diag(· · · ) denotes a diagonal or block diagonal

matrix. Denote by εi , 1 6 i 6 n, the ith coordinate function, εi (t) = ti .
Let Spin2n+1 be the simple split simply connected algebraic group of type Bn . It is the

algebraic double cover of SO2n+1. The standard Borel subgroup BSpin2n+1 of Spin2n+1 is

the preimage of BSO2n+1 , BSpin2n+1 = Tn n NSpin2n+1 . Each εi can be pulled back to Tn ; this

pull back will still be denoted εi . Denote the set of roots of Spin2n+1 by ΣSpin2n+1 and the

positive roots by Σ+Spin2n+1
. The set of simple roots of Spin2n+1 is 1Spin2n+1 = {αi : 1 6 i 6

n}, where αi = εi − εi+1 for 1 6 i 6 n− 1 and αn = εn .
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Define ε∨i with respect to the standard Z-pairing (, ); i.e., (εi , ε
∨

j ) = δi, j . The set 1∨n =

{αi : 1 6 i 6 n} of simple coroots is given by α∨i = ε
∨

i − ε
∨

i+1 for 1 6 i 6 n− 1 and α∨n =

ε∨n . Because Spin2n+1 is simply connected, any t ∈ Tn(F) can be written uniquely as t =∏n
i=1 α

∨

i (ti ) for ti ∈ F∗. For a description of the Levi subgroups of Spin2n+1, see Matić [58].

The group GSpin2n+1 is an F-split connected reductive algebraic group, which can be

defined using a based root datum as in [5, 6, 37]. It is also embedded in Spin2n+3 as the Levi

part of the parabolic subgroup corresponding to 1Spin2n+3−{α1} (see [58]). Since we will be

constructing a cover of GSpin2n+1(F) using a cover of Spin2n+3(F), it is natural for us to

view GSpin2n+1(F) as this subgroup. Henceforth we adapt this identification. The simple

roots of GSpin2n+1 are {α2, . . . , αn+1}. In the degenerate case n = 0, GSpin2n+1 = GL1.

The group Spin2n+1 is the derived group of GSpin2n+1. Denote Gn = GSpin2n+1
and G ′n = Spin2n+1. Additionally, let ΣGn (respectively, Σ+Gn

) denote the set of roots

(respectively, positive roots) of Gn , determined according to the embedding Gn < G ′n+1.

The set of simple roots of Gn is 1Gn = 1G ′n+1
−{α1}. The corresponding Borel subgroup

of Gn is Bn = Tn+1n Nn . For 0 6 k 6 n, denote by Qk = Mk nUk the standard maximal

parabolic subgroup of Gn with a Levi part Mk isomorphic to GLk ×Gn−k . The modulus

character of Q(F) for a parabolic subgroup Q < Gn is denoted by δQ(F). Let Wn be the

Weyl group of Gn . The longest element of Wn is denoted w0. If F is p-adic, let K = Gn(O)

be the hyperspecial subgroup.

We will also encounter the quasi-split group GSpin2n . Let SO2n be a quasi-split even

orthogonal group, split over F or a quadratic extension of F . The group Spin2n is the

simply connected algebraic double cover of SO2n . In the split case, it is the simple simply

connected algebraic group of type Dn . In the non-split case, its relative root system is

of type Bn−1. Regarding SO2n as a subgroup of GL2n , define the Borel subgroup BSO2n =

SO2n ∩ BGL2n . Then BSpin2n is the preimage of BSO2n . This fixes a set of simple roots. The

group GSpin2n can be defined as the Levi subgroup of the maximal parabolic subgroup

of Spin2(n+1) corresponding to the subset of simple roots obtained by removing the first

root [50, § 2.3]. For a definition using a based root datum, see [5, 6, 37].

In general, if G is a group, denote by CG the center of G. If H < G, C(G, H) is the

centralizer of H in G. For any two elements x, y ∈ G, [x, y] = xyx−1 y−1 denotes their

commutator. Also put x y = xyx−1 and x H = {x h : h ∈ H}.

1.2. Properties of GSpin2n+1

We collect a few structure properties of Gn that will be used throughout. The center of

Gn is

CGn(F) =

{ n∏
i=1

α∨i (t
2
1 )α
∨

n+1(t1) : t1 ∈ F∗
}
. (1.1)

If t =
∏n+1

i=1 α
∨

i (ti ) ∈ Tn+1(F),

w0 t =
n+1∏
i=1

α∨i (t
−1
i ) ·

n∏
i=1

α∨i (t
2
1 )α
∨

n+1(t1). (1.2)
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To see this, one may work over the algebraic closure of F , where t is a product of elements

α∨i (yi ) with 2 6 i 6 n+ 1, which are inverted by w0, and an element of the center.

Let M be a Levi subgroup of Gn . As in classical groups, M is isomorphic to GLk1 × · · ·×

GLkl ×Gn−k , k = k1+ · · ·+ kl , with 0 6 k 6 n [5]. We define an isomorphism of GLk ×

Gn−k with Mk . This isomorphism can be used to define an isomorphism between GLk1 ×

· · ·×GLkl ×Gn−k and M using the standard embedding of GLk1 × · · ·×GLkl in GLk .

The derived group SLk of GLk is generated by the root subgroups of {αi : 2 6 i 6 k}.
To complete the description of the embedding of GLk , let η∨1 , . . . , η

∨

k be the standard

cocharacters of TGLk and map η∨i 7→ ε∨i+1− ε
∨

1 for 1 6 i 6 k. Under this embedding, the

image of a torus element
∏k

i=1 η
∨

i (ai ) of GLk(F) is

k∏
i=1

α∨i

 k∏
j=i

a−1
j

 . (1.3)

Regarding Gn−k , the set {αi : k+ 2 6 i 6 n+ 1} identifies G ′n−k , and, if θ1, . . . , θn−k+1
are the characters of Tn−k+1, define θ∨1 7→ ε∨1 and, for 2 6 i 6 n− k+ 1, θ∨i 7→ ε∨k+i .

Denote by β∨1 , . . . , β
∨

n−k+1 the simple coroots of Tn−k+1. We have β∨i = θ
∨

i − θ
∨

i+1 for

1 6 i 6 n− k, and also β∨n−k+1 = 2θ∨n−k+1. When k = 0, β∨i = α
∨

i for all 1 6 i 6 n+ 1.

The image of
∏n−k+1

i=1 β∨i (ti ) in Gn(F) is

k∏
i=1

α∨i (t1)
n−k+1∏

i=1

α∨k+i (ti ) k < n,

n∏
i=1

α∨i (t
2
1 )α
∨

n+1(t1) k = n.

(1.4)

For k = n, the image of β∨1 is CGn(F).

The restriction of the projection G ′n → SO2n+1 to unipotent subgroups is an

isomorphism. In particular, the unipotent radical Uk corresponds to the unipotent radical

U ′k of the standard parabolic subgroup Q′k of SO2n+1, whose Levi part M ′k is isomorphic

to GLk × SO2(n−k)+1. In coordinates,

U ′k(F) =


Ik u1 u2

I2(n−k)+1 u′1
Ik

 ∈ SO2n+1(F)

 (u′1 = −J2(n−k)+1
t u1 Jk).

If b0 ∈ GLk(F), b is the image of b0 in Mk(F), and b′ is the image of b0 in M ′k(F)
(b′ = diag(b, I2(n−k)+1, Jk

t b−1 Jk)), the following diagram commutes:

Uk

��

7→
b
// Uk

U ′k
7→

b′
// U ′k .

OO

Here, the horizontal arrows denote conjugation.
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For calculations it will sometimes be more convenient to use the cocharacters of TGLn

and the coroot of T1 to write an element in Tn+1, instead of the coroots of Tn+1. Then

we write

t =
n∏

i=1

η∨i (ai )β
∨

1 (t1), (1.5)

and the image of t in Gn(F) is

n∏
i=1

α∨i

 n∏
j=i

a−1
j

 t2
1

αn+1(t1). (1.6)

In these coordinates,

w0 t =
n∏

i=1

η∨i (a
−1
i )β∨1

( n∏
i=1

ai

)−1

t1

 , (1.7)

δBn(F)(t) = δBSO2n+1 (F)
(diag(a1, . . . , an, 1, a−1

n , . . . , a−1
1 )) =

n∏
i=1

|ai |
2(n−i)+1. (1.8)

We use the character ε1 to define the following ‘canonical’ character ϒ of Gn , which

is the extension of −ε1 to Gn . The extension exists because Gn(F) = {α∨1 (x) : x ∈ F∗}n
G ′n(F) and ε1|Tn+1(F)∩G ′n(F) is trivial. We call ϒ canonical because its restriction to GLk is

det, as is evident from (1.3). For example, if t is given by (1.5), ϒ(t) = t−2
1
∏n

i=1 ai . The

restriction of ϒ to Gn−k is the corresponding character of Gn−k . For n = 0, ϒ(x) = x−2.

1.3. Further definitions and notation

1.3.1. Central extensions. Let G be a group. We recall a few notions of abstract

central extensions (i.e., ignoring topologies). A central extension of G by a group A is a

short exact sequence of groups

1→ A
ι
−→ G̃

p
−→ G → 1

such that ι(A) < CG̃ . For any subset X ⊂ G, denote X̃ = p−1(X). Assume that we have

a fixed faithful character ϑ : A→ C∗. Let H < G. A representation π of H̃ is called

ϑ-genuine if π(ι(a)h) = ϑ(ι(a))π(h) for all a ∈ A and h ∈ H̃ . In particular, if A = µ2,

such a representation is simply called genuine. Any representation π ′ of G can be pulled

back to a non-genuine representation of G̃ by composing it with p.

A section of H is a mapping ϕ : H → G̃ such that ϕ(1) = 1 and p ◦ϕ = idH . If H1 < H ,

we say that ϕ splits H1, or H1 is split under ϕ, if the restriction ϕ|H1 is a homomorphism.

In this case, because ϕ(H1)∩ ι(A) = {1}, H̃1 = ι(A) ·ϕ(H1) (an inner direct product). Now

any ϑ-genuine representation of H̃1 is uniquely determined by its restriction to ϕ(H1)

and conversely, any representation of ϕ(H1) can be extended uniquely to a ϑ-genuine

representation of H̃1. Of course, the splitting ϕ might not be unique, but, once fixed, a

representation of H1 has a unique extension to a ϑ-genuine representation of H̃1.
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A 2-cocycle defined on G is a mapping σ : G×G → A such that σ(1, 1) = 1 and, for

all g, g′, g′′ ∈ G,

σ(g, g′)σ (gg′, g′′) = σ(g, g′g′′)σ (g′, g′′). (1.9)

If ϕ : G → G̃ is a section, then the function (g, g′) 7→ ι−1(ϕ(g)ϕ(g′)ϕ(gg′)−1) is a

2-cocycle. Once we fix σ , the elements of G̃ can be written as pairs (g, a), where g ∈ G
and a ∈ A. In this realization, the multiplication in G̃ is defined by

(g, a) · (g′, a′) = (gg′, σ (g, g′)aa′).

Remark 1.1. Note one subtlety of the notation. For clarity reasons, we write X̃(F) instead

of X̃ (F), but always mean p−1(X (F)).

1.3.2. Representations. Let G be an `-group (see [11, (1.1)]). Throughout, unless

mentioned otherwise, representations of G will be complex, smooth, and admissible. If π

is a representation of G, the representation contragradient to π is denoted π∧. If π is a

representation of H < G and g ∈ G, gτ is the representation of g H defined on the space

of τ by gτ(x) = τ(g
−1

x).
Parabolically induced representations will always be normalized as in [12, (1.8)]. We

use Ind to denote regular induction; ind signifies compact induction. The (normalized)

Jacquet functor jU,ψ is defined as in [12, (1.8)], where U is a unipotent subgroup and ψ

is a character of U . If ψ is trivial, we write jU = jU,ψ .

1.3.3. The Hilbert symbol. For an integer r > 1, let c = (, )−1
r . We recall that c

is an antisymmetric bi-character; i.e., c(1, 1) = 1, c(xy, z) = c(x, z)c(y, z), and c(x, y) =
c(y, x)−1. Also, c(x, y) = 1 for all y ∈ F∗ if and only if x ∈ F∗r . If |r | = 1 in F∗, c is

trivial on O∗×O∗, and c(x, y) = 1 for all y ∈ O∗ if and only if x ∈ O∗F∗r [86, § XIII.5,

Proposition 6].

1.3.4. The Weil factor. Let ψ be given, and let γψ be the Weil factor (see

§ 1.1). We recall that γψ (xy) = γψ (x)γψ (y)(x, y)2, and, if a ∈ F∗ and ψa(x) = ψ(ax),
γψa (x) = (a, x)2γψ (x). Moreover, γψa = γψb if and only if ab−1

∈ F∗2. Also γψ (x2) = 1
and γψ (x−1) = γψ (x). See the appendix of Rao [68].

2. Local theory

2.1. The double cover of Gn(F)

2.1.1. Definition of the r-fold cover. Let F be a local field of characteristic 0,

and let r > 1 be an integer. Assume that F contains all the rth roots of unity; i.e.,

|µr | = r . Let G̃ ′n+1(F) be the r -fold cover of G ′n+1(F), constructed by Matsumoto [59]

using c = (, )−1
r as the Steinberg symbol. The group G̃ ′n+1(F) fits into an exact sequence

1→ µr
ι
−→ G̃ ′n+1(F)

p
−→ G ′n+1(F)→ 1.
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Let G̃n(F) = p−1(Gn(F)). We have an exact sequence

1→ µr
ι
−→ G̃n(F)

p
−→ Gn(F)→ 1,

and G̃n(F) is an r -fold cover of Gn(F).
Although most of this work will focus on the double cover, we start with the more

general setting. From § 2.1.6 onward, except for § 3.1, we will assume that r = 2.

Banks et al. [10] gave an explicit description of a section s of G ′n+1(F) and used

it to construct a 2-cocycle σG ′n+1
, representing the cohomology class of G̃ ′n+1(F) in

H2(G ′n+1(F), µr ). We obtain a section of Gn(F) and a 2-cocycle by restricting s and

σG ′n+1
.

We briefly describe the construction and results of [10]. For α ∈ ΣG ′n+1
, let Uα be the

corresponding root subgroup. Fix an isomorphism nα : F → Uα (based on an explicit

decomposition of the Chevalley algebra corresponding to G ′n+1(F)). For x ∈ F∗, put

wα(x) = nα(x)n−α(−x−1)nα(x). Note that α∨(x) = hα(x) in the notation of [10] (hα(x) =
wα(x)wα(1)−1). If α′ ∈ ΣG ′n+1

, let 〈α, α′∨〉 be the standard pairing between characters and

cocharacters, where α′∨ is the coroot corresponding to α′.

Given α ∈ ΣG ′n+1
, let n∗α : F → G̃ ′n+1(F) be the canonical lift of Steinberg [76]. Using

these lifts, one defines w∗α(x) and α∨∗(x): w∗α(x) = n∗α(x)n
∗
−α(−x−1)n∗α(x) and α∨∗(x) =

w∗α(x)w
∗
α(1).

Let α ∈ 1G ′n+1
. For any x, y ∈ F∗, define cα(x, y) = c(x, y) if n > 0 and α is a long

root; otherwise (n = 0 or α = αn+1), put cα(x, y) = c(x2, y). Also set wα = wα(−1) and

w∗α = w
∗
α(−1).

Remark 2.1. In the case when n = 0, there is only one root, α1, which is by definition a

long root. In this case, in [10], it was defined that cα(x, y) = c(x, y). The present definition

seems to be correct because it preserves the compatibility with restriction to ‘standard’

subgroups; see § 2.1.2.

Following Matsumoto [59], Banks, Levi, and Sepanski described a list of identities in

the cover group describing the multiplication laws between the elements. The following

partial list of identities in G̃ ′n+1(F) [10, § 1] will be used repeatedly in computations:

α∨
∗
(x)α∨∗(y) = ι(cα(x, y))α∨∗(xy), (2.1)

α∨
∗
(x)α′∨∗(y) = ι(cα(x, y〈α,α

′∨
〉))α′

∨∗
(y)α∨∗(x), (2.2)

w∗αα
′∨∗(x)w∗α

−1
= α∨

∗
(x−〈α,α

′∨
〉)α′
∨∗
(x), (2.3)

w∗α
−1
= w∗αα

∨∗(−1)ι(cα(−1,−1))r−1, (2.4)

w∗
α′′
(x)n∗

α′′
(z)w∗

α′′
(x)−1

= n∗
−α′′

(−x−2z), (2.5)

w∗αn∗α(x) = n∗α(−x−1)α∨
∗
(x−1)n∗−α(x

−1), (2.6)

n∗
α′′′
(z)α∨∗(y) = α∨∗(y)n∗

α′′′
(zy−〈α

′′′,α′
∨
〉), (2.7)

w∗α
−1n∗

α′′′
(z)w∗α = nsαα′′′(dα,α′′′ z). (2.8)
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Here, α, α′ ∈ 1G ′n+1
, x, y ∈ F∗, z ∈ F , α′′ ∈ ΣG ′n+1

, and α′′′ ∈ Σ+G ′n+1
. In (2.8), α 6= α′′′, sα

is the reflection along α in the Weyl group of G ′n+1, and dα,α′′′ = ±1, depending only on

G ′n+1(F).
Banks et al. [10] defined the following section s of G ′n+1(F). First, it is the only splitting

of Nn+1(F), and it satisfies s(nα(x)) = n∗α(x) for all α ∈ Σ+G ′n+1
. On Tn+1(F) it satisfies

s

(n+1∏
i=1

α∨i (ti )

)
= α∨n+1

∗
(tn+1)α

∨
n
∗
(tn) · . . . ·α∨1

∗
(t1)

n+1∏
i=1

ι(cαi (ti , ti )). (2.9)

Let Wn+1 be the set of elements w = wαi1
wαi2
· · ·wαik

, where αi1 , . . . , αik ∈ 1G ′n+1
and w

is assumed to be a reduced expression. For such w, put l(w) = k. As sets, Wn+1 ∼= Wn+1.

We use boldface to denote the elements of Wn+1. If w ∈ Wn+1, its representative in Wn+1
is w.

The section s is extended to G ′n+1(F) with the following properties [10, Lemmas 2.2

and 2.3]:

s(wα) = w
∗
α, (2.10)

s(ww′) = s(w)s(w′), (2.11)

s(utwu′) = s(u)s(t)s(w)s(u′). (2.12)

Here, α ∈ 1G ′n+1
, w,w′ ∈Wn+1 satisfy l(ww′) = l(w)+ l(w′), u, u′ ∈ NG ′n+1

(F), and t ∈
Tn+1(F).

Finally, the 2-cocycle σ = σG ′n+1
is defined by σ(g, g′) = s(g)s(g′)s(gg′)−1. The image

of σ belongs to ι(µr ), but we implicitly compose it with ι−1. The following formulas

hold [10, Proposition 2.4]:

σ(ugu′′, g′u′) = σ(g, u′′g′), (2.13)

σ(t, w) = 1, (2.14)

where u, u′, u′′ ∈ NG ′n+1
(F), t ∈ Tn+1(F), and w ∈Wn+1.

We pull back the character ϒ to a non-genuine character of G̃n(F), still denoted ϒ .

For any g, g′ ∈ G ′n+1(F), denote [g, g′]σ = σ(g, g′)σ (g′, g)−1. Let x, x ′ ∈ G̃ ′n+1(F) be

with p(x) = g and p(x ′) = g′. If [g, g′] = 1, then s(gg′) = s(g′g), and

[x, x ′] = s(g)s(g′)s(g)−1s(g′)−1
= [g, g′]σ . (2.15)

In particular, x and x ′ commute if and only if [g, g′] = 1 and [g, g′]σ = 1.

The following claim describes the value of the cocycle on the torus.

Claim 2.1. Let t =
∏n+1

i=1 α
∨

i (ti ), t ′ =
∏n+1

i=1 α
∨

i (t
′

i ). Then

σ(t, t ′) = c(t2
n+1, t ′n+1)c(tn, t ′−2

n+1)

n∏
i=1

c(ti , t ′i )
n−1∏
i=1

c(ti , t ′−1
i+1).

In particular, if n = 0, σ(t, t ′) = c(t2
1 , t ′1) and, for n = 1, σ(t, t ′) = c(t2

2 , t ′2)c(t1, t ′−2
2 )

c(t1, t ′1).
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Proof. The proof follows from (2.9), (2.1), (2.2), and the fact that, for 1 6 i < i ′ 6 n+ 1,

if i < i ′− 1 then 〈αi , α
∨

i ′ 〉 = 0; if i ′ 6 n, 〈αi ′−1, α
∨

i ′ 〉 = −1; and 〈αn, α
∨

n+1〉 = −2.

Note that a similar construction works for GSpin2n . As explained in § 1.1, this group

can be regarded as a subgroup of Spin2(n+1); then the cover G̃Spin2n(F) can be obtained

by restriction from ˜Spin2(n+1)(F). Here, GSpin2n will appear a priori as a subgroup of

some Gm , so the cover is obtained by restricting G̃m(F).

2.1.2. Restriction to ‘standard’ subgroups. Let H be a simple simply connected

algebraic F-group, which is F-split. Let 1 ⊂ 1G ′n+1
. Further assume that H(F) is the

subgroup of G ′n+1(F) generated by the elements α∨(x), wα, and nα′(y), where α ∈ 1;

x ∈ F∗; α′ ∈ Σ+G ′n+1
is spanned by the roots in 1; and y ∈ F . Then H(F) was called a

‘standard’ subgroup of G ′n+1(F) in [10]. According to [10, Lemma 2.5 and its proof], the

restriction of s to H(F) gives the section defined by [10] on H(F), and σ |H(F)×H(F) is the

2-cocycle of [10] on H(F). Moreover, if H1(F), . . . , Hk(F) is a collection of standard

subgroups that are mutually commuting and σi is the 2-cocycle on Hi (F), by [10,

Theorem 2.7],

σ(g1 · · · gk, g′1 · · · g
′

k) =

k∏
i=1

σi (gi , g′i ).

This property was used in [10] to define their block-compatible cocycle for GLn(F); see

§ 2.1.5.

For example, if n > 0, according to the embedding Mn−1 < Gn , the group G ′1(F) is

the standard subgroup generated by {α∨n+1(x), wαn+1 , nαn+1(y)}. If σG ′1
is the cocycle on

G ′1(F),

σG ′1
(α∨n+1(t1), α

∨

n+1(t
′

1)) = σ(α
∨

n+1(t1), α
∨

n+1(t
′

1)) = cαn+1(t1, t ′1).

Since n > 0, cαn+1(t1, t ′1) = c(t2
1 , t ′1). Therefore, when n = 0, we must define cα1(x, y) =

c(x2, y) (see Remark 2.1).

2.1.3. Splitting of the cover for r = 2 and n 6 1. We have the following minimal

cases.

Claim 2.2. Assume that r = 2. For n 6 1, the cover G̃n(F) splits under s. Moreover, for

n = 0, the restriction of σ to G0(F)×G0(F) is trivial.

Proof. In the case when n = 0, σ |G0(F)×G0(F) = 1 because cα1(x, y) = c(x2, y) = 1.

Assume that n = 1. Since G1 = GL2, if the cocycle is non-trivial, then it is equal up

to a coboundary to one of the cocycles defined by Kazhdan and Patterson [47], all of

which are non-trivial on SL2(F). However, σ |G ′1×G ′1
= σG ′1

(by § 2.1.2) and σG ′1
= 1, as

can be seen using (2.1)–(2.7); note that we have only one simple root α2, and in this case

cα2 = 1.
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2.1.4. A splitting of the hyperspecial subgroup. Assume that |r | = 1 in F (in

particular, F is p-adic) and that q > 3. By Moore [64, pp. 54–56], there is a unique

splitting κ of G ′n+1(O), which is in particular a splitting of K (= Gn(O)). Denote K ∗ =
κ(K ). As in [47, Proposition 0.1.3], we have the following relation between κ and s.

Claim 2.3. The sections s and κ agree on K ∩ Nn(F), K ∩ Tn+1(F), and Wn (Wn ⊂ K ).

Proof. Let α ∈ 1G ′n+1
. First, assume that α 6= αn+1, and let SL2 be embedded in G ′n+1

along α. Let σSL2 be the 2-cocycle of [10] on SL2(F). According to [10, Corollary 3.8 and

Lemma 2.5], σSL2 is the cocycle of Kubota [51] on SL2(F). Kubota [52, Theorem 2] proved

that the mapping γ : SL2(O)→ µr , which is 1 on
(
∗ ∗
x y
)

if |x | ∈ {0, 1} and otherwise equals

c(x, y), satisfies σSL2(k, k′) = γ (k)γ (k′)γ (kk′)−1.

Again by [10, Lemma 2.5], s(k)s(k′)s(kk′)−1
= σSL2(k, k′), whence ϕ(k) = s(k)/ι(γ (k))

is a splitting of SL2(O). Hence ϕ coincides with κ on SL2(O) [64, Lemma 11.1]. Whenever

γ (k) = 1, s(k) = κ(k), and in particular s and κ agree on nα(O), α∨(O∗), and wα.

If α = αn+1 and r > 2, restriction to SL2(F) gives a non-trivial cover (of order

r/gcd (2, r)), and the proceeding discussion applies (with γ defined using c(, )2 instead

of c(, )). If r = 2, s|SL2(F) is a homomorphism (σG ′1
= 1; see the proof of Claim 2.2), and

hence s|SL2(O) = κ|SL2(O).

The section κ is in particular a splitting of K ∩ Tn+1(F), and the same holds for s

(because c is trivial on O∗×O∗). Writing t =
∏n+1

i=1 α
∨

i (ti ) ∈ K ∩ Tn+1(F) (ti ∈ O∗) and

noting that s(α∨i (ti )) = κ(α
∨

i (ti )) for each i , since α∨i (ti ) belongs to the copy of SL2(O)

along αi ∈ 1G ′n+1
, one deduces that κ(t) = s(t).

Regarding Wn , according to (2.11) it is enough to show that κ(wα) = s(wα) for α ∈ 1Gn ,

which holds because wα belongs to a suitable copy of SL2(O).

It remains to consider Uα′ , where α′ ∈ Σ+Gn
. Let y ∈ O, and take α ∈ 1G ′n+1

, x ∈ O,

and w ∈Wn such that w−1nα(x)w = nα′(y). The fact that κ is a splitting of K and the

assertions already proved imply that κ(w−1nα(x)w) = s(w)−1s(nα(x))s(w). Then (2.10),

(2.11), and (2.8) give s(w)−1s(nα(x))s(w) = n∗
α′
(y), whence s(nα′(y)) = κ(nα′(y)). Note

that we actually apply (2.8) repeatedly, according to the decomposition of w into a

product of simple reflections wαi (αi ∈ 1Gn ), and after j conjugations, if we have to

conjugate n∗
α′′′
(x j ) by w∗αi

, then α′′′ ∈ Σ+Gn
−1Gn , whence αi 6= α

′′′ (this is needed for (2.8)).

2.1.5. Block compatibility. As mentioned in the introduction, the 2-cocycle defined

on SLn+1(F) was used in [10] to define a 2-cocycle σn for GLn(F). Specifically, they defined

σn(b, b′) = c(det b, det b′)−1σSLn+1(diag(b, det b−1), diag(b′, det b′−1
)) (b, b′ ∈ GLn(F)).

If n = 1, σn = 1. Their cocycle is block compatible [10, Theorem 3.11], in the sense that,

for any gi , g′i ∈ GLni (F), 1 6 i 6 l,

σn(diag(g1, . . . , gl), diag(g′1, . . . , g′l)) =
l∏

i=1

σni (gi , g′i )
∏
i< j

c(det gi , det g′j )
−1.
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We seek similar block compatibility. We begin with the following lemma, which

encapsulates several arguments of [10] and summarizes a list of properties which, when

satisfied by a pair of subgroups, implies a certain plausible block formula.

Lemma 2.4. Assume that H1 and H2 are two subgroups of G ′n+1(F) with the following

properties.

(1) For each i and h ∈ Hi , there is a Bruhat decomposition h = utwv with u, v ∈
NG ′n+1

(F), t ∈ Tn+1(F), and w ∈Wn+1, and such that u, t, w, v ∈ Hi .

(2) The subgroups H1 and H2 commute.

(3) If w1 ∈ H1 ∩Wn+1 and w2 ∈ H2 ∩Wn+1, then l(w1w2) = l(w1)+ l(w2).

(4) If i ∈ {1, 2}, w ∈ Hi ∩Wn+1, and t ′ ∈ H3−i ∩ Tn+1(F), then σ(w, t ′) = 1.

(5) If t1 ∈ H1 ∩ Tn+1(F) and t2 ∈ H2 ∩ Tn+1(F), then σ(t2, t1) = 1.

Then, for any h1, h′1 ∈ H1 and h2, h′2 ∈ H2,

σ(h1h2, h′1h′2) = σ(h1, h′1)σ (h2, h′2)σ (h1, h′2).

Moreover, if h1 = u1t1w1v1 and h′2 = u′2t ′2w
′

2v
′

2, with u1, v1, u′2, v
′

2 ∈ NG ′n+1
(F), t1, t ′2 ∈

Tn+1(F), w1, w
′

2 ∈Wn+1, u1, t1, w1, v1 ∈ H1, and u′2, t ′2, w
′

2, v
′

2 ∈ H2, then

σ(h1, h′2) = σ(t1, t ′2).

Proof. Let i ∈ {1, 2}, t ∈ Hi ∩ Tn+1(F), w ∈ Hi ∩Wn+1, t ′ ∈ H3−i ∩ Tn+1(F), and w′ ∈

H3−i ∩Wn+1. Note that, by (2) and (2.12),

σ(w, t ′) = s(w)s(t ′)s(wt ′)−1
= s(w)s(t ′)s(t ′w)−1

= s(w)s(t ′)s(w)−1s(t ′)−1,

whence (4) implies that s(w)s(t ′)s(w)−1
= s(t ′). Thus

σ(tw, t ′) = s(tw)s(t ′)s(twt ′)−1
= s(t)s(w)s(t ′)s(t t ′w)−1

= s(t)s(w)s(t ′)s(w)−1s(t t ′)−1
= s(t)s(t ′)s(t t ′)−1

= σ(t, t ′), (2.16)

where we also used (2.12) and (2). Similarly,

σ(twt ′, w′) = σ(t t ′w,w′) = s(t t ′)s(w)s(w′)s(t t ′ww′)−1

= s(t t ′)σ (w,w′)s(t t ′)−1
= s(t t ′)s(t t ′)−1

= 1. (2.17)

Here we used (2.11), (2), and (3) to deduce that σ(w,w′) = 1.

Now (2.14), (1.9), (2.16), and (2.17) imply that

σ(tw, t ′w′) = σ(tw, t ′w′)σ (t ′, w′) = σ(tw, t ′)σ (twt ′, w′) = σ(t, t ′).

Let h ∈ Hi and h′ ∈ H3−i . Write h = utwv and h′ = u′t ′w′v′, with u, v ∈ Hi ∩ NG ′n+1
(F)

and u′, v′ ∈ H3−i ∩ NG ′n+1
(F) (this is possible by (1)). Then (2.13) and (2) give

σ(h, h′) = σ(twv, u′t ′w′) = σ(twu′, vt ′w′) = σ(u′tw, t ′w′v) = σ(tw, t ′w′) = σ(t, t ′).

Hence for i = 1 (h ∈ H1), we deduce the second assertion; i.e., σ(h1, h′2) = σ(t1, t ′2). When

i = 2 (h ∈ H2, h′ ∈ H1), σ(h, h′) = 1 because of (5). Then, exactly as in [10, top of p. 157],

a repeated application of (1.9) implies that σ(h1h2, h′1h′2) = σ(h1, h′1)σ (h2, h′2)σ (h1, h′2).
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Consider the group Mk(F), which is a product of H2 = GLk(F) and H1 = Gn−k(F).
These subgroups clearly satisfy conditions (1)–(3) of Lemma 2.4. The following claim

checks the validity of the other conditions.

Claim 2.5. Let a =
∏k

i=1 η
∨

i (ai ) ∈ TGLk (F) and t =
∏n−k+1

i=1 β∨i (ti ) ∈ Tn−k+1(F), and

consider their images in Gn(F), given by (1.3) and (1.4). Then

σ(a, t) = 1,

σ (t, a) =

c(t1, det a−1) k < n,

c(t2
1 , det a−1) k = n.

In particular, condition (5) of Lemma 2.4 holds. Further, let w1 ∈ H1 ∩Wn+1 and w2 ∈

H2 ∩Wn+1. Then σ(w1, a) = 1 and, if r = 2, σ(w2, t) = 1, whence condition (4) also

holds.

Proof. The computations of σ(a, t) and σ(t, a) are immediate from (1.3), (1.4), and

Claim 2.1. The equality σ(w1, a) = 1 follows from the fact that, for any k+ 2 6 i 6 n+ 1
and 1 6 j 6 k, 〈αi , α

∨

j 〉 = 0, and then (2.3) implies that w∗αi
commutes with α∨j

∗
(x) for

any x ∈ F∗.
Regarding σ(w2, t), we show that, if r = 2,

s(w2)s(t)s(w2)
−1
= s(t). (2.18)

Then the result follows from (2.12) (note that w2t = tw2). It is enough to establish this

for w = w∗αi
with 2 6 i 6 k.

First, assume that k < n. Using (2.3) and then (2.1) and (2.2),

wα∨i+1
∗
(t1)α∨i

∗
(t1)α∨i−1

∗
(t1)w−1

= α∨i
∗
(t1)α∨i+1

∗
(t1)α∨i

∗
(t−2

1 )α∨i
∗
(t1)α∨i

∗
(t1)α∨i−1

∗
(t1)

= α∨i+1
∗
(t1)α∨i

∗
(t1)α∨i−1

∗
(t1)ι(cαi (t1, t−1

1 )2cαi (t
−2
1 , t1))

= α∨i+1
∗
(t1)α∨i

∗
(t1)α∨i−1

∗
(t1).

This computation implies (2.18). For k = n, the computation is similar (one distinguishes

between the cases i < n and i = n).

Remark 2.2. For a general r , the cocycle does not seem to satisfy a convenient formula

on Mk(F)×Mk(F). One can remedy this by defining another isomorphism of GLk ×Gn−k
with Mk . Let SLk be generated by the simple roots {αi : 1 6 i 6 k− 1}, and let G ′n−k be

generated by {αi : k+ 2 6 i 6 n+ 1}. If {η∨i } are the cocharacters of TGLk and {θi } are

the characters of Tn−k+1, map η∨i 7→ ε∨i − ε
∨

k+1 for 1 6 i 6 k and θ∨i 7→ ε∨k+i for 1 6 i 6
n− k+ 1. This is a twist of the embeddings described in § 1.2, by a Weyl element of G ′n+1.

The evaluation of σ on TGLk (F)× TGLk (F) and Tn−k+1(F)× Tn−k+1(F) provides

evidence that the cocycle indeed satisfies certain block-compatibility properties.

Claim 2.1, along with (1.3)–(1.4), shows that, for any 0 6 k 6 n,

σ

( k∏
i=1

η∨i (ai ),

k∏
i=1

η∨i (a
′

i )

)
= c(det a, det a′)

∏
16i< j6k

c(ai , a′j )
−1,
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σ

(n−k+1∏
i=1

β∨i (ti ),
n−k+1∏

i=1

β∨i (t
′

i )

)
= c(t2

n−k+1, t ′n−k+1)c(tn−k, t ′−2
n−k+1)

×

n−k∏
i=1

c(ti , t ′i )
n−k−1∏

i=1

c(ti , t ′−1
i+1).

We see that σ(a, a′) = c(det a, det a′)σk(a, a′) for a, a′ ∈ TGLk (F) and for t, t ′ ∈ Tn−k+1(F),
σ(t, t ′) = σG ′n−k+1

(t, t ′).
Henceforth until the end of § 2, r = 2. Lemma 2.4 and Claim 2.5 imply that, for b, b′ ∈

GLk(F) and h, h′ ∈ Gn−k(F),

σ(bh, b′h′) = σ(b, b′)σ (h, h′)c(ϒ(h), det b′).

The subgroup GLk(F) (of Mk(F)) is contained in the subgroup SLk+1(F) < G ′n+1(F)
generated by {αi : 1 6 i 6 k}. If we regard SLk+1(F) as a group of matrices in the standard

way, i.e., identify nεi−ε j (x) (1 6 i < j 6 k+ 1, x ∈ F) with the matrix having 1 on the

diagonal, x on the (i, j)th place, and 0 elsewhere, b takes the form diag(det b−1, b). Since

SLk+1(F) is a standard subgroup (in the sense of [10]), the restriction of σ to SLk+1(F)×
SLk+1(F) is just σSLk+1 of [10, § 3]. We define a 2-cocycle σGLk of GLk(F) via

σGLk (b, b′) = σSLk+1(diag(det b−1, b), diag(det b′−1
, b′)).

Here, with a minor abuse of notation, we regard the arguments b and b′ on the right-hand

side as matrices. This cocycle is related to σk of [10] by

σGLk (b, b′) = c(det b, det b′)σk(b′, b).

Since σ(b, b′) = σSLk+1(b, b′), we get

σ(b, b′) = σGLk (b, b′).

Regarding Gn−k(F), as a subgroup of Mk(F) its embedding in Gn(F) is not contained

in a standard subgroup of type G ′n−k+1 (in contrast with the embedding described by

Remark 2.2). However, it is still true that

σ(h, h′) = σG ′n−k+1
(h, h′). (2.19)

To see this, first note that G ′n−k (as a subgroup of Gn−k) is generated by the roots

{αi : k+ 2 6 i 6 n+ 1}, and is therefore a standard subgroup, whence

σ |G ′n−k (F)×G ′n−k (F)
= σG ′n−k+1

|G ′n−k (F)×G ′n−k (F)
.

Moreover, according to the computation on Tn−k+1(F)× Tn−k+1(F) above,

σ |Tn−k+1(F)×Tn−k+1(F) = σG ′n−k+1
|Tn−k+1(F)×Tn−k+1(F).

According to Sun [79, Proposition 1], the restrictions of a cocycle (defined using a bilinear

Steinberg symbol) to the derived group and to the torus determine it uniquely. Thus we

conclude that (2.19) holds.
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Therefore,

σ(bh, b′h′) = σGLk (b, b′)σG ′n−k+1
(h, h′)c(ϒ(h), det b′). (2.20)

Let Q < Gn be a standard parabolic subgroup with a Levi part M isomorphic to

GLk1 × · · ·×GLkl ×Gn−k , where k = k1+ · · ·+ kl . Our standard embedding M < Gn was

defined in § 1.2. According to (2.20), for (b1, . . . , bl , h), (b′1, . . . , b′l , h′) ∈ M(F) (h, h′ ∈
Gn−k(F)),

σ((b1, . . . , bl , h), (b′1, . . . , b′l , h′))

=

( l∏
i=1

σGLki
(bi , b′i )c(ϒ(h), det b′i )

) l∏
i> j

c(det bi , det b′j )

 σG ′n−k+1
(h, h′). (2.21)

We mention one particularly convenient Levi subgroup, Mn . Then c(ϒ(h), ·) = 1 for

all h ∈ G0(F) (see § 1.2). Therefore the subgroups G̃Ln(F) and G̃0(F) of M̃n(F) are

commuting, and M̃n(F) is simply their direct product with amalgamated µ2. Also note

that (since r = 2) the cover G̃0(F) is abelian and splits, and σ |G0(F)×G0(F) is trivial

(Claim 2.2). Then

σ

( n∏
i=1

η∨i (ai )β
∨

1 (t1),
n∏

i=1

η∨i (a
′

i )β
∨

1 (t
′

1)

)
= c(det a, det a′)

∏
16i< j6k

c(ai , a′j )
−1. (2.22)

We end this section with a remark about a possible generalization of these

block-compatibility results. Lemma 2.4 holds in the generality of the construction of [10].

That is, one can replace G ′n+1(F) with an arbitrary simple simply connected split group

G ′ over a local field. If H < G ′ is a Levi subgroup and H1 and H2 are two direct factors of

H , the first three conditions of the lemma hold, but the other two depend on the relations

between the roots and coroots of H1 and H2. These might be ‘too close’, so there is no

block compatibility.

Now consider a (proper) Levi subgroup G < G ′, and assume that we are interested in

its cover obtained by restricting the cover of G ′. In this case we can apply the procedure

described in Remark 2.2 to a maximal Levi subgroup H of G: if 1G ′ is the set of simple

roots of G ′, 1G ⊂ 1G ′−{α} for some α ∈ 1G ′ , then one can use α to define a subgroup

of G ′ (not of G) isomorphic to H , on which block compatibility is expected to hold. The

downside is that now we must switch back and forth between two isomorphic copies of

H , but they are twists of each other (by a Weyl element of G ′).
Proving a general statement about the block compatibility of the cocycle should be

possible along the lines described here. We hope to return to this problem in the future.

2.1.6. Subgroups of the torus. For n > 1, T̃n+1(F) is not abelian. Its irreducible

genuine representations are parameterized by genuine characters of its center, as follows

from an analog of the Stone–von Neumann theorem [47, 61]. In this section we compute

CT̃n+1(F) and several other subgroups, which will be used in § 2.2 to study these

representations.
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The following subgroup of Tn+1(F) will play an important role in constructing

irreducible representations of T̃n+1(F):

Tn+1(F)2 =

{n+1∏
i=1

α∨i (ti ) : ∀1 6 i 6 n, ti ∈ F∗2, tn+1 ∈ F∗
}
.

Equality (1.6) implies that Tn+1(F)2 = {
∏n

i=1 η
∨

i (a
2
i )β
∨

1 (t1) : ai , t1 ∈ F∗}.

Claim 2.6. The subgroup Tn+1(F)2 splits under s. In particular, any character of Tn+1(F)2

can be extended to a genuine character of T̃n+1(F)2 (uniquely, using the splitting s).

Proof. This is evident from (2.9), (2.1), and (2.2). The point is that α∨i
∗
(x) and α∨j

∗
(y)

commute whenever both x, y ∈ F∗2 or n+ 1 ∈ {i, j}.

Next we describe the center of G̃n(F).

Claim 2.7. CG̃n(F) = C̃Gn(F) and splits under s.

Proof. Let t =
∏n

i=1 α
∨

i (t
2
1 )α
∨

n+1(t1) ∈ CGn(F) (see (1.1)). Then [t, g] = 1 for all g ∈
Gn(F), and we must show that [t, g]σ = 1 ([, ]σ was defined in § 2.1.1). Since [, ]σ
is bi-multiplicative, it suffices to consider g = t ′, u, w, where t ′ ∈ Tn+1(F), u ∈ Nn(F),
and w = wαi with 2 6 i 6 n+ 1. Now [t, t ′]σ = 1 because of (2.2), and [t, u]σ = 1
by (2.13). Using (2.15), it is enough to show that s(w)s(t)s(w)−1

= s(t). This follows

from (2.1)–(2.3) and the observation in the proof of Claim 2.6. Now, the splitting follows

from Claim 2.6.

Recall that, by [47, Proposition 0.1.1],

CG̃Ln(F) = p−1

({ n∏
i=1

η∨i (d) : d ∈ (F
∗)2/gcd (2,n+1)

})
. (2.23)

Also, set TGLn (F)
2
= {

∏n
i=1 η

∨

i (a
2
i ) : ai ∈ F∗}. By [47, p. 57], CT̃GLn (F)

= T̃GLn (F)
2CG̃Ln(F).

Note that CG̃n(F) < T̃n+1(F)2, in contrast with the case of G̃Ln(F), where CG̃Ln(F)
is contained in T̃GLn (F)

2 only when n is even. This causes technical difficulties when

trying to adapt definitions of metaplectic tensor product from GLn [42, 62, 81] to Gn ; see

§§ 2.2.4–2.2.5 below.

We compute the center of the torus.

Claim 2.8. We have CT̃n+1(F) = T̃n+1(F)2CG̃Ln(F). More specifically,

CT̃n+1(F) = p−1

({ n∏
i=1

η∨i (a
2
i d)β∨1 (t1) : ai ∈ F∗, d ∈ (F∗)2/gcd (2,n+1), t1 ∈ F∗

})
. (2.24)
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Proof. In general, if b =
∏n

i=1 η
∨

i (bi )β
∨

1 (t1) and b′ =
∏n

i=1 η
∨

i (b
′

i )β
∨

1 (t
′

1), equality (2.22)

implies that

[b, b′]σ =
n∏

i=1

c(bi , b′i )c

( n∏
i=1

bi ,

n∏
i=1

b′i

)
. (2.25)

Set d =
∏n

i=1 b−1
i . On the one hand, for any 1 6 j 6 n and z ∈ F∗, [b, η∨j (z)]σ =

c(b j d−1, z). Then, if b ∈ CT̃n+1(F), b j d−1
∈ F∗2, whence b j = a2

j d for some a j ∈ F∗. It

follows that dn−1
∈ F∗2, or equivalently dn+1

∈ F∗2 and d ∈ (F∗)2/gcd (2,n+1). Hence b is

of the required form. On the other hand, if d ∈ (F∗)2/gcd (2,n+1),[ n∏
i=1

η∨i (a
2
i d)β∨1 (t1), η

∨

j (z)

]
σ

= c(dn+1, z)c(a2
j , z)

n∏
i=1

c(a2
i , z).

Because c(dn+1, z) = c(a2
i , z) = 1, we obtain [

∏n
i=1 η

∨

i (a
2
i d)β∨1 (t1), η

∨

j (z)]σ = 1 for

all 1 6 j 6 n. Since [
∏n

i=1 η
∨

i (a
2
i d)β∨1 (t1), η

∨

n+1(z)]σ = 1 clearly holds and [, ]σ is

bi-multiplicative, any element on the right-hand side of (2.24) belongs to the center

of T̃n+1(F).
Now CT̃n+1(F) = T̃n+1(F)2CG̃Ln(F) follows immediately from (2.23).

Remark 2.3. If n is even, CG̃Ln(F) < T̃n+1(F)2, whence CT̃n+1(F) = T̃n+1(F)2.

Remark 2.4. In the case of the cover of SO2n+1(F) obtained by restricting the fourfold

cover of SL2n+1(F) of Matsumoto [59], we have [18, § 6]

CT̃SO2n+1 (F)
= p−1({diag(a2

1, . . . , a2
n, 1, a−2

n , . . . , a−2
1 ) : ai ∈ F∗}).

We describe certain maximal abelian subgroups of T̃n+1(F). A representation of CT̃n+1(F)
can always be extended to such a subgroup, and then induced to a representation of

T̃n+1(F).

Claim 2.9. Assume that |2| = 1 and that q > 3 in F. The subgroup C(T̃n+1(F), T̃n+1(F)∩
K ∗) (i.e., the centralizer of T̃n+1(F)∩ K ∗ in T̃n+1(F); see § 1.1) is a maximal abelian

subgroup of T̃n+1(F) containing T̃n+1(F)∩ K ∗. We have

C(T̃n+1(F), T̃n+1(F)∩ K ∗) = CT̃n+1(F) · (T̃n+1(F)∩ K ∗). (2.26)

Proof. Equality (2.26) follows if we show that C(T̃n+1(F), T̃n+1(F)∩ K ∗) is equal to

p−1

({ n∏
i=1

η∨i (ai d)β∨1 (t1) : ai ∈ O∗F∗2, d ∈ O∗(F∗)2/gcd (2,n+1), t1 ∈ F∗
})

. (2.27)

The proof of this is similar to the proof of Claim 2.8, and is therefore omitted.
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It can be useful for applications to have a convenient choice of a maximal abelian

subgroup, over any field. We follow the construction of Bump and Ginzburg [19, p. 141].

Let

TGLn (F)
m
=

{ n∏
i=1

η∨i (ai ) : a1, . . . , an ∈ F∗, a−1
n−2i an−2i−1 ∈ F∗2, 0 6 i < bn/2c

}
.

(This is T e
F of [19].) Then T̃GLn (F)

m is a maximal abelian subgroup. The advantage of

this subgroup is that it always contains C̃GLn(F), regardless of the parity of n. Similarly,

we have the following.

Claim 2.10. Let

Tn+1(F)m

=

{ n∏
i=1

η∨i (ai )β
∨

1 (t1) : a1, . . . , an ∈ F∗, a−1
n−2i an−2i−1 ∈ F∗2, 0 6 i < bn/2c, t1 ∈ F∗

}
.

Then T̃n+1(F)m is a maximal abelian subgroup of T̃n+1(F) containing C̃GLn(F).

Proof. If b belongs to an abelian subgroup of T̃n+1(F) containing T̃n+1(F)m, write p(b) =∏n
i=1 η

∨

i (bi )β
∨

1 (t1). Then, for all 0 6 j < bn/2c and x, y ∈ F∗, by (2.25),

[b, η∨j (x)η
∨

j+1(xy2)]σ = c(b j , x)c(b j , xy2) = c(b j b j+1, x).

Because c(b j b j+1, x) must be equal to 1, we obtain b−1
j b j+1 ∈ F∗2, whence b ∈ T̃n+1(F)m.

To see that T̃n+1(F)m is an abelian subgroup, let t =
∏n

i=1 η
∨

i (ai )β
∨

1 (t1), t ′ =∏n
i=1 η

∨

i (a
′

i )β
∨

1 (t
′

1) belong to Tn+1(F)m. If n is even,
∏n

i=1 ai ∈ F∗2 and (2.25) implies

that [t, t ′]σ =
∏n

i=1 c(ai , a′i ). This equals 1 because, if a−1
j+1a j , a′j+1

−1a′j ∈ F∗2,

c(a j , a′j )c(a j+1, a′j+1) = c(a j+1a−1
j+1a j , a′j )c(a j+1, a′j+1) = c(a j+1, a′j a

′

j+1) = 1.

If n is odd,
∏n

i=2 ai ∈ F∗2, and we proceed similarly.

2.2. Principal series representations

2.2.1. Representations of the torus. We describe the representations of T̃n+1(F).
Since r = 2, T̃n+1(F) is abelian for n 6 1, as may be seen either by a direct verification

using (2.2) or from Claim 2.2. For n > 1, it is a two-step nilpotent group.

We follow the exposition of McNamara [61] (§§ 13.5–13.7; we only use arguments which

do not impose restrictions on the field). See also Kazhdan and Patterson [47, §§ 0.3,

I.1–I.2] and Bump et al. [17, § 2].

Assume that n > 1. Since T̃n+1(F) is a two-step nilpotent group, the genuine irreducible

representations of T̃n+1(F) are parameterized by the genuine characters of CT̃n+1(F). Let χ

be a genuine character of CT̃n+1(F), and choose a maximal abelian subgroup X < T̃n+1(F).
Of course, CT̃n+1(F) < X . We can extend χ to a character of X , and then induce it to

https://doi.org/10.1017/S1474748015000250 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748015000250


The double cover of GSpin(2n+ 1) and small representations 631

T̃n+1(F). Denote ρ(χ) = indT̃n+1(F)
X (χ). This is a genuine irreducible representation, which

is independent of the actual choices of X and the extension [61, Theorem 3]. If n 6 1, we

start with a genuine character χ of CT̃n+1(F) = T̃n+1(F) and put ρ(χ) = χ .

Extend ρ(χ) to a representation of B̃n(F), trivially on s(Nn(F)), and induce to a

representation IndG̃n(F)
B̃n(F)

(ρ(χ)), whose space we denote by V (χ). The elements f ∈ V (χ)

are smooth complex-valued functions f on G̃n(F)× T̃n+1(F) such that f (tug, 1) =
δ

1/2
Bn(F)(t) f (g, t) and t 7→ f (g, t) belongs to the space of ρ(χ) (t ∈ T̃n+1(F), u ∈ s(Nn(F)),

and g ∈ G̃n(F)). For brevity, we will write f (g) = f (g, 1).
The Weyl group Wn acts on the representations χ and ρ(χ). If w ∈ Wn and ξ is a

representation of CT̃n+1(F) or T̃n+1(F), wξ denotes the representation on the space of ξ

given by wξ(t) = ξ(s(w)
−1

t), where w ∈Wn is the representative of w. We have wρ(χ) =

ρ(wχ).

Let χ be a genuine character of CT̃n+1(F). Then ρ(χ)∧ = ρ(χ∧) = ρ(χ−1) (recall from

§ 1.3.2 that ρ(χ)∧ is the contragradient representation).

A genuine character χ of CT̃n+1(F) is called regular if wχ 6= χ for all 1 6= w ∈ Wn . For

such characters, jNn (ρ(χ)) is semisimple [61, Proposition 5] and is the direct sum of

ρ(wχ), where w varies over Wn . If χ ′ is another genuine character, the dimension of

HomG̃n
(IndG̃n(F)

B̃n(F)
(ρ(χ)), IndG̃n(F)

B̃n(F)
(ρ(χ ′))

is zero unless χ ′ = wχ for some w, in which case the dimension is 1. These statements

follow from Bernstein and Zelevinsky [12] (see [61]).

Let χ be a genuine character of CT̃n+1(F). There are unique m1, . . . ,mn+1 ∈ R such that,

for all t ∈ CT̃n+1(F), if p(t) =
∏n+1

i=1 α
∨

i (ti ), |χ(t)| =
∏n+1

i=1 |ti |
mi . Define Reχ =

∑n+1
i=2 miαi .

We say that χ belongs to the positive Weyl chamber if 〈Reχ, α∨〉 > 0 for all α ∈ 1Gn .

For a genuine character χ of CT̃n+1(F), χ |T̃n+1(F)2 is a genuine character, and, by

Claim 2.6, it is obtained as the unique extension (via s) to T̃n+1(F)2 of a character

χ0 of Tn+1(F)2. According to Claim 2.8, one can further extend to CT̃n+1(F) and obtain χ ,

according to χ |CG̃Ln (F)
. We will see that the ‘important’ properties of χ are shared by χ0.

Motivated by this observation, let 5(χ) be the set of genuine characters χ ′ of CT̃n+1(F)

which agree with χ on T̃n+1(F)2. By Claim 2.8, |5(χ)| = 1 or [F∗ : F∗2], depending on

the parity of n.

2.2.2. Unramified representations. In this section, assume that |2| = 1 and that

q > 3 in F . Then K is split under κ, and K ∗ = κ(K ) (§ 2.1.4). An irreducible genuine

representation π of G̃n(F) is called unramified if it has a non-zero vector fixed by

K ∗. Since Claim 2.3 implies that, for any w ∈Wn ⊂ K , s(w) = κ(w) ∈ K ∗, wπ is also

unramified for all w ∈ Wn .

Let χ be a genuine character of CT̃n+1(F). The subgroup T̃n+1(F)∩ K ∗ is abelian

(Claim 2.9). Let X be a maximal abelian subgroup of T̃n+1(F) which contains T̃n+1(F)∩
K ∗. According to Claim 2.9 and (2.26), X = C(T̃n+1(F), T̃n+1(F)∩ K ∗). Assume that χ

can be extended to a character of X such that this extension is trivial on T̃n+1(F)∩ K ∗.
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According to [61, Lemma 2], the subspace of V (χ) fixed by K ∗ is one dimensional.

In particular, IndG̃n(F)
B̃n(F)

(ρ(χ)) is unramified, and we also call χ an unramified character.

A function f ∈ V (χ) is unramified if it is fixed by K ∗, and normalized if in addition

f (1) = 1. We will use the following observation from [47, Lemma I.1.3], [61, Lemma 2]:

let f be unramified. If t ∈ T̃n+1(F) does not belong to X , f (t) = 0. This is because, for

k ∈ T̃n+1(F)∩ K ∗, tk = [t, k]kt , χ(k) = 1, and one can choose k such that [k, t] 6= 1 (by

the maximality of X); therefore

f (t) = f (tk, 1) = [k, t]δ1/2
Bn(F)(t)χ(k) f (1, t) = [k, t] f (t). (2.28)

According to (2.26), any genuine character of CT̃n+1(F), which is trivial on CT̃n+1(F) ∩ K ∗,
can be extended uniquely to a character of X which is trivial on T̃n+1 ∩ K ∗. Therefore,

any such character is unramified.

Let α ∈ Σ+Gn
. If α is a long root and n > 1, put l(α) = 2; otherwise, l(α) = 1. Set aα =

α∨
∗
($ l(α)). For any character χ of CT̃n+1(F) (not necessarily unramified), χ(aα) is defined.

2.2.3. Intertwining operators. Let χ be a genuine character of CT̃n+1(F), and let

ρ(χ) be the corresponding representation of T̃n+1(F) (see § 2.2.1). Let w ∈ Wn . Put Nw
n =

wNn ∩ Nn . Let M(w, χ) : V (χ)→ V (wχ) be the intertwining operator defined by

M(w, χ) f (g) =
∫

Nw
n (F)\Nn(F)

f (s(w)−1s(u)g) du (g ∈ G̃n(F)).

If |2| = 1 and q > 3 in F , s(w) = κ(w) ∈ K ∗ (Claim 2.3), and we follow Casselman [21]

in the normalization of the measure du. The following claim adapted from [47, §§ I.2 and

I.6] provides the basic properties of the intertwining operators.

Claim 2.11. The integral defining M(w, χ) is absolutely convergent if 〈Reχ, α∨〉 > 0
for all α ∈ Σ+Gn

such that wα < 0. The integral has a meromorphic continuation by

which it is defined for all χ . If w,w′ ∈ Wn, ww′ ∈Wn, and l(ww′) = l(w)+ l(w′),
then M(ww′, χ) = M(w, w′χ)M(w′, χ). Finally, if χ is unramified and f ∈ V (χ) is the

unramified normalized element, M(w, χ) f = c(w, χ) f , where

c(w, χ) =
∏

{α∈Σ+Gn :wα<0}

1− q−1χ(aα)
1−χ(aα)

.

Remark 2.5. The constant c(w, χ) is given by the Gindikin–Karpelevich formula [21, § 3].

This formula was proved in the context of G̃Ln by [47, § I.2], and by McNamara [60, 61]

for any split reductive algebraic group over a p-adic field, as long as |µ2r | = 2r and q is

coprime to 2r .

Proof. We assume that n > 1, since otherwise the cover splits and the statement is well

known. These results were proved by Kazhdan and Patterson [47, §§ I.2, I.6] for G̃Ln(F),
over any local field. We provide the calculation of the constant c(w, χ). Over a p-adic

field, the meromorphic continuation can also be proved using the continuation principle

of Bernstein; see Banks [9] (see also [47, p. 67] and [65]).
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Assume that χ is unramified, and take f as in the claim. It is enough to consider wα
for α ∈ 1Gn . Let 2 6 l 6 n+ 1, and put α = αl . The volume of O with respect to the

additive measure of F is 1. Hence

c(wα, χ) = M(wα, χ) f (1) = 1+
∫
Uα−K

f (w∗α
−1s(u)) du.

Write u = nα(x) for some x ∈ F with x /∈ O; then s(u) = n∗α(x). Using (2.2)–(2.7), we see

that

w∗α
−1n∗α(x) = α

∨∗(x−1)n∗α(−x)α∨∗(−1)w∗αn∗α(−x−1)w∗α
−1
.

By virtue of Claim 2.3, we have w∗α = s(wα) ∈ K ∗, n∗α(−x−1) = s(nα(−x−1)) ∈ K ∗ (|x | >
1), and α∨∗(−1) = s(α∨(−1)) ∈ K ∗. Therefore

f (w∗α
−1s(u)) = f (α∨∗(x−1)) = δ

1/2
Bn(F)(α

∨(x−1)) f (1, α∨∗(x−1)) = |x | f (1, α∨∗(x−1)).

Assume that l 6 n. If f (1, α∨∗(x−1)) 6= 0, by the observation in § 2.2.2 (see (2.28)),

we must have α∨∗(x−1) ∈ C(T̃n+1(F), T̃n+1(F)∩ K ∗). Assume that this holds, and set

l ′ = l + 1 if l 6 n− 1; otherwise, l ′ = n− 1 (recall that n > 1). Then equality (2.2) applied

to α∨∗(x−1) and α∨l ′
∗
(z) implies that c(x−1, z) = 1 for all z ∈ O∗, whence x ∈ O∗F∗2. We

have shown that the integrand vanishes unless x ∈ O∗F∗2, in which case f (1, α∨∗(x−1)) =

χ(α∨
∗
(x−1)). When l = n+ 1, this last equality holds for all x ∈ F∗.

Thus, for all 2 6 l 6 n+ 1,∫
Uα(F)−K

f (w∗α
−1s(u)) du =

∞∑
v=1

χ(aα)v = (1− q−1)
χ(aα)

1−χ(aα)
.

(The change du 7→ d∗x contributed a factor canceled by δ
1/2
Bn(F).) Therefore c(wα, χ) =

(1− q−1χ(aα))/(1−χ(aα)), completing the proof.

2.2.4. Structure of certain induced representations. In this section, F is

p-adic. For any H < Gn , set H(F)? = {h ∈ H(F) : ϒ(h) ∈ F∗2}. In particular, if H =
GLk , H(F)? = {h ∈ GLk(F) : det h ∈ F∗2}, and G0(F)? = G0(F). The subgroup H(F)? is

normal in H(F), and H(F)?\H(F) is abelian. The index of H(F)? in H(F) is either 1 or

[F∗ : F∗2]. These properties hold also for H̃(F)?(= p−1(H(F)?)) and H̃(F).
The subgroup H(F)? is open in H(F), and H̃(F)? is open in H̃(F) ([64, pp. 54–56];

see also [47, Proposition 0.1.2]).

If ξ is a genuine irreducible representation of H̃(F), let ξ ? = ξ |H̃(F)? . The representation

ξ ? is a finite sum of (at most [F∗ : F∗2]) genuine irreducible representations [11, 2.9].

We will need the following results of Kable [42, in Propositions 3.1 and 3.2].

Proposition 2.12. Let H be a Levi subgroup of GLn, and let τ be a genuine irreducible

representation of H̃(F). If n is odd, τ ? is irreducible, and ind H̃(F)
H̃(F)?

(τ ?) = ⊕ωω · τ ,

where ω ranges over the (finite set of) characters of H̃(F)?\H̃(F). Furthermore,

HomH̃(F)(ωτ, τ ) = 0 unless ω = 1. If n is even, τ ? = ⊕a
aσ , where σ is any irreducible

summand of τ ? and a ranges over H̃(F)?\H̃(F). Furthermore, aσ 6∼= σ for all a /∈ H̃(F)?.

https://doi.org/10.1017/S1474748015000250 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748015000250


634 E. Kaplan

Let H1 be a Levi subgroup of GLk , and let H2 be a Levi subgroup of Gn−k . Then

H = H1× H2 is a Levi subgroup of Gn . We assume that the cocycle defined on Gn(F)
satisfies the block-compatibility criterion (2.21).

Let τ be a genuine irreducible representation of H̃1(F), and let π be a genuine

irreducible representation of H̃2(F). The following discussion describes a replacement

for the usual tensor ‘τ ⊗π ’, which is not defined when the groups are not commuting.

According to (2.21), the subgroups H̃1(F)? and H̃2(F)? are commuting in G̃n(F), and

hence

p−1(H1(F)?× H2(F)?) ∼= {(ζ, ζ ) : ζ ∈ µ2}\(H̃1(F)?× H̃2(F)?).

Here on the right-hand side we have an outer direct product. In other words,

p−1(H1(F)?× H2(F)?) is the direct product of H̃1(F)? and H̃2(F)? with amalgamated µ2.

The representation τ ?⊗π? is defined as the usual tensor product, and it can be regarded

as a genuine irreducible representation of p−1(H1(F)?× H2(F)?). The representations

τ ?⊗π and τ ⊗π? are defined similarly, because the same arguments apply to the pairs

(H̃1(F)?, H̃2(F)) and (H̃1(F), H̃2(F)?). We have the following semisimple representation:

I (τ, π)? = ind H̃(F)
p−1(H1(F)?×H2(F)?)

(τ ?⊗π?).

In the case of H2 = G0, H2(F)? = H2(F); hence (H̃1(F), H̃2(F)) do commute, and

I (τ, π)? = ind H̃(F)
p−1(H1(F)?×H2(F))

(τ ?⊗π) = ind H̃1(F)
H̃1(F)?

(τ ?)⊗π.

Remark 2.6. In this case, the tensor τ ⊗π is defined, and of course will be preferred over

I (τ, π)?. See Claim 2.21 in § 2.3.1 below.

Lemma 2.13. Assume that 0 < k < n. The representation I (τ, π)? is a direct sum of

[F∗ : F∗2] copies of

ind H̃(F)
p−1(H1(F)?×H2(F))

(τ ?⊗π).

Similarly, it is a direct sum of [F∗ : F∗2] copies of

ind H̃(F)
p−1(H1(F)×H2(F)?)

(τ ⊗π?).

Proof. The arguments are similar to those of Kable [42, Theorem 3.1]. Since

p−1(H1(F)?× H2(F)?) is a normal subgroup of H̃(F) with a finite index, and the quotient

of p−1(H1(F)?× H2(F)) by p−1(H1(F)?× H2(F)?) is abelian,

ind H̃(F)
p−1(H1(F)?×H2(F)?)

(τ ?⊗π?) =
⊕
ω

ind H̃(F)
p−1(H1(F)?×H2(F))

(τ ?⊗ωπ), (2.29)

where the summation ranges over the characters of H̃2(F)?\H̃2(F) (these are non-genuine

characters). Any such character ω takes the form ω(h) = ωa(h) = c(ϒ(h), det a) for some

a ∈ H̃1(F). By the block compatibility of the cocycle (and (2.15)), ha = c(ϒ(h), det a)ah
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(a ∈ H̃1(F), h ∈ H̃2(F)), whence τ ?⊗ωaπ =
a(a
−1
(τ ?)⊗π). Thus the right-hand side

of (2.29) is equal to a direct sum of [H̃1(F) : H̃1(F)?] = [F∗ : F∗2] copies of

ind H̃(F)
p−1(H1(F)?×H2(F))

(τ ?⊗π). (2.30)

One can similarly consider p−1(H1(F)× H2(F)?), and repeating the steps above obtain

ind H̃(F)
p−1(H1(F)?×H2(F)?)

(τ ?⊗π?) =
⊕

h∈H̃2(F)?\H̃2(F)

ind H̃(F)
p−1(H1(F)×H2(F)?)

(ωhτ ⊗π
?)

= [F∗ : F∗2]ind H̃(F)
p−1(H1(F)×H2(F)?)

(τ ⊗π?).

Here, ωh(a) = c(ϒ(h), det a).

The aforementioned results of Kable [42, Propositions 3.1, 3.2] do not apply to the

group Gn(F), mainly because its center does not play a role similar to that of the center of

GLn(F). Namely, CGn(F) < Gn(F)? for all n (see § 1.2). However, if H2 is a Levi subgroup

of a proper parabolic subgroup of Gn , it is possible to extend Proposition 2.12 to H2. We

will only need the following result on Tn+1.

Claim 2.14. Let π be a genuine irreducible representation of T̃n+1(F), and assume that

n is even (including zero). Then π? = ⊕h
hρ, where ρ is any irreducible summand of π?

and h ranges over T̃n+1(F)?\T̃n+1(F).

Proof. Equality (2.25) implies that C̃GLn(F) is contained in the center of T̃n+1(F)?

and, furthermore, if z ∈ C̃GLn(F) with p(z) =
∏n

i=1 η
∨

i (d) and t ∈ T̃n+1(F) with

p(t) =
∏n

i=1 η
∨

i (ti )β
∨

1 (tn+1), t zt−1
= c(

∏n
i=1 ti , d)z (see (2.15) and (2.25)). Given these

observations, the arguments of Kable [42, Proposition 3.2] readily apply to our case.

Recall that for a genuine irreducible representation ξ of T̃n+1(F) we have a

corresponding genuine character χξ of CT̃n+1(F), and ξ = ρ(χξ ). The same applies to

representations of T̃GLn (F), and we use the same notation ρ(· · · ).

Let χ ′1 and χ ′2 be genuine characters of T̃GLk (F)
2 and T̃n−k+1(F)2. Since

T̃n+1(F)2 ∼= {(ζ, ζ ) : ζ ∈ µ2}\(T̃GLk (F)
2
× T̃n−k+1(F)2), (2.31)

the tensor representation χ ′1⊗χ
′

2 of T̃n+1(F)2 is defined: it is a genuine character. For

genuine characters χ1 and χ2 of CT̃GLk (F)
and CT̃n−k+1(F), put

χ1�χ2 = χ1|T̃GLk (F)
2 ⊗χ2|T̃n−k+1(F)2 .

The last claim enables us to deduce the following result.

Lemma 2.15. Assume that 0 < k 6 n, and that τ and π are irreducible genuine

representations of T̃GLk (F) and T̃n−k+1(F) (respectively). Write τ = ρ(χτ ) and π =

ρ(χπ ), where χτ and χπ are genuine characters of CT̃GLk (F)
and CT̃n−k+1(F) (respectively).
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Also, let χ be a genuine character of CT̃n+1(F) which agrees with χτ �χπ on T̃n+1(F)2.

Then

I (τ, π)? = [F∗ : F∗2]r
⊕

χ ′∈5(χ)

ρ(χ ′),

where r = 2 if n and k are even and k < n, r = 0 if n is odd and k = n, and otherwise

r = 0; the finite set 5(χ) was defined in § 2.2.1.

Proof. We follow the arguments of Kable [42, Theorem 3.1]. Applying Lemma 2.13 to

I (τ, π)?, we write it as a direct sum of [F∗ : F∗2] copies of

indT̃n+1(F)
p−1(TGLk (F)

?×Tn−k+1(F))
(τ ?⊗π). (2.32)

Now we consider the different cases.

(1) n is even, k is odd: by Proposition 2.12, the representation τ ? is irreducible. Hence

τ ?⊗π is also irreducible. As explained in the proof of Lemma 2.13, for any a ∈
T̃GLk (F),

a(τ ?⊗π) = τ ?⊗ωaπ . Because π and ωaπ are both irreducible genuine

representations of T̃n−k+1(F), they are isomorphic if and only if their restrictions to

CT̃n−k+1(F) are identical. Since n− k is odd, CG̃Ln−k (F) < CT̃n−k+1(F). The restriction

ωa |CG̃Ln−k (F)
is trivial if and only if a ∈ T̃GLk (F)

?, whence

HomT̃n−k+1(F)(ωaπ, π) = 0, ∀a /∈ T̃GLk (F)
?.

This means that τ ?⊗π satisfies Mackey’s criterion, and therefore by Mackey’s

theory (2.32) is an irreducible representation of T̃n+1(F). We claim that it is

isomorphic to ρ(χ), which implies that I (τ, π)? = [F∗ : F∗2]ρ(χ) (since n is even,

5(χ) = {χ}).

Indeed, n is even; hence CT̃n+1(F) = T̃n+1(F)2, and it suffices to show that both

representations agree on T̃n+1(F)2. This holds because of (2.31) and T̃GLk (F)
2 <

T̃GLk (F)
?.

(2) n and k are even: write τ ? = ⊕a
aσ as in Proposition 2.12. Then (2.32) is the direct

sum ⊕
a∈T̃GLk (F)

?\T̃GLk (F)

indT̃n+1(F)
p−1(TGLk (F)

?×Tn−k+1(F))
(σ ⊗ωaπ). (2.33)

If b(σ ⊗ωaπ) ∼= σ ⊗ωaπ for some b ∈ T̃GLk (F), then bσ ∼= σ , which by

Proposition 2.12 only happens for b ∈ T̃GLk (F)
?. Thus σ ⊗ωaπ satisfies Mackey’s

criterion, and each summand is irreducible. Since n− k is even, ωa |CT̃n−k+1(F)
= 1,

whence ωaπ ∼= π , and all summands are equal. Thus if k < n we get I (τ, π)? = [F∗ :
F∗2]2ρ(χ). If k = n, I (τ, π)? is equal to (2.32); hence I (τ, π)? = [F∗ : F∗2]ρ(χ).

(3) n is odd, k is even: as in case (2) consider (2.33). Because k is even, as above,

each summand of (2.33) is irreducible. Since both n and n− k are odd, any

z ∈ CG̃Ln(F) can be written as z = z1z2, with z1 ∈ C̃GLk (F) and z2 ∈ CG̃Ln−k (F), and,
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furthermore, z ∈ CT̃n+1(F) and z2 ∈ CT̃n−k+1(F). Additionally, because k is even,

C̃GLk (F) is contained in the center of T̃GLk (F)
?, and hence σ |C̃GLk (F)

is a character.

Using these observations we see that the restrictions of σ ⊗ωaπ to CG̃Ln(F) as a
varies are different. Therefore the summands in (2.33) are inequivalent.

Each summand takes the form ρ(χ ′), where χ ′ is some genuine character of

CT̃n+1(F), but χ ′ must agree with χ on T̃n+1(F)2 because σ |T̃GLk (F)
2 = τ |T̃GLk (F)

2

(T̃GLk (F)
2 < CT̃GLk (F)

) and ωa |T̃n−k+1(F)2 = 1. There are [F∗ : F∗2] such characters

χ ′, and, because there are exactly [F∗ : F∗2] non-isomorphic summands in (2.33),

all possible χ ′ appear. It follows that I (τ, π)? = [F∗ : F∗2]⊕χ ′∈5(χ) ρ(χ ′).

(4) n and k are odd: assume that k < n. Using Lemma 2.13,

I (τ, π)? = [F∗ : F∗2]indT̃n+1(F)
p−1(TGLk (F)×Tn−k+1(F)?)

(τ ⊗π?)

= [F∗ : F∗2]
⊕

h∈T̃n−k+1(F)?\T̃n−k+1(F)

indT̃n+1(F)
p−1(TGLk (F)×Tn−k+1(F)?)

(ωhτ ⊗ ρ).

Here, ωh(a) = c(ϒ(h), det a) and π? = ⊕h
hρ, as in Claim 2.14. Since k is odd, by

Proposition 2.12 we have HomT̃GLk (F)
(ωh′ωhτ, ωhτ) = 0 as long as h′ /∈ T̃n−k+1(F)?,

and it follows that each of the last summands is irreducible. For h 6= h′, the

summands are non-isomorphic: this follows as in case (3) (the opposite case with

respect to k and n− k), because C̃GLn−k (F) is contained in the center of T̃n−k+1(F)?

(see (2.25)) and for z ∈ CG̃Ln(F), z = z1z2, where z1 ∈ CG̃Lk (F) and z2 ∈ C̃GLn−k (F).

Thus I (τ, π)? = [F∗ : F∗2]⊕χ ′∈5(χ) ρ(χ ′). Finally ,if k = n, by Proposition 2.12,

I (τ, π)? = indT̃GLn (F)
T̃GLn (F)?

(τ ?)⊗π = ⊕ω(ωτ ⊗π) = ⊕χ ′∈5(χ)ρ(χ
′).

Remark 2.7. One could define I (τ, π)? = ind H̃(F)
p−1(H1(F)×H2(F)?)

(τ ⊗π?). With this

definition, the case k = n is simpler: I (τ, π)? = τ ⊗π . Lemma 2.13 implies that, for k < n,

ind H̃(F)
p−1(H1(F)×H2(F)?)

(τ ⊗π?) ∼= ind H̃(F)
p−1(H1(F)?×H2(F))

(τ ?⊗π).

Then in Lemma 2.15 we obtain smaller multiplicities. However, the presentation in

§§ 2.3.1–2.3.2 below seems to be simpler with the definition above.

2.2.5. Discussion on the metaplectic tensor product. Irreducible represent-

ations of Levi subgroups of classical groups are usually described in terms of the tensor

product. For metaplectic groups the direct factors of Levi subgroups do not necessarily

commute, and hence the tensor construction cannot be extended in a straightforward

manner.

The metaplectic tensor product in the context of GLn has been studied by various

authors [24, 42, 62, 78, 81]. Kable [42] used a representation similar to I (τ, π)? (see § 2.2.4)

to define a metaplectic tensor product, between genuine indecomposable representations

of Levi subgroups of the double cover of GLn(F). He studied the induced space I (τ1, τ2)
?,
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where τi are representations of L̃ i (F) and L i < GLni are Levi subgroups. To any genuine

character ω of CG̃Ln(F), Kable defined τ1⊗ω τ2 as an indecomposable summand of

I (τ1, τ2)
?, on which CG̃Ln(F) acts by ω. He proved that this construction satisfies many of

the useful properties of the tensor product, e.g., associativity, compatibility with taking

contragradients, and certain compatibility with Jacquet functors.

Essential for his approach was the Mackey theory for the restriction τ ?i = τi |L̃ i (F)? ,

which he developed for the double cover [42, Propositions 3.1, 3.2]. The main obstacle in

trying to extend his construction to our setting is the lack of an analog of these results

for Gn(F).
Mezo [62] considered r -fold covers. Denote GLm(F)r = {b ∈ GLm(F) : det b ∈ F∗r }.

Mezo defined a tensor representation for L = GLn1 × · · ·×GLnk using restrictions from

GLni (F) to GLni (F)
r and a process resembling the construction in § 2.2.1. Takeda [81]

constructed a global metaplectic tensor product, whose local components agree with

those of Mezo [62]. He proved several properties for the global (and local) tensor, e.g.,

compatibility with induction and automorphicity.

For our purposes it will be sufficient to consider the space I (τ, π)?, on which we can

compute certain Jacquet functors simply enough. The lack of a universal property for

the metaplectic tensor product places a heavy burden on details. At present, we do not

attempt to extend the results of [62, 81] to our context.

2.3. Exceptional (small) representations

2.3.1. Definition and basic properties. We construct exceptional representations,

adapting the results of Bump et al. [17] in the context of SO2n+1. These representations

were called ‘small’ in [17].

Let χ be a genuine character of CT̃n+1(F). We say that χ is exceptional if, for all α ∈ 1Gn ,

χ(α∨
∗
(x l(α))) = |x | for all x ∈ F∗. In particular, such a character is regular.

Let χ0 be a character of Tn+1(F)2 such that χ is obtained from χ0 by extension, as

explained in § 2.2.1. Since s(α∨(x l(α))) = α∨∗(x l(α)), χ0 satisfies χ0(α
∨(x l(α))) = |x | for all

α ∈ 1Gn and x ∈ F∗. We see that χ is exceptional if and only if χ0 satisfies this property.

Refer to § 2.3.3 below for a detailed construction of an exceptional character.

In this section, except in Proposition 2.16, the field is p-adic. Recall that w0 denotes the

longest element of Wn , and w0 ∈Wn is the representative. Additionally, for brevity, when

we refer to a Jacquet functor applied to a genuine representation along some unipotent

subgroup U , we drop s from the notation; for example, we write jU (· · · ) instead of

js(U )(· · · ).
As in [17, Theorem 2.2], we have the ‘periodicity theorem’ (see also [47, Theorem I.2.9]).

Proposition 2.16. Let χ be an exceptional character. The representation 2Gn ,χ on

the space M(w0, χ)V (χ) is irreducible: it is the unique irreducible subrepresentation

of V (w0χ) and the unique irreducible quotient of V (χ). Furthermore, if F is p-adic,

jNn (2Gn ,χ ) = ρ(
w0χ).

Proof. Consider the p-adic case first. The facts that V (w0χ) has a unique irreducible

subrepresentation and V (χ) has a unique irreducible quotient follow from the Langlands
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quotient theorem proved for metaplectic groups by Ban and Jantzen [8]. This is because

χ belongs to the positive Weyl chamber. Now it is left to compute the Jacquet module

and establish the irreducibility of 2Gn ,χ .

One argues exactly as in [17], starting with computation of jNn (2Gn ,χ ), which implies

that 2Gn ,χ is irreducible. The calculation follows from the properties of the Jacquet

functor described in § 2.2.1, Claim 2.11, the observation that when |2| = 1 and q > 3,

1− q−1(wαχ(aα)) = 0 for all α ∈ 1Gn , and a computation on G1(F) and S̃L2(F) in the

remaining cases (G̃1(F) is split).

If F is Archimedean, the proposition follows from the Langlands quotient theorem [54],

whose proof by Borel and Wallach [13] is applicable to cover groups (see [8]). Note that

the results of [8] do not include the characterization of the Langlands quotient in terms

of the intertwining operators.

The representation 2Gn ,χ is the exceptional representation corresponding to the

exceptional character χ .

We describe the contragradient exceptional representation.

Claim 2.17. We have 2∧Gn ,χ
= 2Gn ,

w0χ∧ . Furthermore, the restriction of w0χ∧ to

T̃n+1(F)2 agrees with the restriction of χ multiplied by some non-genuine character λ

of T̃n+1(F)2.

Proof. Put χ ′ = w0χ∧. Proposition 2.16 implies that 2∧Gn ,χ
is an irreducible quotient

of V (χ ′). Let χ0 (respectively, χ ′0) be a character of Tn+1(F)2 such that χ |T̃n+1(F)2

(respectively, χ ′|T̃n+1(F)2) is the extension of χ0 (respectively, χ ′0). If t ∈ Tn+1(F)2,

equality (1.7) implies that χ ′0 = χ0(t ·β∨1 (ϒ(t))). Denote λ(t) = χ0(β
∨

1 (ϒ(t))). Since

β∨1 (x) ∈ Tn+1(F)2 for all x ∈ F∗, λ is a character of Tn+1(F)2, and χ ′0 = λ ·χ0. It

follows that χ ′|T̃n+1(F)2 = λ · (χ |T̃n+1(F)2). In particular, χ ′ is an exceptional character.

Then, by Proposition 2.16, 2Gn ,χ ′ is the unique irreducible quotient of V (χ ′). Hence

2∧Gn ,χ
= 2Gn ,χ ′ .

Remark 2.8. In contrast with 2SO2n+1 of [17], the representation 2Gn ,χ is not self-dual.

The next proposition describes an exceptional representation in terms of exceptional

representations of GLk and Gn−k . We briefly recall the construction of exceptional

representations of Kazhdan and Patterson [47, § I.1 and Theorem I.2.9]. Let

χ1 be a genuine character of CT̃GLk (F)
= T̃GLk (F)

2CG̃Lk (F). Call χ1 exceptional if

χ1(s(η
∨

i (x
2)η∨i+1(x

−2))) = |x | for all 1 6 i < k and x ∈ F∗. In this case the exceptional

representation 2GLk ,χ1 is the unique irreducible quotient of IndG̃Lk (F)
B̃GLk (F)

(ρ(χ1)). It is also

the unique irreducible subrepresentation of IndG̃Lk (F)
B̃GLk (F)

(ρ(w
′

0χ1)), where w′0 is the longest

element of the Weyl group of GLk . Note that, for 1 6 i < n, s(η∨i (x
2)η∨i+1(x

−2)) =

α∨i+1
∗
(x l(αi+1)).

Let w′′0 be the longest element of Wn−k (the Weyl group of Gn−k). Also recall the

representation χ1�χ2 defined in § 2.2.4.
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The following claim relates an exceptional character of CT̃n+1(F) to a pair of such

characters of CT̃GLk (F)
and CT̃n−k+1(F).

Claim 2.18. Let χ be an exceptional character, and let 0 6 k 6 n. There are exceptional

characters χ1 and χ2 of CT̃GLk (F)
and CT̃n−k+1(F) such that

w0χ |T̃n+1(F)2 =
w′0χ1�

w′′0χ2. (2.34)

Proof. Since T̃n+1(F)2 is split under s, one can regard χ as a character of Tn+1(F)2

satisfying χ(α∨(x l(α))) = |x | for all α ∈ 1Gn and x ∈ F∗. It is enough to show that there

are characters χ1 and χ2 of TGLk (F)
2 and Tn−k+1(F)2 with the following properties.

(1) χ1(η
∨

i (x
2)η∨i+1(x

−2)) = |x | for all 1 6 i < k and x ∈ F∗.

(2) χ2(α
∨

i (x
l(αi ))) = |x | for all k+ 2 6 i 6 n+ 1 and x ∈ F∗.

(3) w0χ |Tn+1(F)2 =
w′0χ1⊗

w′′0χ2.

Indeed, given such characters, one can extend them to genuine characters of T̃GLk (F)
2

and T̃n−k+1(F)2, and then extend them again, not necessarily uniquely (depending on

the parity of k and n), to exceptional characters of the corresponding centers.

If a =
∏k

i=1 η
∨

i (a
2
i ) and t =

∏n−k
i=1 β

∨

i (t
2
i )β
∨

n−k+1(tn−k+1), using (1.2)–(1.4) and (1.7), we

get

w0(at) =



k∏
i=1

η∨i (a
−2
i )

n−k∏
i=1

β∨i (t
−2
i t4

1 det a−2)β∨n−k+1(t
−1
n−k+1t2

1 det a−1) k < n,

n∏
i=1

η∨i (a
−2
i )β∨1 (det a−1t1) k = n.

Set η(a) = χ(
∏n−k

i=1 β
∨

i (det a−2)β∨n−k+1(det a−1)), χ1 = η ·
w′0(χ |TGLk (F)

2)−1, and χ2 =

χ |Tn−k+1(F)2 . Clearly these characters satisfy the above properties.

In general, if 0 < k 6 n and χ1 and χ2 are exceptional characters of CT̃GLk (F)
and

CT̃n−k+1(F), we have the representation I (2GLk ,χ1 ,2Gn−k ,χ2)
? defined in § 2.2.4:

I (2GLk ,χ1 ,2Gn−k ,χ2)
?
= indM̃k (F)

p−1(GLk (F)?×Gn−k (F)?)
(2?GLk ,χ1

⊗2?Gn−k ,χ2
).

The following two results are analogs of [17, Theorem 2.3 and Proposition 2.4].

Proposition 2.19. Let χ be an exceptional character, and let 0 < k 6 n. Then, for any

exceptional characters χ1 and χ2 of CT̃GLk (F)
and CT̃n−k+1(F) satisfying (2.34),

jUk (2Gn ,χ ) ⊂ I (2GLk ,χ1 ,2Gn−k ,χ2)
?.

Proof. We start with computing the Jacquet module along NGLk × Nn−k < Mk of both

representations. The double coset space

(GLk(F)?Gn−k(F)?)\Mk(F)/(Tn+1(F)NGLk (F)Nn−k(F))
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has one element. According to the geometric lemma of Bernstein and Zelevinsky [12,

Theorem 5.2],

jNGLk Nn−k (I (2GLk ,χ1 ,2Gn−k ,χ2)
?)

= indT̃n+1(F)
p−1(TGLk (F)

?×Tn−k+1(F)?)
( j?NGLk

(2?GLk ,χ1
)⊗ j?Nn−k

(2?Gn−k ,χ2
)). (2.35)

Here, j?NGLk
is the Jacquet functor taking representations of G̃Lk(F)? to representations

of T̃GLk (F)
?, and j?Nn−k

is defined similarly. We have

j?NGLk
(2?GLk ,χ1

) = ( jNGLk
(2GLk ,χ1))

?
= ρ(w

′

0χ1)
?,

where for the first equality we used the fact that NGLk (F) < G̃Lk(F)?; the second

equality follows from [47, Theorem I.2.9]. Similarly, using Proposition 2.16, we get

j?Nn−k
(2?Gn−k ,χ2

) = ρ(w
′′

0χ2)
?. Applying Lemma 2.15 to the right-hand side of (2.35) implies

that

jNGLk Nn−k (I (2GLk ,χ1 ,2Gn−k ,χ2)
?) = m

⊕
χ ′

ρ(χ ′),

where m > 0 is an integer (depending only on k and n), and the summation is over all

genuine characters χ ′ of CT̃n+1(F) such that

χ ′|T̃n+1(F)2 =
w′0χ1�

w′′0χ2 =
w0χ |T̃n+1(F)2

(the second equality is (2.34)). Thus w0χ appears in the summation at least once.

Since jNGLk Nn−k (I (2GLk ,χ1 ,2Gn−k ,χ2)
?) is semisimple and the Jacquet functor is

exact, jNGLk Nn−k (V0) is semisimple for any V0 ⊂ I (2GLk ,χ1 ,2Gn−k ,χ2)
?. Thus there is an

irreducible V ⊂ I (2GLk ,χ1 ,2Gn−k ,χ2)
? such that ρ(w0χ) is a quotient of jNGLk Nn−k (V). Set

I M̃k (ρ(w0χ)) = IndM̃k (F)
p−1(Tn+1(F)NGLk (F)Nn−k (F))

(ρ(w0χ)).

Then Frobenius reciprocity shows that

HomM̃k (F)(V, I M̃k (ρ(w0χ))) = HomT̃n+1(F)( jNGLk Nn−k (V), ρ(
w0χ)) 6= 0, (2.36)

whence V ⊂ I M̃k (ρ(w0χ)). According to the Langlands quotient theorem [8], the

representation I M̃k (ρ(w0χ)) has a unique irreducible subrepresentation, which is V.

Let us turn to jUk (2Gn ,χ ). Proposition 2.16 implies that

jNGLk Nn−k ( jUk (2Gn ,χ )) = jNn (2Gn ,χ ) = ρ(
w0χ).

The representation jUk (2Gn ,χ ), as a Jacquet module of a quotient of V (χ) with respect

to a non-minimal unipotent radical, does not have a cuspidal constituent. Hence, since

jNGLk Nn−k ( jUk (2Gn ,χ )) is irreducible, so is jUk (2Gn ,χ ). Now (2.36) with jUk (2Gn ,χ ) instead

of V shows jUk (2Gn ,χ ) ⊂ I M̃k (ρ(w0χ)). Thus jUk (2Gn ,χ ) = V ⊂ I (2GLk ,χ1 ,2Gn−k ,χ2)
?.
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Corollary 2.20. Let χ be an exceptional character, and let 0 < k 6 n. For any exceptional

characters χ1, χ3 of CT̃GLk (F)
and χ2, χ4 of CT̃n−k+1(F) such that (χ1, χ2) satisfy (2.34) with

respect to χ , and (w
′

0χ∧3 ,
w′′0χ∧4 ) satisfy (2.34) with respect to w0χ∧,

HomG̃n(F)(2Gn ,χ , IndG̃n(F)
Q̃k (F)

(I (2GLk ,χ1 ,2Gn−k ,χ2)
?)) 6= 0,

HomG̃n(F)(IndG̃n(F)
Q̃k (F)

(I (2GLk ,χ3 ,2Gn−k ,χ4)
?),2Gn ,χ ) 6= 0.

Proof. The first assertion follows from Proposition 2.19 using the Frobenius reciprocity.

Dualizing,

HomG̃n(F)(IndG̃n(F)
Q̃k (F)

((I (2GLk ,χ1 ,2Gn−k ,χ2)
?)∧),2∧Gn ,χ

) 6= 0.

In general, if ξ is a genuine representation of H̃(F), where H < Gn , (ξ ?)∧ = (ξ∧)?

(because H̃(F)? contains an open neighborhood of the identity of H̃(F)). Applying

Claim 2.17 and its analog for GLn , we get

(I (2GLk ,χ1 ,2Gn−k ,χ2)
?)∧ = I (2

GLk ,
w′0χ∧1

,2
Gn−k ,

w′′0χ∧2
)?.

Now replace χ with w0χ∧, and set χ1 =
w′0χ∧3 and χ2 =

w′′0χ∧4 . We see that

HomG̃n(F)(IndG̃n(F)
Q̃k (F)

(I (2GLk ,χ3 ,2Gn−k ,χ4)
?),2Gn ,χ ) 6= 0.

In the case when k = n, we can strengthen the results of Proposition 2.19 and

Corollary 2.20 and obtain a result more similar to that of [17].

Claim 2.21. There are unique exceptional characters χ1, χ2, χ3, χ4 such that

jUn (2Gn ,χ ) = 2GLn ,χ1 ⊗2G0,χ2 ,

HomG̃n(F)(2Gn ,χ , IndG̃n(F)
Q̃n(F)

(2GLn ,χ1 ⊗2G0,χ2)) 6= 0,

HomG̃n(F)(IndG̃n(F)
Q̃n(F)

(2GLn ,χ3 ⊗2G0,χ4),2Gn ,χ ) 6= 0.

Proof. In this case, CT̃n+1(F) is the product of CT̃GLn (F)
and T̃1(F) with amalgamated

µ2. Therefore, there are unique characters χ1 and χ2 such that w0χ = w′0χ1⊗χ2. Then

the first assertion follows as in [17, Theorem 2.3], by calculating the Jacquet modules

and using the fact that the representation induced from ρ(w0χ) to M̃n(F) has a unique

irreducible subrepresentation. The other assertions follow from the Frobenius reciprocity.

Due to global reasons (see Proposition 3.4 below), it will be necessary to compute the

constant c(w0, χ) defined in Claim 2.11. We have the following claim.

Claim 2.22. Let χ be an exceptional character, which is unramified. Then

c(w0, χ) =
∏

26i< j6n+1

(1− q−1− j+i )(1− q−1+ j+i−2(n+2))

(1− q− j+i )(1− q j+i−2(n+2))

∏
26i6n+1

(1− q−1−n−2+i )

(1− q−n−2+i )
.
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Proof. We compute χ(aα) for an arbitrary α ∈ Σ+Gn
. We will show that

χ(aα) =


q− j+i α = εi − ε j , 2 6 i < j 6 n+ 1,

q j+i−2(n+2) α = εi + ε j , 2 6 i < j 6 n+ 1,

q−n−2+i α = εi , 2 6 i 6 n+ 1.

The formula for c(w0, χ) clearly follows from this.

In general, if α∨(x) =
∏m

l=1 α
∨

il (xl), where αil ∈ 1G ′n+1
, i.e., 1 6 il 6 n+ 1 for all 1 6

l 6 m, and for each l either xl ∈ F∗2 or il = n+ 1, then
∏m

l=1 α
∨

il (xl) ∈ Tn+1(F)2. Then by

applying s we obtain α∨∗(x) =
∏m

l=1 α
∨

il
∗
(xl), whence χ(α∨∗(x)) =

∏m
l=1 χ(α

∨

il
∗
(xl)).

Start with the computation of χ(aα) for α = εi − ε j , 2 6 i < j 6 n+ 1. Since α∨ =∏ j−1
l=i α

∨

l and l(α) = 2, α∨($ 2) =
∏ j−1

l=i α
∨

l ($
2). The definition of χ implies that

χ(αl
∨∗($ 2)) = q−1, giving the result.

Next, consider α = εi , 2 6 i 6 n+ 1. We have l(α) = 1 and α∨($) =
∏n

l=i
α∨l ($

2)α∨n+1($) (if n = 1, there is no product), whence χ(aα) = q−n−2+i .

For α = εi + ε j (2 6 i < j 6 n+ 1), α∨($ 2) = (εi − ε j )
∨($ 2)ε∨j ($

2). Applying s

gives α∨
∗
($ 2) = (εi − ε j )

∨∗($ 2)ε∨j
∗
($ 2). Now the result follows from the previous

calculations.

2.3.2. Vanishing results. As described in the introduction, the main motivation

for studying exceptional representations is their applications. The remarkable (local)

property of these representations is the vanishing of many twisted Jacquet modules.

In this section, F is a non-Archimedean field of odd residual characteristic. Fix a

non-trivial additive character ψ of F . For a column b ∈ F l , define the ‘length’ of b, `(b),
with respect to the symmetric bilinear form corresponding to Jl , `(b) = t bJlb. If U < Nn ,

u ∈ U (F), and α ∈ Σ+Gn
, denote by uα the projection of u on Uα.

We recall the notion of unipotent classes and their corresponding unipotent subgroups

and characters. Since the unipotent subgroups of Gn are in bijection with those of SO2n+1,

we can use the description of Bump et al. [17, § 4]. For a general reference, see [20, 22].

See also Ginzburg [27].

A partition of k is an m-tuple r1 > · · · > rm > 0 such that r1+ · · ·+ rm = k. There is a

natural partial order on the set of partitions of k: (r1, . . . , rm) > (r ′1, . . . , r
′

m′) if
∑l

i=1 ri >∑l
i=1 r ′i for all 1 6 l 6 min(m,m′). We denote (r1, . . . , rm) � (r ′1, . . . , r

′

m′) if (r1, . . . , rm) is

greater than or non-comparable with (r ′1, . . . , r
′

m′).

A unipotent class O = (r1, . . . , rm) of Gn corresponds to a partition of 2n+ 1 in which

any even number appears with even multiplicity. Write the integers occurring in the

multiset
⋃m

i=1{ri − 2 j + 1}ri
j=1 in a decreasing order, and let l1 > · · · > ln > 0 be the first

n numbers (these are the n largest ones). Define the one-parameter subgroup hO by the

image of

hO =
n∏

i=1

(η∨i )
li .
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The group hO acts on Nn by conjugation. For any α ∈ Σ+Gn
there exists jα > 0 such that

hO(t)nα(x)hO(t)−1
= nα(t jα x) for all x and t . Let VO < Nn be the unipotent subgroup

generated by those nα for which jα > 2 (i.e., VO(F) is generated by {nα(x) : jα > 2, x ∈
F}). Let V a

O be the quotient of VO by its derived group. Recall (§ 1.1) that C(Gn, hO)
denotes the centralizer of hO in Gn . The centralizer C(Gn, hO) acts on V a

O by conjugation.

The stabilizer of x ∈ V a
O under this action is denoted Stx , and its connected component

by St0
x .

Any character of VO(F) is the pull back of a character of V a
O(F), and, because V a

O(F)
is abelian, such a character can be identified with a point in V a

O(F). If x ∈ V a
O(F), let ψx

be the corresponding character.

Let F be the algebraic closure of F . The action of C(Gn(F), hO(F
∗
)) on V a

O(F) has

an open orbit. For ε ∈ V a
O(F) in this orbit, Stε(F)0 is a reductive group. Let b ∈ V a

O(F).
The character ψb is called generic if b belongs to the open orbit.

Remark 2.9. In [17], the notion of a generic character was restricted to allow only F-split

stabilizers. For example, if Stε(F)0 = SO2l(F), then ψb is generic if Stb(F)0 is the F-split

group SO2l(F). A result of [18, Proposition 3] indicates that this notion can be relaxed

by considering quasi-split stabilizers.

Recall that O0 = (2n1) if n is even; otherwise, O0 = (2n−113). Let χ be an exceptional

character of CT̃n+1(F). In this section, we prove Theorem 1. Namely, for any O � O0 and

generic character ψb of VO(F),

jVO,ψb (2Gn ,χ ) = 0. (2.37)

(As in § 2.3.1, we omitted s.) Let O1 = (312n−2). If a unipotent class O satisfies O � O0,

then O > O1. This was used by Bump et al. [17, Theorem 4.2] to reduce the (global)

vanishing results to a statement on O1 [17, Proposition 4.3]. We follow (a local version

of) their arguments (see [18, proof of Proposition 6]). In Lemmas 2.23–2.25, we prove

jVO1 ,ψb (2Gn ,χ ) = 0. The proof of (2.37) will follow from this using properties of Jacquet

modules.

In the case of O1, the corresponding unipotent subgroup VO1 is U1. If u ∈ U1(F), let

r(u) ∈ F2n−1 be the row vector given by

r(u) = (uε2−ε3 , . . . , uε2−εn+1 , uε2 , uε2+εn+1 , . . . , uε2+ε3).

Since U1 is abelian, for any column b ∈ F2n−1 we have a character of U1(F) given

by ψb(u) = ψ(r(u)b). Also C(Gn, hO1) = M1. The points belonging to the open orbit

are those b ∈ U1(F) with `(b) 6= 0. Indeed, there are only three orbits: {b : `(b) 6= 0},
{b : `(b) = 0}, and {b = 0}. If `(b) = 0, Stb(F)0 is not reductive, because it contains a

unipotent radical of Gn−1, which is normal in Stb(F)0.

Let b ∈ U1(F). Then ψb is generic if and only if `(b) 6= 0. For a generic ψb,

Stb(F)0 ∼= GSpin2(n−1)(F), a quasi-split group (in [17, 18], this was SO2(n−1)(F)), where

GSpin2(n−1) < Gn−1 < M1. To see this, start with the root subgroups contained in the

stabilizer; these are found using the identification of U1 with a unipotent radical U ′1 of
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SO2n+1 (see § 1.2). To find the coroots, write t ∈ Tn+1(F) in the form (1.5), and then

consider the action of
∏n

i=1 η
∨

i (ai ) on U ′1(F) (β∨1 (t1) ∈ CGn(F)).

Lemma 2.23. Assume that n = 1, and let ϕ be a linear functional on the space of 2G1,χ .

If ϕ(n∗α2
(x)v) = ψ(x)ϕ(v) for all x ∈ F, then ϕ = 0.

Proof. The subgroup generated by nα2(x) is U1(F) = N1(F). The functional ϕ is the

usual Whittaker functional with respect to N1 and ψ . We will show that V (w0χ)

contains an irreducible genuine representation, which does not afford such a functional.

By Proposition 2.16, this representation must be 2G1,χ , which gives the result.

In this case, χ is a character of T̃2(F) (see § 2.2.1). By Claim 2.2, the cover splits; hence

χ can be considered as the extension of a character χ ′ of T2(F). The character χ ′ must

satisfy χ ′(α∨2 (t2)) = |t2| for all t2 ∈ F∗. Since w0 = wα2 , Equalities (1.6)–(1.8) imply that

δ
1/2
B1(F)

w0χ ′(α∨1 (t1)α
∨

2 (t2)) = |t1|
1/2χ ′(α∨1 (t1)) = η(ϒ(α

∨

1 (t1)α
∨

2 (t2))),

where η is some character of F∗. Hence the non-genuine function f (g) = η(ϒ(g)) belongs

to V (w0χ), and, by its definition, it spans a one-dimensional subspace which is also a

G1(F)-module. Because the cover splits, f can be extended to a genuine function; hence

this is also a genuine G̃1(F)-module. The action of n∗α2
(x) on this subspace is trivial,

completing the proof.

In the case when n = 2, U1(F) is generated by nα2(x), nα2+α3(y), and nα2+2α3(z).

Lemma 2.24. Assume that n = 2, and let ϕ be a linear functional on the space of 2G2,χ .

If b1, b2, b3 ∈ F satisfy `(t (b1, b2, b3)) 6= 0, and, for all x, y, z ∈ F,

ϕ(n∗α2
(x)n∗α2+α3

(y)n∗α2+2α3
(z)v) = ψ(b1x + b2 y+ b3z)ϕ(v),

then ϕ = 0.

Proof. By Claim 2.8, CT̃3(F) = T̃3(F)2, and hence we can regard χ as the extension to

T̃3(F)2 of a character χ0 of T3(F)2. If t = η∨1 (a
2
1)η
∨

2 (a
2
2)β
∨

1 (t1),

δ
1/2
B2(F)

w0χ0(t) = |a1|
−1
|a2|
−2
|t1|2χ0(α

∨

1 (a
−2
1 a−2

2 t2
1 )) = |a1|η

−1(a−2
1 a−2

2 t2
1 ) = |a1|η(ϒ(t)),

for a suitable character η of F∗.
Let M1(F)� = GL1(F)?×G1(F)? and Q1(F)� = M1(F)�nU1(F). According

to (2.21), and because the covers of GL1(F) and G1(F) are split, the cover of

M1(F)� is split. Therefore δ
1/6
Q1(F)

ηϒ can be pulled back to a genuine representation

of Q̃1(F)�, whence IndG̃2(F)
Q̃1(F)�

(δ
1/6
Q1(F)

ηϒ) is a genuine representation (this induction is

not normalized). Because [Q̃1(F) : Q̃1(F)�] is finite, and for t as above δ
1/6
Q1(F)

(t) = |a1|,

we get

IndG̃2(F)
Q̃1(F)�

(δ
1/6
Q1(F)

ηϒ) ⊂ IndG̃2(F)
B̃2(F)

(ρ(w0χ)).
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This inclusion and Proposition 2.16 imply that IndG̃2(F)
Q̃1(F)�

(δ
1/6
Q1(F)

ηϒ) has a unique

irreducible genuine subrepresentation, which must be 2G2,χ . We proceed to show that

[F∗ : F∗2] non-isomorphic irreducible representations can be embedded in 2G2,χ over

G̃2(F)?. These will be certain twists of the Weil representation. According to Bernstein

and Zelevinsky [11, (2.9)], 2?G2,χ
equals the sum of these representations ([G̃2(F) :

G̃2(F)?] = [F∗ : F∗2]). Thus it will suffice to show that the prescribed functional must

vanish on each of them.

We use the exceptional isomorphism G ′2 ∼= Sp2. Let Sp2 be the subgroup of GL4(F)

preserving the antisymmetric form on F4 given by (x, y) 7→ t x
(

J2
−J2

)
y (the matrix

J2 was defined in § 1.1). Fix the Borel subgroup BSp2 = TSp2 n NSp2 of upper triangular

matrices in Sp2. Let γ1, γ2 be the coordinate functions; i.e., if y = diag(y1, y2, y−1
2 , y−1

1 ) ∈

TSp2(F), γi (y) = yi . Denote by %1, %2 the simple roots of Sp2. The mapping from G ′2 to

Sp2 is defined by α2 7→ %2 and α3 7→ %1.

Let ωψ be the Weil representation of the metaplectic double cover S̃p2(F) of Sp2(F),
realized on the space S(F2) of Schwartz–Bruhat functions on the row space F2. It satisfies

the following formulas (see [66]):

ωψ ((diag(a, a∗), ζ ))φ(ξ) = ζγψ (det a)|deta|
1
2φ(ξa),

ωψ

(((
I2 u

I2

)
, ζ

))
φ(ξ) = ζψ

(
1
2
ξ J2

t utξ

)
φ(ξ). (2.38)

Here, a ∈ GL2(F), ζ ∈ µ2, φ ∈ S(F2), ξ ∈ F2, and γψ is the normalized Weil factor

associated to ψ (see §§1.1 and 1.3.4). Note that γψ |F∗2 = 1. We have ωψ = ω
even
ψ ⊕ωodd

ψ , a

decomposition into even and odd functions; each space is irreducible. For c ∈ F∗, denote

ψc(x) = ψ(cx). If c 6= d modulo F∗2, ωeven
ψc

and ωeven
ψd

are non-isomorphic.

The cover G̃ ′2(F) is non-trivial, and, because S̃p2(F) is unique, the isomorphism G ′2 ∼=
Sp2 extends to the cover groups, and we can regard ωψ as a representation of G̃ ′2(F).
We have CG̃2(F)? = CG̃2(F), CG̃2(F) ∩ G̃ ′2(F) = p−1(α∨3 (∓1)), and G̃2(F)? = CG̃2(F)? G̃

′

2(F)
(see Claim 2.7). Since α∨3 (−1) is mapped to the matrix −I4 ∈ Sp2(F) which acts by −1
on ωodd

ψ and by 1 on ωeven
ψ , and ϒ(α∨3 (−1)) = 1, we can extend ωeven

ψ to an irreducible

genuine representation ηϒ ·ωeven
ψ of G̃2(F)?.

For an even function φ ∈ S(F2), define

E(φ)(g) =

ηϒ ·ωeven
ψ (g)φ(0) g ∈ G̃2(F)?,

0 otherwise.

We claim that φ 7→ E(φ) defines an embedding of ηϒ ·ωeven
ψ in2?G2,χ

. It is enough to show

that E(φ) ∈ IndG̃2(F)
Q̃1(F)�

(δ
1/6
Q1(F)

ηϒ). Indeed, because IndG̃2(F)
Q̃1(F)�

(δ
1/6
Q1(F)

ηϒ) is of finite length

and G̃2(F)?\G̃2(F) is a finite group, any G̃2(F)?-submodule of IndG̃2(F)
Q̃1(F)�

(δ
1/6
Q1(F)

ηϒ) is

contained in 2?G2,χ
.

Clearly E(φ) is a smooth genuine function on G̃2(F) with support in G̃2(F)?.
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For m ∈ M1(F)�, we can write m = cm1h′ with

c = α∨1 (a
−2
1 t2

1 )α
∨

2 (a
−2
1 t2

1 )α
∨

3 (a
−1
1 t1) ∈ CG2(F), m1 = α

∨

2 (a
2
1)α
∨

3 (a1t−1
1 t2), h′ ∈ G ′1(F).

We must show that

E(φ)(mg) = |a1|ηϒ(a−2
1 t2

1 )E(φ)(g), ∀g ∈ G̃2(F).

Note that we can regard m as an element of M̃1(F)� because the cover splits. Since

M1(F)� < G2(F)?, it is enough to assume that g ∈ G̃2(F)?.
Since h′ is generated by the elements nα3(x) (x ∈ F) and wα3 , whose images in Sp2(F)

belong to {diag(a, a∗) : a ∈ SL2(F)}, ωeven
ψ ((h′, 1))φ(0) = φ(0). Also the image of m1 in

Sp2(F) is

%∨1 (a1t−1
1 t2)%∨2 (a

2
1) = diag(a1t−1

1 t2, a1t1t−1
2 , (a1t1t−1

2 )−1, (a1t−1
1 t2)−1).

Thus ηϒ ·ωeven
ψ ((m, 1))φ(0) = |a1|ηϒ(a−2

1 t2
1 )φ(0), as required.

Regarding the invariance under s(U1(F)), let V (F) < Sp2(F) be the unipotent subgroupv(x, y, z) =


1 0 y z

1 x y
1 0

1

 : x, y, z ∈ F

 .
The image of nα2(x)nα2+α3(y)nα2+2α3(z) ∈ U1(F) in Sp2(F) is v(x, y, z), which acts

trivially at 0 by (2.38).

We conclude that E is an embedding. Of course, this applies to any ψc. It remains to

show that ηϒ ·ωeven
ψ does not afford the functional appearing in the proposition. Indeed,

the subgroup U1(F) is in bijection with V (F) and, exactly as in [17, Proposition 2.5], as

long as 2b1b3+ b2
2 6= 0, any such functional vanishes on the space of ωeven

ψ .

Remark 2.10. The proof follows the arguments of [17, Proposition 2.5]. There, the analog

of G2(F)? is the kernel of the spinor norm map, SO5(F)′.

The following lemma combines [17, Theorem 2.6] and [18, Proposition 3].

Lemma 2.25. Assume that n > 1. For any generic character ψb of VO1(F),
jVO1 ,ψb (2Gn ,χ ) = 0.

Remark 2.11. If `(b) ∈ F∗2, it is possible to conjugate ψb into the character u 7→ ψ(uε2).

Then the statement of Lemma 2.25 is similar to that of [17, Theorem 2.6]. The general

case was stated in [18, Proposition 3].

Proof. Exactly as in [17], the proof is derived using a sequence of claims, all of which

follow from the results already proved in §§ 2.3.1–2.3.2. The arguments of [17] referring

to unipotent subgroups can be repeated without a change. The difference is that here,

instead of using a tensor product representation to describe jUk (2Gn ,χ ), we use the
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induced representation of Proposition 2.19 (or Claim 2.21 when k = n). We briefly

present the arguments of [17] and focus on the necessary changes. The restriction of

the cover G̃n(F) to GSpin2(n−1)(F) gives a cover of the latter. The key observation is that

jU1,ψb (2Gn ,χ ) is either a supercuspidal representation of G̃Spin2(n−1)(F) or zero.

Claim 2.26. Assume that 2 6 k 6 n. Let c1, . . . , ck−1 ∈ F and d1, d2, d3 ∈ F be given with

`(t (d1, d2, d3)) 6= 0. Define a character ψ of NGLk (F)Uk(F) by

ψ(u) =


ψ

(k−1∑
i=1

ci uαi+1 + d1uεk+1−εn+1 + d2uεk+1 + d3uεk+1+εn+1

)
k < n,

ψ

(k−1∑
i=1

ci uαi+1 + uεn+1

)
k = n.

Then jNGLk Uk ,ψ (2Gn ,χ ) = 0. Here NGLk is embedded in the GLk part of Mk .

Proof. We use induction on n; the base case is n = 2. For any 1 6 l < k, let Gn−l be

embedded in Ml , and let Q′k−l = M ′k−l nU ′k−l < Gn−l be the standard parabolic subgroup

with a Levi part M ′k−l isomorphic to GLk−l ×Gn−k . Let N ′GLk−l
be the embedding of NGLk−l

in the GLk−l part of M ′k−l . As a unipotent subgroup of SO2n+1, NGLk Uk takes the form
z1 u1 u2 u3 u4

z2 v1 v2 ∗

I2(n−k)+1 ∗ ∗

∗ ∗

∗

 ,
where z1 ∈ NGLl , z2 ∈ N ′GLk−l

, u1, . . . , u4 are the coordinates of Ul , and v1, v2 are the

coordinates of U ′k−l .

Assume that cl = 0 for some 1 6 l < k. Then

jNGLk Uk ,ψ = jNGLl ,ψ1 jN ′GLk−l
U ′k−l ,ψ2

jUl ,

where ψ1 and ψ2 are obtained from ψ by restriction.

By the induction hypothesis, or by Lemma 2.23, if n− l = 1 (and then k = n),

jN ′GLk−l
U ′k−l ,ψ2

(2Gn−l ,χ2) = 0 (2.39)

for any exceptional character χ2 of CT̃n−l+1(F).

Write as in Proposition 2.19, jUl (2Gn ,χ ) ⊂ I (2GLl ,χ1 ,2Gn−l ,χ2)
?. It is enough to prove

that

jN ′GLk−l
U ′k−l ,ψ2

(I (2GLl ,χ1 ,2Gn−l ,χ2)
?) = 0.

Moreover, according to Lemma 2.13, it suffices to prove that jN ′GLk−l
U ′k−l ,ψ2

vanishes on

indM̃l (F)
p−1(GLl (F)?×Gn−l (F))

(2?GLl ,χ1
⊗2Gn−l ,χ2). (2.40)
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Let Stψ2(F) be the normalizer of N ′GLk−l
(F)U ′k−l(F) and the stabilizer of ψ2 in Gn−l(F).

The double coset space

(GLl(F)?Gn−l(F))\Ml(F)/(GLl(F)Stψ2(F))

has one element. Using the geometric lemma of Bernstein and Zelevinsky [12,

Theorem 5.2], the application of jN ′GLk−l
U ′k−l ,ψ2

to (2.40) is seen to be equal to

ind
p−1(GLl (F)×Stψ2 (F))
p−1(GLl (F)?×Stψ2 (F))

(2?GLl ,χ1
⊗ jN ′GLk−l

U ′k−l ,ψ2
(2Gn−l ,χ2)),

which vanishes by (2.39).

Thus we may assume that c1 = · · · = ck−1 = 1. By virtue of Corollary 2.20 and

Lemma 2.13, it is enough to show that

jNGLk Uk ,ψ (IndG̃n(F)
Q̃1(F)

(indM̃1(F)
p−1(GL1(F)?×Gn−1(F))

(2?GL1,χ3
⊗2Gn−1,χ4))) = 0.

Let χ ′ be an exceptional character of CT̃n(F). If n = 2, let r = 1; otherwise, take

2 6 r 6 n− 1. Let ψ ′ be a non-trivial character of NGLr (F)Ur (F), where NGLr Ur is a

subgroup of Gn−1 embedded in the standard maximal parabolic subgroup with a Levi

part GLr ×Gn−1−r . If n > 2, assume that ψ ′ is defined as in the statement of the lemma,

with respect to c′1, . . . , c′r−1, d ′1, d ′2, d ′3 ∈ F , where `(t (d ′1, d ′2, d ′3)) 6= 0. According to the

induction hypothesis and Lemma 2.23,

jNGLr Ur ,ψ ′(2Gn−1,χ ′) = 0.

As above, [12, Theorem 5.2] implies that

jNGLr Ur ,ψ ′(indM̃1(F)
p−1(GL1(F)?×Gn−1(F))

(2?GL1,χ3
⊗2Gn−1,χ4)) = 0. (2.41)

Now, the filtration argument of [17] applies to our case as well. Specifically, the stabilizer

in Mk(F) of ψ contains NGLk (F)GSpin2(n−k)(F), where GSpin2(n−k)(F) is the stabilizer

of ψ in Gn−k(F) (GLk and Gn−k are regarded as subgroups of Mk). The space of the

representation induced from Q̃1(F) to G̃n(F) has a filtration according to the double

cosets Q1(F)\Gn(F)/(NGLk (F)GSpin2(n−k)(F)). Let w be a representative of some double

coset. Then either w conjugates one of the root subgroups of NGLk Uk on which ψ is

non-trivial, into U1, in which case jNGLk Uk ,ψ clearly vanishes, or ψ |w(NGLk Uk )∩(NGLk Uk ) = ψ
′

with ψ ′ as above, and then the Jacquet module vanishes by (2.41).

For n = 1, 2 the lemma follows immediately from Lemmas 2.23 and 2.24. Henceforth,

assume that n > 2.

Claim 2.27. The representation jU1,ψb (2Gn ,χ ), if non-zero, is a supercuspidal

representation of G̃Spin2(n−1)(F).

Proof. Assume that `(b) ∈ F∗2. Then we may assume that b = en(∈ F2n−1); i.e., ψb(u) =
ψ(uε2). Exactly as in [17, Lemma 2.8], using an ‘exchange of roots’, the claim can
be reduced to showing the vanishing of τ = jUl+1,ψ2(2Gn ,χ ), where 0 < l < n and ψ2
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is the character of Ul+1(F) given by ψ2(u) = ψ(uεl+1). Let Yl+1 < GLl+1 be the mirabolic

subgroup, the subgroup of matrices with the last row equal to (0, . . . , 0, 1). Then τ is a

genuine representation of Ỹl+1(F), and we must show that τ = 0. Suppose that this does

not hold. According to Bernstein and Zelevinsky [11, (5.14)], there are c1, . . . , cl ∈ F such

that the character ψ1(u) = ψ(
∑l

i=1 ci uαi+1) of NGLl+1(F) satisfies jNGLl+1 ,ψ1(τ ) 6= 0. But

this means that jNGLl+1 Ul+1,ψ (2Gn ,χ ) 6= 0, where ψ = ψ1 ·ψ2, contradicting Claim 2.26.

If `(b) ∈ F∗−F∗2, the argument is similar, with a minor change to ψ2.

Claim 2.28. For any genuine supercuspidal representation τ of G̃Spin2(n−1)(F) and

exceptional characters χ1 and χ2 of CT̃GLn
(F) and T̃1(F),

HomG̃Spin2(n−1)(F)
( jU1,ψb (IndG̃n(F)

Q̃n(F)
(2GLn ,χ1 ⊗2G0,χ2)), τ ) = 0. (2.42)

Proof. Since in this particular case the tensor representation is defined, we are in the

same situation as in [17, Lemma 2.9], except that we have the quasi-split GSpin2(n−1)(F)
instead of split SO2(n−1)(F). The space (2.42) can be analyzed using the Bruhat

theory of Silberger [73, Theorems 1.9.4 and 1.9.5]. One considers the double coset

space Qn(F)\Gn(F)/(U1(F)GSpin2(n−1)(F)), and then uses the theory of derivations of

Bernstein and Zelevinsky [11]. Since τ is supercuspidal, this space is of dimension at

most 1. Because n > 3 and we are assuming that the residue characteristic of F is odd,

2GLn ,χ1 does not have a Whittaker model ([47, § I.3]; see also [19, p. 145]). In this case, the

dimension of (2.42) is zero. The arguments follow closely those of [43, § 4] for quasi-split

SO2(n−1)(F), Soudry [74, § 8], and Ginzburg et al. [32, Theorem 6.2(c)].

As in [17], the proposition follows. Set τ = jU1,ψb (2Gn ,χ ); then Claims 2.21, 2.27

and 2.28 applied to τ imply that HomG̃Spin2(n−1)(F)
(τ, τ ) = 0, a contradiction.

Now we are ready to prove the theorem.

Proof of Theorem 1. Let 2 = 2Gn ,χ , let O = (r1, . . . , rm) be such that O � O0, and let

ψb be a generic character of VO(F). The proof is a local analog of [17, Theorem 4.2(i)].

We briefly reproduce the arguments. Let e (respectively, o) be the number of even

(respectively, odd) numbers ri greater than 1. By the definition of a unipotent class,

e is even, whence m− e is odd.

We only show the case when o > 0. Put r = n− o− (m+ e− 1)/2. The unipotent

subgroup VO(F) corresponds to the following unipotent subgroup of SO2n+1(F) (see

§ 1.2): 



. . . α
...

Io 0 x y z α′

Ie 0 v y′

Im−e 0 x ′

Ie 0
Io
. . .




.
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Here, α is an r × o matrix, and, if h is an i × j matrix, h′ = −J j
t h Ji . The middle (2o+

e+m)× (2o+ e+m) block, regarded as a unipotent subgroup of Gn−r < Mr , corresponds

to the unipotent class (3o2e1m−o−e), and we denote it by V(3o2e1m−o−e). We have

C(Gn−r (F), h(3o2e1m−o−e)(F)) = GLo(F)×GLe(F)×G(m−e−1)/2(F).

According to the description of Carter [20, p. 398], if ε belongs to the open orbit (see the

discussion at the beginning of this section), Stε(F)0 is a reductive group of Lie typeB(o−1)/2×Ce/2× D(m−o−e)/2 o is odd,

Do/2×Ce/2× D(m−o−e−1)/2 o is even.

Since the coordinates of α and z vanish in V a
O, ψb is trivial on the coordinates of α′

and z. According to the definition, the restriction of ψb to V(3o2e1m−o−e)(F) is a generic

character. The restriction of ψb to the coordinates of x (respectively, v) is characterized

by an o× (m− e) (respectively, e× e) matrix x (respectively, v). We may assume that, if

(x, v) ∈ V a
O(F) is the point defined by x and v, St(x,v)(F)0 is already of the prescribed Lie

type. It follows that ψb is trivial on y, and, using a conjugation by a suitable g ∈ GLk(F)
(a product of a unipotent matrix and a Weyl element), we may also assume that `(x1) 6= 0.

Using another conjugation, we can move the (r + 1)th row (which contains x1) to the

first row. Again by the transitivity of the Jacquet functor, it is enough to prove that

jU,ψ ′b (2) = 0, for the subgroup U (F) < U1(F) of matrices u whose first row is(
1 0r+o−1+e x1 y1 z1,1 α

′

1 z1,2
)
,

where, for a matrix h, hi is the ith row of h; (hi,1, hi,2) = hi ; hi,2 ∈ F ; and ψ ′b(u) =
ψ(x1(

t x1)).

If jU,ψ ′b (2) 6= 0, there exists some character ψc of U1(F) which agrees with ψ ′b on

U (F), such that jU1,ψc (2) 6= 0. However, any such character takes the form ψc(u) =
ψ(r(u)c), where t c is the row (c1, . . . , cr+o−1+e, x, 0r+o−1+e) ∈ F2n−1. Since `(c) 6= 0, this

contradicts Lemma 2.25.

We also have the following vanishing result.

Proposition 2.29. For all 3 6 k 6 n, jNGLk Uk ,ψ (2Gn ,χ ) = 0, where ψ(u) = ψ(
∑k−1

i=1 uαi+1).

Proof. Since jNGLk Uk ,ψ = jNGLk ,ψ
jUk , using Proposition 2.19 and Lemma 2.13 we see that

it is enough to prove that

jNGLk ,ψ
(indM̃k (F)

p−1(GLk (F)×Gn−k (F)?)
(2GLk ,χ1 ⊗2

?
Gn−k ,χ2

)) = 0. (2.43)

As above, we use [12, Theorem 5.2]. Let Stψ (F) be the normalizer of NGLk (F) and the

stabilizer of ψ in GLk(F). The space

(GLk(F)Gn−k(F)?)\Mk(F)/(Stψ (F)Gn−k(F))

has one element. Since ψ |NGLk
is the standard Whittaker character and 2GLk ,χ1 is not

generic [47, § I.3], jNGLk ,ψ
(2GLk ,χ1) = 0. Hence (2.43) follows.
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2.3.3. Explicit construction of exceptional characters. Let η be a character

of F∗. Start with defining a character χ0 of Tn+1(F)2, depending on η. For t =∏n
i=1 η

∨

i (a
2
i )β
∨

1 (t1), let

χ0(t) =
n∏

i=1

|ai |
n−i+1η(ϒ(t)).

Using (1.6), we see that χ0(α
∨(x l(α))) = |x | for all α ∈ 1Gn and x ∈ F∗. Extend χ0 to a

genuine character χ of T̃n+1(F)2 using s: χ(ζs(t)) = ζχ0(t) (ζ ∈ µ2). If n is even, χ is

exceptional.

Let ψ be a non-trivial additive character of F . If z =
∏n

i=1 η
∨

i (d) and z′ =
∏n

i=1 η
∨

i (d
′),

where d, d ′ ∈ (F∗)2/gcd (2,n+1), using (2.9), (2.1), and (2.2), we get σ(z, z′) = c(d, d ′)dn/2e.
Therefore, ζs(z) 7→ ζγ

dn/2e
ψ (d) is a genuine character of CG̃Ln(F) (if n is even, γψ (d) = 1).

Since [t, z]σ = 1, we can define the following exceptional character of CT̃n+1(F):

χ(ζs(t)s(z)) = ζχ0(t)|d|n(n+1)/4η(d)nγ dn/2eψ (d). (2.44)

In fact, every exceptional character can be written in this form, for suitable ψ and η.

We mention that, in the context of exceptional representations of GLn , the character

η is the ‘determinantal character’ of Bump and Ginzburg [19, p. 143].

Let T̃n+1(F)m be the maximal abelian subgroup given in Claim 2.10. The following

formula defines an extension χ ′ of χ to T̃n+1(F)m. For t =
∏n

i=1 η
∨

i (ai )β
∨

1 (t1) ∈ Tn+1(F)m,

let

χ ′(ζs(t)) = ζ
n∏

i=1

|ai |
(n−i+1)/2η(ϒ(t))

dn/2e−1∏
i=0

γψ (an−2i ).

Now consider the unramified case. Assume that all data are unramified. This means that

|2| = 1, q > 3 in F ; ψ is unramified (ψ |O = 1, ψ |P−1 6= 1); and η is unramified (η|O∗ = 1).

Then γψ |O∗ = 1 (see, e.g., [80, Lemma 3.4]). Therefore χ is trivial on CT̃n+1(F) ∩ K ∗. In

this case, χ is an unramified character (see § 2.2.2).

3. Global theory

3.1. The r-fold cover of Gn(A)
Let F be a number field containing all r rth roots of unity, with a ring of adèles A. The

global r -fold cover G̃n(A) of Gn(A) is defined similarly to the definition of G̃Ln(A) of [47]

(§ 0.2; see also [24, 81, 82]). At each place ν we have the exact sequence of § 2.1.1,

1→ µr (Fν)
ιν
−→ G̃n(Fν)

pν
−→ Gn(Fν)→ 1.

Denote by c the inverse of the global Hilbert symbol; c is the product of the local

functions cν . At each ν, let Kν < Gn(Fν) be either Gn(Oν) if Fν is p-adic, or a maximal

compact subgroup in the Archimedean case, and put K =
∏
ν Kν . For simplicity, fix an

identification of µr (Fν) with µr = µr (F) (which is usually identified with a subgroup
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of C∗). Let S∞ be the set of Archimedean places of F . Fix a finite set S0 containing S∞
and the places ν such that |r |ν < 1 or qν 6 3. For any finite set S ⊃ S0, denote

Gn(A)S =
∏
ν∈S

Gn(Fν)
∏
ν /∈S

Kν, Gn(A)∗S =
∏
ν∈S

G̃n(Fν)
∏
ν /∈S

K ∗ν .

For ν ∈ S, G̃n(Fν) < Gn(A)∗S (in particular, ιν(µr ) < Gn(A)∗S). Note that K ∗ν was defined

given the assumption on S (see § 2.1.4). Let µ̂r be the subgroup of Gn(A)∗S generated

by the elements ιν(ζ )ιν′(ζ )
−1, where ζ ∈ µr and ν, ν′ ∈ S. Define Ĝn(A)S = µ̂r\Gn(A)∗S .

Then

Gn(A) = lim
S−→

Gn(A)S, G̃n(A) = lim
S−→

Ĝn(A)S .

We have an exact sequence

1→ µr
ι
−→ G̃n(A)

p
−→ Gn(A)→ 1.

Regarding the topologies on these groups, refer to [47, § 0.2].

Let
∏
′

ν Gn(Fν) be the restricted direct product with respect to the subgroups {Kν}ν .
Then Gn(A) =

∏
′

ν Gn(Fν). Similarly, define
∏
′

ν G̃n(Fν) with respect to {K ∗ν }ν . Set µ×r =

{(iν(ζν))ν ∈
∏
′

ν G̃n(Fν) :
∏
ν ζν = 1}. Then G̃n(A) = µ×r \

∏
′

ν G̃n(Fν).
In § 2.1.4, we defined κν for ν /∈ S0, extend κν to a smooth section of Gn(Fν). Define

sections κν also for ν ∈ S0 arbitrarily. Set κ =
∏
ν κν . This is a section of Gn(A), well

defined because κν(Kν) = K ∗ν for ν /∈ S0. The corresponding 2-cocycle is defined by

γ (g, g′) = κ(g)κ(g′)κ(gg′)−1, well defined since, for ν /∈ S0, κν is a splitting of Kν .
Consider s =

∏
ν sν , where sν is the section given in § 2.1.1. This is not a section of

Gn(A), but can be used with the following subgroups.

Claim 3.1. The section s is a splitting of Gn(F) and Nn(A). It is well defined on Tn+1(A).

Proof. First, observe that s is indeed well defined on these subgroups. Indeed,

let g ∈ Gn(F) and write g = utwu′ as in (2.12). Then, for any place ν, sν(g) =
sν(u)sν(t)sν(w)sν(u′). For almost all ν, the elements u, t, w and u′ lie in Kν . Then

Claim 2.3 implies that sν(g) ∈ K ∗ν . The same claim implies that, if u ∈ Nn(A) and

t ∈ Tn+1(A), sν(uν) = κν(uν) ∈ K ∗ν and sν(tν) = κν(tν) ∈ K ∗ν for almost all ν.

Since, for all ν, sν is a splitting of Nn(Fν), s is a splitting of Nn(A). To show that s is

a splitting of Gn(F), one uses (2.12), the relations in [10, § 1] defining the multiplication

in Gn(Fν) and G̃n(Fν), and the fact that c is trivial on F∗× F∗.

Remark 3.1. Let H be a subgroup of Gn(A) such that, for any h ∈ H , for almost all

ν, s(hν) = κ(hν). Then, if h, h′ ∈ H , we have sν(hν)sν(h′ν) = sν(hνh′ν) almost everywhere.

Hence we can define the 2-cocycle σ(h, h′) = s(h)s(h′)s(hh′)−1 on H , and then σ =
∏
ν σν ,

where σν is the block-compatible cocycle of § 2.1.1. According to Claim 3.1, σ is well

defined on Tn(A), and trivial on Gn(F) and Nn(A).

Henceforth r = 2.
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3.2. Representations, intertwining operators and Eisenstein series

We study irreducible genuine representations of T̃n+1(A) formed by extending a genuine

character of CT̃n+1(A) = µ
×

2 \
∏
′

ν CT̃n+1(Fν ) to a maximal abelian subgroup, and then

inducing to T̃n+1(A). The resulting representation is independent of the choices of abelian

subgroup and extension [47, § 0.3].

Let χ be a genuine character of CT̃n+1(A), which is trivial on CT̃n+1(A) ∩ s(Tn+1(F)). Then

χ = ⊗′νχν , where, for almost all ν, χν is unramified, because it is trivial on CT̃n+1(Fν ) ∩ K ∗ν
(see § 2.2.2).

Following Kazhdan and Patterson [47, § II.1], we will use two maximal subgroups; the

resulting representation will be the same. One choice is X = µ×2 \
∏
′

ν Xν , where CT̃n+1(Fν ) <

Xν < T̃n+1(Fν) is a local maximal abelian subgroup such that, for almost all ν, Xν =
C(T̃n+1(Fν), T̃n+1(Fν)∩ K ∗ν ) (see Claim 2.9). The subgroup X is suitable for relating a

global representation to its local pieces. Globally it is simpler to work with a subgroup

containing s(Tn+1(F)). As in [47, Lemma II.1.1], we introduce the following alternative.

Claim 3.2. The subgroup C(T̃n+1(A), s(Tn+1(F))) is a maximal abelian subgroup of

T̃n+1(A), which contains s(Tn+1(F)). We have C(T̃n+1(A), s(Tn+1(F))) = s(Tn+1(F))
CT̃n+1(A).

Proof. The containment from right to left is clear, because by Claim 3.1 the section s

splits Gn(F); hence the elements of s(Tn+1(F)) commute. Now we proceed as in the proof

of Claim 2.9, and note that, by Weil [86, § XIII.5, Propositions 7 and 8], c(x, y) = 1 for all

y ∈ A∗ if and only if x ∈ (A∗)2, and c(x, y) = 1 for all y ∈ F∗ if and only if x ∈ F∗(A∗)2
(compare to § 1.3.3). Observe that the proof of Claim 2.9 uses the local cocycle σν defined

using sν . As explained in Remark 3.1, the argument extends to the global setting.

For s = (s1, . . . , sn+1) ∈ Cn+1, define a non-genuine character es of T̃n+1(A) by requiring

that es(α
∨(x)) = |x |(α,s)/l(α) for all α ∈ 1G ′n+1

and x ∈ A∗. For example, es(α
∨

1 (x)) =

|x |(s1−s2)/2, es(α
∨

n+1(x)) = |x |
sn+1 . The character es is trivial on s(Tn+1(F)).

If d ∈ C, denote d = (d, . . . , d) (the length of d will be clear from the context).

Let χ be a genuine character of CT̃n+1(A), which is trivial on CT̃n+1(A) ∩ s(Tn+1(F)).
Denote χs = es ·χ . Assume that we are given an abelian subgroup CT̃n+1(A) < H <

T̃n+1(A) and an extension χ ′ of χ to H . We will always assume that (χ ′)s = (χs)
′.

Therefore we continue to denote the extension by χ (instead of χ ′), and the notation

χs is not ambiguous.

Let VH (χs) be the space of the representation IndG̃n(A)
H Nn(A)(χs). Specifically, this is the

space of functions f : G̃n(A)→ C which are K̃ -smooth on the right, and f (hs(u)g) =
δ

1/2
Bn(A)(h)χs(h) f (g) for all h ∈ H , u ∈ Nn(A) and g ∈ G̃n(A). Set VH (χ) = VH (χ0). A

standard section fs is a function such that fs |K̃ is independent of s, and, for all s,

fs ∈ VH (χs). For any f ∈ VH (χ) there is a standard section fs with f0 = f .

We extend χ to C(T̃n+1(A), s(Tn+1(F))) and to X . The extension to C(T̃n+1(A),
s(Tn+1(F))) is obtained by acting trivially on s(Tn+1(F)). The extension to X is arbitrary,

as long as both extensions agree on C(T̃n+1(A), s(Tn+1(F)))∩ X (a suitable extension to

X with this property always exists; see [47, p. 108]).
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For brevity, put 4 = C(T̃n+1(A), s(Tn+1(F))).
The space VX (χs) decomposes as the restricted tensor product ⊗′νV (χs,ν) with respect

to {V (χs,ν)
K ∗ν }ν /∈S0 , where V (χs,ν) is the space of IndG̃n(Fν )

B̃n(Fν )
(ρν(χs,ν)), defined in § 2.2.1.

The spaces VX (χ) and V4(χ) are isomorphic (see [47, p. 109]). Specifically, for f ∈
VX (χ), define f ′ ∈ V4(χ) via

f ′(g) =
∑

δ′∈ (CT̃n+1(A)
∩s(Tn+1(F)))\Tn+1(F)

f (s(δ′)g), g ∈ G̃n(A). (3.1)

For w ∈ Wn , let M ′(w, χs) : V4(χs)→ V4(wχs) be the standard intertwining operator

defined by (the meromorphic continuation of)

M ′(w, χs) f ′(g) =
∫

Nw
n (A)\Nn(A)

f ′s (s(w)
−1s(u)g) du. (3.2)

Note that Wn ⊂ Gn(F). Using the isomorphism V4 ∼= VX , we can define the

corresponding intertwining operator M(w, χs) : VX (χs)→ VX (
wχs). The poles and zeros

(with multiplicities) of these operators coincide.

Now we are ready to define the Eisenstein series. For f ∈ VX (χ), let

EBn (g; f, s) =
∑

δ∈Bn(F)\Gn(F)

f ′s (s(δ)g).

The sum is absolutely convergent in a suitable cone and has a meromorphic continuation.

Analogously to [47, Proposition II.1.2], or using the general formulation of Mœglin and

Waldspurger [63, § II.1.7], if

E Nn
Bn
(g; f, s) =

∫
Nn(F)\Nn(A)

EBn (s(u)g; f, s) du

is the constant term of EBn (g; f, s) along Nn ,

E Nn
Bn
(g; f, s) =

∑
w∈Wn

M ′(w, χs) f ′s (g).

3.3. Induction from Mn

Throughout this section, the groups GLn and G0 are regarded as subgroups of Mn .

Since the local subgroups G̃Ln(Fν) and G̃0(Fν) commute, G̃Ln(A) and G̃0(A) commute.

Therefore, genuine automorphic representations of M̃n(A) can be described using the

usual tensor product.

Let χ be a genuine character of CT̃n+1(A) which is trivial on CT̃n+1(A) ∩ s(Tn+1(F)).
According to the results of § 2.1.6,

CT̃n+1(A) = {(ζ, ζ ) : ζ ∈ µ2}\(CT̃GLn (A)× G̃0(A)).

Therefore we can write uniquely χ = χ (1)⊗χ (2), where χ (1) and χ (2) are genuine

characters of CT̃GLn (A) and G̃0(A). The character χ (1) is trivial on CT̃GLn (A) ∩ s(TGLn (F)),

and χ (2) is trivial on s(G0(F)).
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The description of § 3.2 was adapted from the exposition in [47, § II.1], which we

briefly recall. For s ∈ Cn , define a non-genuine character es of T̃GLn (A) by requiring

that es(α
∨

i (x)) = |x |
(αi ,s)/2 for all 2 6 i 6 n and x ∈ A∗. Let σ be a genuine character of

CT̃GLn (A). For CT̃GLn (A) < H < T̃GLn (A), the space VH (σs) consists of functions on G̃Ln(A).
Denote KGLn(Fν ) = Kν ∩GLn(Fν), and, for ν /∈ S0, K ∗GLn(Fν ) = κν(KGLn(Fν )). We have the

subgroup XGLn = µ×2 \
∏
′

ν XGLn
ν , where, for almost all ν, XGLn

ν = C(T̃GLn (Fν), T̃GLn (Fν)∩
K ∗GLn(Fν )). Also, let 4GLn = C(T̃GLn (A), s(TGLn (F))). We alternate between VXGLn (σ ) and

V4GLn (σ ), where f ∈ VXGLn (σ ) is mapped to f ′ ∈ V4GLn (σ ) using a summation over

(CT̃GLn (A) ∩ s(TGLn (F)))\TGLn (F).

Claim 3.3. Let χ be as above, and denote by VQn (V4GLn (χ
(1))⊗χ (2)) the subspace of right

K̃ -smooth functions in IndG̃n(A)
Q̃n(A)

(IndG̃Ln(A)
4GLn NGLn (A)

(χ (1))⊗χ (2)). Then

V4(χ) ∼= VQn (V4GLn (χ
(1))⊗χ (2)).

Proof. According to § 2.1.6 (and [47, p. 59]),

CT̃n+1(Fν ) = {(ζ, ζ ) : ζ ∈ µ2}\(CT̃GLn (Fν )
× G̃0(Fν)), (3.3)

Tn+1(Fν)m = {(ζ, ζ ) : ζ ∈ µ2}\(TGLn (Fν)
m
× G̃0(Fν)), (3.4)

and, for ν /∈ S0,

C(T̃n+1(Fν), T̃n+1(Fν)∩ K ∗ν )

= {(ζ, ζ ) : ζ ∈ µ2}\(C(T̃GLn (Fν), T̃GLn (Fν)∩ K ∗GLn(Fν ))× G̃0(Fν)). (3.5)

In general, let σ be a genuine character of CT̃n+1(Fν ). Using (3.3), we can write σν =

σ
(1)
ν ⊗ σ

(2)
ν for unique genuine characters σ

(1)
ν and σ

(2)
ν of CT̃GLn (Fν )

and G̃0(Fν). Then

IndG̃n(Fν )
B̃n(Fν )

(ρν(σν)) ∼= IndG̃n(Fν )
Q̃n(Fν )

(IndG̃Ln(Fν )
B̃GLn (Fν )

(ρν(σ
(1)
ν ))⊗ σ (2)ν ). (3.6)

Assume that

Xν =

C(T̃n+1(Fν), T̃n+1(Fν)∩ K ∗ν ) ν /∈ S0,

T̃n+1(Fν)m otherwise.

Define XGLn = µ×2 \
∏
′

ν XGLn
ν , where

XGLn
ν =

C(T̃GLn (Fν), T̃GLn (Fν)∩ K ∗GLn(Fν )) ν /∈ S0,

T̃GLn (Fν)
m otherwise.

Now (3.4)–(3.6) yield

IndG̃n(A)
X Nn(A)(χ)

∼= IndG̃n(A)
Q̃n(A)

(IndG̃Ln(A)
XGLn NGLn (A)

(χ (1))⊗χ (2)),

and the isomorphism between the spaces follows because

(CT̃n+1(A) ∩ s(Tn+1(F)))\Tn+1(F) ∼= (CT̃GLn (A) ∩ s(TGLn (F)))\TGLn (F).
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3.4. Global exceptional (small) representations

3.4.1. Definition and basic properties. Let χ be a genuine character of CT̃n+1(A),
which is trivial on CT̃n+1(A) ∩ s(Tn+1(F)). Analogously to the local case, call χ exceptional

if, for all α ∈ 1Gn , χ(α∨∗(x l(α))) = |x | for all x ∈ A∗. We have χ = ⊗′χν , where χν is a

local exceptional character of CT̃n+1(Fν ).

Put Ress=0 = lims→0
∏n

i=2(si − si+1)sn+1. For f ∈ VX (χ), define

θ f (g) = Res
s=0

E Nn
Bn
(g; f, s), g ∈ G̃n(A).

Proposition 3.4. Let χ be an exceptional character, and let f ∈ VX (χ).

(1) The residue Ress=0 M ′(w0, χs) f ′s (g) is finite and non-zero. If w 6= w0, Ress=0 M ′

(w, χs) f ′s = 0.

(2) The constant term θ
Nn
f of θ f along Nn is the image of M ′(w0, χ):∫
Nn(F)\Nn(A)

θ f (s(u)g) du = M ′(w0, χ) f ′(g).

Here, we normalize the measure by requiring the volume of F\A to be 1.

(3) The representation 2Gn ,χ spanned by θ f as f varies in VX (χ) is irreducible,

automorphic, genuine, and belongs to L2(s(Gn(F))\G̃n(A)). It is isomorphic to

⊗
′
ν2Gn ,χν .

Proof. The proof follows exactly as in [17, Proposition 3.1 and Theorem 3.2] and [47,

Proposition II.1.2 and Theorems II.1.4 and II.2.1]; we briefly reproduce the argument.

The assertions follow from the calculation of the poles of M ′(w, χs) f ′s (g). When we take

a pure tensor f , M(w, χs) fs = (⊗ν∈Sϕν)⊗ (⊗
′

ν /∈Sϕν), where S ⊃ S0 is a finite set of places

depending on χ and f . The unramified part is ⊗′ν /∈Sϕν . For any fixed place ν, the local

intertwining operator is holomorphic, since χs,ν belongs to the positive Weyl chamber

when s tends to 0. Thus the poles are located in the unramified part; they are determined

by the product
∏
ν /∈S c(w, χs,ν). If w = w0, according to Claim 2.22, the poles belong to∏

26i< j6n+1 ζ( j − i + s j − si )ζ(− j − i + 2(n+ 2)+ si + s j )
∏n+1

i=2 ζ(n+ 2− i + si )∏
26i< j6n+1 ζ(1+ j − i + s j − si )ζ(1− j − i + 2(n+ 2)+ si + s j )

∏n+1
i=2 ζ(n+ 3− i + si )

.

Here, ζ denotes the partial Dedekind zeta function of F with respect to S. Recall that ζ

is holomorphic except at s = 1, where it has a simple pole, and is non-zero on the right

half-plane <(s) > 1. When s → 0, precisely n zeta functions contribute a pole. If w 6= w0,

one of these functions will be omitted. Finally, the image M ′(w0, χ)V4(χ) is isomorphic

to ⊗′νMν(w0, χν)V (χν) which is ⊗′ν2Gn ,χν .

The representation 2Gn ,χ is the global exceptional representation.

3.4.2. Explicit construction of exceptional characters. Let η be a Hecke

character, i.e., a character of F∗\A∗, and let ψ be a non-trivial character of F\A. Let

γψ be the corresponding global Weil factor. One can mimic the local construction of
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§ 2.3.3 and construct a global exceptional character. Define, for t =
∏n

i=1 η
∨

i (a
2
i )β
∨

1 (t1) ∈
Tn+1(A)2, d ∈ (A∗)2/gcd (2,n+1), z =

∏n
i=1 η

∨

i (d), and ζ ∈ µ2,

χ(ζs(t)s(z)) = ζ
n∏

i=1

|ai |
n−i+1η(ϒ(t))|d|n(n+1)/4η(d)nγ dn/2eψ (d). (3.7)

This is a global exceptional character, and it decomposes as ⊗′χν , where χν is given

by (2.44). For almost all ν, χν is unramified.

If n is odd, in contrast with the local case, this description does not exhaust all

exceptional characters, as one may replace γψ with a more general class of functions.

However, χ |s(Tn+1(A)2) is uniquely described by η and (3.7).

If we write χ = χ (1)⊗χ (2) in the notation of § 3.3,

χ (1)

(
ζs

( n∏
i=1

η∨i (a
2
i )

)
s

( n∏
i=1

η∨i (d)

))
= ζ

n∏
i=1

|ai |
n−i+1η

(
dn

n∏
i=1

a2
i

)
|d|n(n+1)/4γ

dn/2e
ψ (d),

χ (2)(ζs(β∨1 (t1))) = ζη(t
−2). (3.8)

3.4.3. The constant term. Let χ be an exceptional character, and let θ be an

automorphic form in the space of 2Gn ,χ . For any 1 6 k 6 n, define the constant term

of θ along Uk by

θUk (g) =
∫

Uk (F)\Uk (A)
θ(s(u)g) du, g ∈ G̃n(A). (3.9)

Let χ be an exceptional character. We prove Theorem 3. Namely, the function m 7→
θUn (m) (m ∈ M̃n(A)) belongs to the space of 2GLn ,|det|−1/2χ (1) ⊗2G0,χ (2)

, where χ (1) and

χ (2) are exceptional characters such that χ = χ (1)⊗χ (2).

Proof of Theorem 3. Write θ = θ f for some f ∈ VX (χ), θ f (g) = Ress=0 E Nn
Bn
(g; f, s) (see

§ 3.4.1). Let W ⊂ Wn be a set satisfying Gn =
∐

w∈W Bnw
−1 Qn . For X < Qn and w ∈W,

set Xw = wBn ∩ X . According to Mœglin and Waldspurger [63, § II.1.7],∫
Un(F)\Un(A)

∑
δ∈Bn(F)\Gn(F)

f ′s (s(δ)s(u)g) du =
∑

w∈W

∑
m∈Mw

n (F)\Mn(F)

M ′(w, χs) f ′s (s(m)g).

Here, M ′(w, χs) is defined by meromorphic continuation of an integral over Uw
n (F)\Un(A).

As we argue below, the domain of integration can be changed, and M ′(w, χs) is actually

given by (3.2).

We describe a choice of the set W. There are 2n representatives to consider. For b ∈
{0, 1}n , set wb =

∏n
i=1 wεi+1

bi (a product of commuting reflections). The elements {wb}b

are a set of representatives, but wb Nnw
−1
b might not contain NGLn . It will be convenient

to select elements w which satisfy

NGLn <
wNn (3.10)

(see below). Write b = (1m10l1 · · · 1mk 0lk ), where mi , li > 0, m =
∑k

i=1 mi , l =
∑k

i=1 li , m+
l = n, and we assume that k is minimal such that b can be written in this form (e.g., if
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mi ,mi+1 > 0, li > 0). For any a, b, c > 0 such that a+ b+ c 6 n, put

ωa,b,c = diag
(

Ia,

(
0 In−a−b−c
Jb 0

)
, Ic

)
∈ GLn(F),

αb, j = ω∑ j−1
i=1 li ,m j ,

∑ j−1
i=1 mi

∀1 6 j 6 k

(if m j = 0, αb, j = In), zb = αb,k · · ·αb,1. Our set of representatives is W = {zbwb : b ∈
{0, 1}n}. The elements w ∈W satisfy (3.10).

Since Uw
n < Nn , we may write the du-integration of M ′(w, χs) over Uw

n (A)\Un(A).
The condition (3.10) implies that wNn ∩ Nn = NGLn (

wNn ∩Un), whence Uw
n \Un = (

wNn ∩

Nn)\Nn . Therefore M ′(w, χs) f ′s ∈ V4(wχ).

We use the notation of § 3.3. Write wχ = χ
(1)
w ⊗χ

(2)
w , where χ

(1)
w and χ

(2)
w are genuine

characters of CT̃GLn (A) and G̃0(A). According to Claim 3.3, we can regard M ′(w, χs) f ′s as

an element of VQn (V4GLn (χ
(1)
w )z ⊗ (χ

(2)
w )sn+1), where z ∈ Cn satisfies ez =

wes |TGLn (A). Put

s(n) = (s1, . . . , sn).

The mapping

{ f, w, g, sn+1}(s(n), b) = M ′(w, χs) f ′s (bg) (b ∈ G̃Ln(A))

belongs to V4GLn (|det|n/2(χ (1)w )z) (we used δ
1/2
Qn(A) = |det|n/2).

By (3.10), GLn(F)w = BGLn (F); hence Mw
n (F)\Mn(F) ∼= GLn(F)w\GLn(F), and the

summation is an Eisenstein series with respect to BGLn , applied to { f, w, g, sn+1}. Thus

θ f (g) =
∑

w∈W
Res
s=0

EBGLn
(In; { f, w, g, sn+1}, s(n)).

Fix w = zbwb, and let mi , li ,m, l be as above. Let Uαn+1 be the unipotent subgroup of

Nn(A) generated by nαn+1 . Then Uαn+1 < (wNn ∩ Nn)(A) if and only if m = 0.

Claim 3.5. The function M ′(w, χs) f ′s is holomorphic at s, except perhaps for a simple

pole at sn+1 = 0. The pole exists for some data f ′ if and only if m > 0.

Claim 3.6. The series EBGLn
(In; { f, w, g, sn+1}, s(n)) is holomorphic at s(n), except perhaps

for simple poles at si − si+1 for 1 6 i < n. If l > 0 and m > 0, it has at most n− 2 poles.

If l = 0, the function y 7→ EBGLn
(In; { f, w, yg, sn+1}, s(n)) on G̃Ln(A) belongs to the space

of 2GLn ,|det|−1/2χ (1) .

Before proving these claims, we use them to complete the proof of the theorem.

According to Claim 3.5, sn+1 · { f, w, g, sn+1} is holomorphic and vanishes at sn+1 =

0 if m = 0. Hence we may assume that m > 0. Then, by Claim 3.5, the series

EBGLn
(In; { f, w, g, sn+1}, s(n)) multiplied by

∏n−1
i=1 (si − si+1) vanishes for s → 0, unless

l = 0, and then w = z1w1. Therefore

θ f (g) = Res
s=0

EBGLn
(In; { f, w, g, sn+1}, s(n)).

Now Claim 3.5 shows that y 7→ θ f (yg) belongs to the space of 2GLn ,|det|−1/2χ (1) . Clearly

h 7→ θ f (hg) (h ∈ G̃0(A)) lies in the space of 2G0,χ (2)
. The theorem is proved.
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Proof of Claim 3.5. As in the proof of Proposition 3.4, and with the same notation, we

analyze the poles of M ′(w, χs) f ′s by looking at M(w, χs) fs for a pure tensor f ∈ VX (χ).

Denote M(w, χs) fs = (⊗ν∈Sϕν)⊗ (⊗
′

ν /∈Sϕν). At each ν ∈ S, the local intertwining operator

is holomorphic around 0, because, when s → 0, χs,ν belongs to the positive Weyl chamber.

The poles of the intertwining operator coincide with the poles of the infinite product. If

m = 0, the integration is trivial; hence clearly there is no pole. Otherwise, the poles are

contained in the set of poles of∏
26i< j6n+1 ζ(− j − i + 2(n+ 2)+ si + s j )

∏n+1
i=2 ζ(n+ 2− i + si )∏

26i< j6n+1 ζ(1− j − i + 2(n+ 2)+ si + s j )
∏n+1

i=2 ζ(n+ 3− i + si )
.

This product is holomorphic, except for a simple pole at sn+1 = 0. Furthermore, since

Uαn+1 is not a subgroup of (wNn ∩ Nn)(A), the factor ζ(n+ 2− i + si ) with i = n+ 1
contributes to the poles of the intertwining operator. Hence there is a pole at sn+1 = 0.

Proof of Claim 3.6. To compute the poles of EBGLn
(In; { f, w, g, sn+1}, s(n)), we consider

the constant term of { f, w, g, sn+1} along NGLn . According to Kazhdan and Patterson [47,

Proposition II.1.2], ∫
NGLn (F)\NGLn (A)

EBGLn
(s(u); { f, w, g, sn+1}, s(n)) du

=

∑
ω∈WGLn

(MGLn )′(ω, s(n)){ f, w, g, sn+1}
′

s(n)(In).

Here, WGLn is the Weyl subgroup of GLn , and

(MGLn )′(ω, s(n)) : V4GLn (|det|n/2(χ (1)w )z)→ V4GLn (|det|n/2 s(ω)((χ (1)w )z))

is the corresponding intertwining operator.

We may assume that χ |s(Tn+1(A)2) is defined with respect to a Hecke character η

according to (3.7). Since g 7→ η(ϒ(g)) is an automorphic character of Gn(A) which

extends to a non-genuine automorphic character of G̃n(A), and (ηϒ ·χ)
(1)
w = ηϒ · (χ

(1)
w ),

we may prove the claim for (η−1ϒ) ·χ . This means that we assume that η = 1. Then, for

t =
∏n

i=1 η
∨

i (a
2
i )β
∨

1 (t1) ∈ Tn+1(A)2, d ∈ (A∗)2/gcd (2,n+1), z =
∏n

i=1 η
∨

i (d), and ζ ∈ µ2,

χ(ζs(t)s(z)) = ζ
n∏

i=1

|ai |
n−i+1

|d|n(n+1)/4γ (d). (3.11)

Here, γ is a complex-valued function on the quotient of (A∗)2/gcd (2,n+1) by

((A∗)2/gcd (2,n+1)
∩ F∗)A∗2, which satisfies γ (dd ′) = c(d, d ′)dn/2eγ (d)γ (d ′) and is non-zero.

Additionally, by Claim 3.5, we may assume that sn+1 = 0.

The element zb acts on the cocharacters η∨i . Let τ be the permutation such that

z−1
b

( n∏
i=1

η∨i (ai )

)
=

n∏
i=1

η∨i (aτ−1(i)).
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Also define c ∈ {−1, 1}n by ci = 1− 2bi . Then

(χ (1)w )z

(
s

( n∏
i=1

η∨i (a
2
i )

))
=

n∏
i=1

|ai |
cτ(i)(n−τ(i)+1+sτ(i)).

Note that here we used the fact that χ(s(β∨1 (t1))) = 1, because (see, e.g., (1.7))

wb

( n∏
i=1

η∨i (ai )

)
=

n∏
i=1

η∨i (a
∓1
i )β∨1 (· · · ).

We show that χ
(1)
w belongs to the positive Weyl chamber. Denote by t the concatenation

of tuples; e.g., (2, 5, 1)t (2, 8,−1, 0) = (2, 5, 1, 2, 8,−1, 0). For r integers i1, . . . , ir , set
J (i1, i2, . . . , ir ) = (ir , . . . , i2, i1). Let (1, . . . , n) = [l1] t · · · t [lk] t [mk] t · · · t [m1], where,

for r > 0, [r ] is an ascending sequence of r integers. Then

(τ−1(1), . . . , τ−1(n)) = J
[m1] t [l1] t · · · t J

[mk] t [lk].

It follows that, if 1 6 i < j < l, τ(i) < τ( j) and cτ(i) = cτ( j) = 1. Thus, for x ∈ A∗,

χ (1)w (s(η∨i (x
2)η∨j (x

−2))) = |x |n−τ(i)+1−(n−τ( j)+1)
= |x |τ( j)−τ(i). (3.12)

For l + 1 6 i < j < n, we have τ(i) > τ( j) and cτ(i) = cτ( j) = −1, whence

χ (1)w (s(η∨i (x
2)η∨j (x

−2))) = |x |τ(i)−τ( j). (3.13)

If l 6 i 6 l and l + 1 6 j 6 n, then cτ(i) = 1 and cτ( j) = −1, and hence

χ (1)w (s(η∨i (x
2)η∨j (x

−2))) = |x |2n+2−τ(i)−τ( j). (3.14)

We conclude that χ
(1)
w belongs to the positive Weyl chamber. Therefore, for decomposable

data, at any place ν the local intertwining operator is holomorphic. Then the poles of

the intertwining operator (MGLn )′(ω, s(n)) appear only in the unramified part.

Consider such poles. For the purpose of a bound, we may assume that ω = Jn . Let

S ⊃ S0 be a finite set. For a positive root (i, j), where 1 6 i < j 6 n, and ν /∈ S, let

d(i, j),ν = (χ
(1)
w )ν(sν(η

∨

i ($
2
ν )η
∨

j ($
−2
ν ))) = q

−C(i, j)
ν .

Because (χ
(1)
w )ν belongs to the positive Weyl chamber, C(i, j) > 0. Hence the poles appear

(with multiplicities) in the product∏
16i< j6n

ζ(C(i, j)+ sτ( j)− sτ(i)).

For a pair (i, j) appearing in this product, there is a pole at s(n) = 0 if and only if

C(i, j) = 1. For any i , there is at most one j such that τ( j)− τ(i) = 1, and, similarly, at

most one j with τ(i)− τ( j) = 1. Looking at (3.12)–(3.14), we see that the only possible

poles are simple poles at si − si+1 = 0 for each 1 6 i < n such that i 6= l. If l = 0 or m = 0
(in which case l = n), these are n− 1 poles. Otherwise we have at most n− 2 poles.
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Now assume that l = 0. Then

|det|n/2χ (1)w

(
s

( n∏
i=1

η∨i (a
2
i )

)
s

( n∏
i=1

η∨i (d)

))
=

n∏
i=1

|ai |
n−i
|d|n(n−1)/4γ (d−1).

This is an exceptional character of CT̃GLn (A), and therefore, according to the results

of Kazhdan and Patterson [47, Proposition II.1.2 and Theorems II.1.4 and II.2.1], the

mapping

y 7→ lim
s(n)→0

n−1∏
i=1

(si − si+1)EBGLn
(y; { f, w, g, 0}, s(n))

(we assumed that sn+1 = 0) belongs to the space of 2GLn ,|det|n/2χ (1)w
. Since

EBGLn
(y; { f, w, g, sn+1}, s(n)) = EBGLn

(In; { f, w, yg, 0, s(n)),

it is left to show that |det|n/2χ (1)w = |det|−1/2χ (1). Equality (3.11) implies that

χ (1)

(
s

( n∏
i=1

η∨i (a
2
i )

)
s(z)

)
=

n∏
i=1

|ai |
n−i+1

|d|n(n+1)/4γ (d).

Because γ (d−1) = γ (d), the result follows.

Remark 3.2. The analogous result for SO2n+1 was proved in [17, 45] by induction, using

a parabolic subgroup with a Levi part isomorphic to GL1× SO2(n−1)+1. This approach

does not seem to work, because the representation of M1(A) cannot be described using

the tensor product. Note that the twist of χ (1) by |det|−1/2 is compatible with the result

on SO2n+1.

3.4.4. Vanishing results. Let ψ be a non-trivial character of F\A. We use the

notation of § 2.3.2. The global counterpart of the twisted Jacquet modules is a class

of Fourier coefficients, for generic characters. Any character of VO(A) which is trivial

on VO(F) is the lift of a character of V a
O(A), trivial on V a

O(F). Such a character can be

identified with a point b ∈ V a
O(F). The character ψb is generic if b belongs to the open

orbit with respect to the action of C(Gn(F), hO(F
∗
)) on V a

O(F). The Fourier coefficient

of an automorphic function ϕ on G̃n(A) or Gn(A), with respect to O and ψb, is given by∫
VO(F)\VO(A)

ϕ(s(v))ψb(v) dv.

This is the Fourier coefficient of Theorem 2. This theorem follows immediately from

Theorem 1 using a local–global principle (see, e.g., [39, Proposition 1]). In particular, as

in [17, Proposition 4.3], we have the following result (directly implied by Lemma 2.25).

Proposition 3.7. Let χ be an exceptional character, and let b ∈ F2n−1 be with `(b) 6= 0.

Then, for any θ in the space of 2Gn ,χ ,
∫

U1(F)\U1(A) θ(s(u))ψ(r(u)b) du = 0.
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4. Application — the theta period

In this section, we prove Theorem 4. Let F be a number field with a ring of adèles

A. Denote by A+ the subgroup of idèles of F whose finite components are trivial and

Archimedean components are equal, real, and positive; it can be identified with R>0.

Regard GLn and G0 as subgroups of Mn . Let GLn(A)1 < GLn(A) be the subgroup

of matrices b such that |detb| = 1. If g = bhuk ∈ Gn(A) with b ∈ GLn(A), h ∈ G0(A),
u ∈ Un(A), and k ∈ K , define H(g) = |det b|.

Let G̃n(A) be the double cover of Gn(A), defined in § 3.1. We identify Gn(F) and

Nn(A) with their images in G̃n(A) under s (see Claim 3.1). Furthermore, regard Gn(A)
as a subgroup of G̃n(A) by fixing a section Gn(A)→ G̃n(A). For example, one can take

the section κ defined in § 3.1. We suppress the actual section from the notation.

Let τ be an irreducible unitary automorphic cuspidal representation of GLn(A) with a

central character ωτ , and let η be a unitary Hecke character. As in the statement of the

theorem, assume that ω2
τ (t)η

n(t) = 1 for all t ∈ A+.

Let ρ be a smooth complex-valued function on Gn(A), satisfying the following

properties: it is K finite; for any b1
∈ GLn(A)1, h ∈ G0(A), u ∈ Un(A), t ∈ A+, a = t · In ,

and g ∈ Gn(A), ρ(b1ahug) = δ
1
2
Qn(A)(a)ωτ (a)η(h)ρ(b

1g); and, for any k ∈ K , the mapping

b1
7→ ρ(b1k) is a K ∩GLn(A)1-finite vector in the space of τ . The standard section

corresponding to ρ is defined by ρs(g) = H(g)sρ(g), for any s ∈ C.

We have the following Eisenstein series:

EQn (g; ρ, s) =
∑

δ∈Qn(F)\Gn(F)

ρs(δg), g ∈ Gn(A).

According to Hundley and Sayag [37, Proposition 18.0.4], the series EQn (g; ρ, s) is

holomorphic when <(s) > 0, except perhaps at s = 1/2, where it may have a simple pole.

This pole exists (for some data ρ, g) if and only if L(s, τ, Sym2
⊗ η) has a pole at s = 1.

Equivalently, one can use the partial L-function L S(s, τ, Sym2
⊗ η), where S is any finite

set of places; see [37, Remark 2.2.2 and § 19.3].

Remark 4.1. In [37], the L-function was actually L S(s, τ, Sym2
⊗ η−1). This is because

their embedding of G0 in Gn was different. In the notation of § 1.2, they sent θ∨1 to −ε∨1
(compare (1.7) to their formula for wmw−1 in [37, Lemma 13.2.4]).

Put E1/2(g; ρ) = Ress=1/2 EQn (g; ρ, s), where Ress=1/2 = lims→1/2(s− 1/2).
In general, if H < Gn(A), and we are given two complex-valued genuine functions ϕ

and ϕ′ on H̃ , the function h 7→ ϕ(h)ϕ′(h) is independent of the actual choice of section

H → G̃n(A). Therefore it can be regarded as a function on H .

Let χ and χ ′ be global exceptional characters, constructed as explained in § 3.4.2, and

form the exceptional representations 2Gn ,χ and 2Gn ,χ ′ . We take χ and χ ′ such that

χ ·χ ′ · η = 1 on CGn(A), which means that

(χ ·χ ′)(β∨(t))η(t) = 1, ∀t ∈ A∗. (4.1)

This is possible (see § 3.4.2). Let θ (respectively, θ ′) be an automorphic form in the space

of 2Gn ,χ (respectively, 2Gn ,χ ′).
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For any complex-valued function 4 on Gn(F)\Gn(A), satisfying 4(β∨(t)g) = η(t)4(g)
for all g ∈ Gn(A) and t ∈ A∗, the co-period of 4, θ , and θ ′ is the following integral:

I(4, θ, θ ′) =
∫

CGn (A)Gn(F)\Gn(A)
4(g)θ(g)θ ′(g) dg,

provided it is absolutely convergent. Note that H(β∨(t)g) = H(g), and hence ρs ,

EQn (·; ρ, s), and E1/2(·; ρ) are, at least formally, possible candidates for 4.

Let dt be the standard Lebesgue measure on R. We fix measures such that the following

formulas hold.∫
Qn(F)\Gn(A)

ϕ(g) dg =
∫

K

∫
Mn(F)\Mn(A)

∫
Un(F)\Un(A)

ϕ(umk)duδ−1
Qn(A)(m) dm dk,∫

GLn(F)\GLn(A)
ϕ(b) db = n

∫
GLn(F)\GLn(A)1

∫
R>0

ϕ((t · In)b)t−1 dt db.
(4.2)

The co-period I(E1/2(·; ρ), θ, θ
′) is absolutely convergent (see [45, Claim 3.1]). In order

to compute it, we apply the truncation operator of Arthur [1, 2] to EQn (g; ρ, s) as in, for

example, [28, 33, 39, 40]. For the complete argument, see [45]; we provide a sketch. For

a real number d > 1, let ch>d : R>0 → {0, 1} be the characteristic function of R>d , and

set ch6d = 1− ch>d . Denote

Ed
1 (g; s) =

∑
δ∈Qn(F)\Gn(F)

ρs(δg)ch6d(H(δg)),

Ed
2 (g; s) =

∑
δ∈Qn(F)\Gn(F)

M(w, s)ρs(δg)ch>d(H(δg)).

Here, M(w, s) is the global intertwining operator corresponding to a representative w such

that wUnw
−1
= U−n . The co-periods I(Ed

1 (·; s), θ, θ
′) and I(Ed

2 (·; s), θ, θ
′) are absolutely

convergent for <(s)� 0 and

I(3d EQn (·; ρ, s), θ, θ ′) = I(Ed
1 (·; s)− Ed

2 (·; s), θ, θ
′), (4.3)

where 3d EQn (·; ρ, s) is the application of the truncation operator to EQn (·; ρ, s).
The following proposition describes I(Ed

i (·; s), θ, θ
′), and essentially completes the

proof.

Proposition 4.1. The co-periods I(Ed
1 (·; s), θ, θ

′) and I(Ed
2 (·; s), θ, θ

′) have meromorphic

continuation to the whole plane. Moreover,

I(Ed
1 (·; s), θ, θ

′) =
ds−1/2

s− 1/2

∫
K

∫
GLn(F)\GLn(A)1

ρ(bk)θUn (bk)θ ′Un (bk) db dk, (4.4)

I(Ed
2 (·; s), θ, θ

′) =
−d−s−1/2

s+ 1/2

∫
K

∫
GLn(F)\GLn(A)1

M(w, s)ρs(bk)θUn (bk)θ ′Un (bk) db dk.

(4.5)

Here, θUn and θ ′
Un are given by (3.9). In particular, I(Ed

1 (·; s), θ, θ
′) is holomorphic,

except perhaps at s = 1/2, where it may have a simple pole.
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Remark 4.2. We corrected two typos from the corresponding formulas of [45]: the

normalization of the measures should be with n (instead of n−1 in [45, (3.1)]) and in

the statement of the proposition [45, (3.4)] should be −c−s−1/2

s+1/2 .

Now taking the residue in (4.3) yields

I(3d E1/2(·; ρ), θ, θ
′) = Res

s=1/2
I(Ed

1 (·; s), θ, θ
′)− Res

s=1/2
I(Ed

2 (·; s), θ, θ
′).

Here, 3d E1/2(·; ρ) is the application of the truncation operator to E1/2(·; ρ). Taking

d →∞ (and using [53, Proposition 4.3.3]), we obtain

I(E1/2(·; ρ), θ, θ
′) =

∫
K

∫
GLn(F)\GLn(A)1

ρ(bk)θUn (bk)θ ′Un (bk) db dk.

This proves part (1) of the theorem. Part (2) follows from [28, Theorem 3.2] (see also [39,

Proposition 2] and [40]).

Proof of Proposition 4.1. The proof is a simple modification of the proof of [45,

Proposition 3.2]. We briefly present the argument. Consider I(Ed
1 (·; s), θ, θ

′). Collapsing

the summation into the integral gives∫
CGn (A)Qn(F)\Gn(A)

ρs(g)ch6d(H(g))θ(g)θ ′(g) dg. (4.6)

We write the Fourier expansion of θ ′ along the derived group CUn of Un . Assume that

n > 1; the case when n = 1 is trivial because the cover of G1(A) splits (by Claim 2.2). The

group Mn(F) acts on the set of characters of CUn (F)\CUn (A) with bn/2c+ 1 orbits. For

0 6 j 6 bn/2c, define a character ψ j of CUn (F)\CUn (A) by ψ j (c) = ψ(
∑ j

i=1 cn−2i+1,n+2i ),

where ψ is a non-trivial character of F\A. The stabilizer Stψ j (F) of ψ j in Mn(F) is equal

to St ′ψ j
(F)×G0(F), where St ′ψ j

(F) is the stabilizer computed in [45],

St ′ψ j
(F) =

{(
a z
0 b

)
: a ∈ GLn−2 j (F), b ∈ Sp j (F), z is any (n− 2 j)× 2 j matrix

}
< GLn(F),

and Sp j is the symplectic group in 2 j variables. Then

θ ′(g) =
bn/2c∑
j=0

∑
λ∈Stψ j (F)\GLn(F)

∫
CUn (F)\CUn (A)

θ ′(cλg)ψ j (c) dc.

Plugging this into (4.6) gives a sum of integrals
∑bn/2c

j=0 I j with

I j =

∫
K

∫
CGn (A)Stψ j (F)\Mn(A)

ρs(mk)ch6d(H(m))

×

∫
Un(F)\Un(A)

θ(umk)

(∫
CUn (F)\CUn (A)

θ ′(cumk)ψ j (c) dc

)
duδ−1

Qn(A)(m) dm dk.
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Set V j = (CUn ∩Un ∩Un−2 j )\(Un ∩Un−2 j ) and

X j (F) =




In−2 j 0 v1 c1 c2

I2 j 0 c3 c′1
1 0 v′1

I2 j 0
In−2 j

 ∈ Un(F)

 .
The constant term of θ ′ along CUn is a function on V j (F)\V j (A) ∼= (F\A)n−2 j , and, by

considering a Fourier expansion of this function and using Proposition 3.7, one sees that∫
CUn (F)\CUn (A)

θ ′(c)ψ j (c) dc =
∫

X j (F)\X j (A)
θ ′(c)ψ j (c) dc.

Here, ψ j was extended to a character of X j (A), trivially on the coordinates of v1 (and

v′1). Applying this to I j and factoring the du-integration through X j yields

I j =

∫
K

∫
CGn (A)Stψ j (F)\Mn(A)

ρs(mk)ch6d(H(m))

×

∫
X j (A)\(Un(F)\Un(A))

(∫
X j (F)\X j (A)

θ(xu1mk)ψ−1
j (x) dx

)

×

(∫
X j (F)\X j (A)

θ ′(xu1mk)ψ j (x) dx

)
du1δ

−1
Qn(A)(m) dm dk.

The following lemma is the heart of the unfolding argument.

Lemma 4.2. For any j > 0, I j = 0.

Proof. The proof of [45, Lemma 3.5] is separated into two cases, j < n/2 and j = n/2. In

the case when j < n/2, one introduces an inner integration along a unipotent radical of

GLn , into I j , then uses the fact that ρs |GLn(A) is a cusp form to show that I j vanishes. The

arguments include a Fourier expansion, an ‘exchange of roots’, and a few vanishing results.

The vanishing results we use here are Proposition 3.7, Claim 2.26, and Proposition 2.29.

Note that in [45] we also used a result on a global constant term (with respect to Uk and

any k > 3); this can be replaced with a local result: Proposition 2.29 (as already observed

in [45, Remark 3.8]).

Assume that j = n/2 (in particular, n is even). In this case, Stψn/2 = Spn/2. Utilizing

a result of Ikeda [38, Proposition 1.3] on functions on Jacobi groups along with

Proposition 3.7, one can introduce an inner integration
∫

Spn/2(F)\Spn/2(A)
ρs(ymk) dy into

I j , which vanishes according to Jacquet and Rallis [39, Proposition 1]. The arguments

in [45] are applicable. We need to observe that, as in the case of the cover of SO2n+1(A),

the restriction of the cover of Gn(A) to Spn/2(A) is a non-trivial double cover, which is

therefore isomorphic to the usual metaplectic cover of Spn/2(A).
Therefore, integral (4.6) is equal to I0, and, since Stψ0(F) = Mn(F) and

(CGn(A)Mn(F))\Mn(A) ∼= GLn(F)\GLn(A),
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integral I0 becomes∫
K

∫
GLn(F)\GLn(A)

ρs(bk)ch6d(H(b))θUn (bk)θ ′Un (bk)δ−1
Qn(A)(b) db dk. (4.7)

Regarding the case n = 1, Lemma 2.24 immediately implies that θ ′ = θ ′U1 , and we also

get that (4.6) equals (4.7). Now assume that n > 1.

Finally, to extract the dependence on s, one uses (4.2). Assume that χ (respectively, χ ′)

is given by (3.7) with respect to ηχ , ψχ (respectively, ηχ ′ , ψχ ′). Then (3.7) and (4.1) imply

that

ηχ (t−2)ηχ ′(t−2)η(t) = 1, ∀t ∈ A∗. (4.8)

Let t ∈ A+. Then γψ (t) = 1, and, according to (3.8),

χ (1)

(
s

( n∏
i=1

η∨i (t)

))
= tn(n+1)/4ηχ (t)n . (4.9)

By Theorem 3, (4.8), and (4.9),

θUn (t · In)θ
′Un (t · In) = tn(n−1)/2η(t)n/2θUn (In)θ

′Un (In).

Since also

ρs(t · In)δ
−1
Qn(A)(t · In) = tn(s−n/2)ωτ (t)ρ(In),

when we apply (4.2) to (4.7), we get

n
∫

K

∫
GLn(F)\GLn(A)1

ρ(bk)θUn (bk)θ ′Un (bk)
∫

0<tn6d
ωτ (t)η(t)n/2tn(s−1/2)t−1 dt db dk.

Because ωτ (t)η(t)n/2 = 1, we reach (4.4).

Similar arguments apply to I(Ed
2 (·; s), θ, θ

′), and we obtain (4.5). Note that

M(w, s)ρs(t · In)δ
−1
Qn(A)(t · In) = tn(−s−n/2)ω−1

τ (t)η(t)−nρ(In).
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(1989), 13–71. Orbites unipotentes et représentations, II.

4. M. Asgari, On holomorphy of local Langlands L-functions, ProQuest LLC, Ann Arbor,
MI, PhD thesis, Purdue University (2000).

5. M. Asgari, Local L-functions for split spinor groups, Canad. J. Math. 54(4) (2002),
673–693.

6. M. Asgari and F. Shahidi, Generic transfer for general spin groups, Duke Math. J.
132(1) (2006), 137–190.

7. M. Asgari and F. Shahidi, Image of functoriality for general spin groups, Manuscripta
Math. 144 (2014), 609–638.

8. D. Ban and C. Jantzen, The Langlands quotient theorem for finite central extensions
of p-adic groups, Glas. Mat. Ser. III 48(2) (2013), 313–334.

9. W. Banks, A corollary to Bernstein’s theorem and Whittaker functionals on the
metaplectic group, Math. Res. Lett. 5(6) (1998), 781–790.

10. W. D. Banks, J. Levy and M. R. Sepanski, Block-compatible metaplectic cocycles,
J. Reine Angew. Math. 1999(507) (1999), 131–163.

11. I. N. Bernstein and A. V. Zelevinsky, Representations of the group GL(n, F) where
F is a local non-Archimedean field, Russian Math. Surveys 31(3) (1976), 1–68.

12. I. N. Bernstein and A. V. Zelevinsky, Induced representations of reductive p-adic
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