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We give a new proof of rationality of stable commutator length (scl) of certain
elements in surface groups: those represented by curves that do not fill the surface.
Such elements always admit extremal surfaces for scl. These results also hold more
generally for non-filling 1–chains.
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1. Introduction

This paper concerns the computation of stable commutator length (scl) in funda-
mental groups of closed orientable surfaces. It is of considerable interest to know
whether scl is always rational in these groups, or more generally, whether the scl
norm is piecewise rational linear (in the sense of [4]).

In more concrete terms, let Σ be a closed orientable surface and γ : S1 → Σ a null-
homologous loop. We are interested in identifying efficient maps of surfaces into Σ,
with boundary mapping to a positive power of γ. ‘Efficient’ means that the ratio of
the topological complexity of the surface to the power of γ on the boundary is as
small as possible. The infimal value of this ratio is the stable commutator length of γ.
In some cases, there may be a surface realizing this infimal value; these are called
extremal surfaces for scl, and when they exist scl is rational.

Calegari [2] has shown that one can always find an immersed surface with bound-
ary a power of γ, and such surfaces are the most efficient among those in their
relative homology classes. However, there are infinitely many relative classes, and
one cannot draw any immediate conclusions about the existence of an extremal
surface for γ.

In the present paper, we give a new proof the following theorem of Calegari,
which establishes rationality in the special case of curves γ that do not fill Σ. It
appears as Example 4.51 in [3], as an application of Theorem 4.47. We state the
result here for integral 1–chains, i.e. immersed multicurves.

Theorem 1.1 (Calegari). Let Σ be a closed orientable surface of genus > 1 and
γ :

∐
S1 → Σ a null-homologous integral 1-chain which does not fill Σ. Then, the
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stable commutator length of γ is rational and computable. Moreover, there exists an
extremal surface for γ.

It follows immediately that rational 1–chains supported on non-filling multicurves
also have rational stable commutator length. Indeed, we find that scl is piecewise
rational linear on ‘non-filling’ rational subspaces of the space of 1–chains; that is,
subspaces spanned by rational 1–chains c1, . . . , ck such that the union of their
supports is a non-filling multicurve.

Other rationality results

The list of groups known to have rational scl, excluding those with scl ≡ 0, is fairly
short. Such groups include:

• free groups [4]

• fundamental groups of non-compact Seifert fibred 3–manifolds [4]

• free products of free abelian groups [5]

• free products of cyclic groups [13]

• amalgamated products of free abelian groups [12]

• Baumslag–Solitar groups, alternating elements only [7]

• free products of groups in which scl ≡ 0 [8]

• generalized Baumslag–Solitar groups [9]

Surface groups are conspicuously absent from this list, despite being among the
simplest and most well-understood one-relator groups.

It is worth noting that finitely presented groups do not always have rational scl;
a counterexample was given by Zhuang in [14]. If one allows non-finitely presented
groups, then in fact every non-negative real number occurs as scl of some element
of a small cancellation group [11].

Methods

The general outline of the argument is similar to the case of free groups as presented
in [1]. The stable commutator length of γ is the infimum of −χ(S)/2n(S) over all
admissible surfaces S mapping to Σ. First, we show that the infimum can be taken
over the much smaller subset T (γ) of ‘taut’ admissible surfaces—these will be
described below and defined precisely in § 3.

Taut surfaces can be encoded as integer vectors via a map v : T (γ) → Rk, and
the function −χ(S)/2n(S) factors through this map as T (γ) v→ Rk → R where the
second map is a ratio A(v)/B(v) of linear functions. The computation of scl(γ) is
then reduced to a linear programming problem after showing that the image of v in
Rk fills (in a suitable sense) the integer points of a finite-sided rational polyhedron
in Rk.
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The two main steps are encoding, which entails defining T (γ) and the function
v; and reassembly, in which specific vectors are shown to be in the image of v. Our
main assumption throughout the paper is that Σ contains a subsurface Σ1 with
non-trivial topology that is disjoint from the image of γ. This property is needed
for both steps.

To make a surface S taut, one needs to put it into a normal form that can be
encoded as a finite integer vector. Following Gabai [10], we arrange that away from
a region containing the double points of γ, the preimage in S maps by a branched
immersion. We arrange further that the remaining parts of S fall into finitely many
configurations, and all branch points lie above Σ1. The branch points are now the
main obstacle to having a finite encoding, but these can be removed by passing to
finite-sheeted covers, using the non-trivial topology of Σ1.

For reassembly we show that every integer vector in the rational polyhedron has
a multiple that encodes a taut surface. When building this surface out of pieces, a
phenomenon involving branch points arises. A taut surface cannot be built directly,
but one can build one with branch points. The presence of branch points means that
the linear functional on Rk reporting χ(S) does not report this number correctly.
Once again, using finite coverings of Σ1, we are able to eliminate these branch
points and construct a taut surface with the desired encoding.

In contrast, Calegari’s approach is quite different. He proves theorem 1.1 by
viewing surface groups as fundamental groups of graphs of groups in which vertex
groups are free and edge groups are cyclic. If γ is non-filling then it avoids an
essential annulus, and one may encode Σ as a graph of groups with one edge. The
proof then proceeds by reducing the computation of scl to computing scl in each
vertex group, using the assumption that γ is supported in the vertex groups.

2. Preliminaries

Stable commutator length

We start with basic working definitions for stable commutator length of group
elements and of 1–chains. See [3, Chapter 2] for more information.

Definition 2.1 (scl of integral 1–chains). Let X be a space with fundamental group
G.
An integral 1–chain over G is a finite formal sum c =

∑
i gi with gi ∈ G. Let

γi : S1 → X be a loop representing gi for each i and let γ :
∐
i S

1 → X be the
map given by

∐
i γi. An admissible surface for γ (or for c) is a compact oriented

surface S together with a map f : S → X such that

• ∂S �= ∅ and S has no sphere or disk components

• the restriction f |∂S factors through γ; that is, there is a commutative diagram
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• the restriction of the map ∂S →∐
i S

1 to each connected component of ∂S is
a map of positive degree

• there is a positive integer n(S) such that for each component of
∐
i S

1, the
preimage in ∂S maps to it by total degree n(S).

The stable commutator length (scl) of c is defined by

scl(c) = inf
S

−χ(S)
2n(S)

where the infimum is taken over all admissible surfaces for γ. If no admissible
surface exists, we define scl(c) = ∞.

Note: the third bullet is not included in Calegari’s definition of admissible surface
in [3]. However, Proposition 2.13 of [3] shows that including it does not change the
meaning of scl.

Using homogeneity properties of scl, the definition extends to rational chains.
If c =

∑
i cigi with ci ∈ Q then mc is integral for some m, and we may define

scl(c) = 1/m scl(mc). Extending by continuity, it is also defined for real chains. See
[3, Section 2.6].

Definition 2.2 (scl of group elements). For any g ∈ G we define scl(g) by con-
sidering g as an integral 1–chain consisting of one element. The above definition,
in this case, specializes to the standard definition of scl(g). Note that admissible
surfaces for g exist if and only if gk ∈ [G, G] for some k �= 0, and so scl(g) is finite
exactly when the latter occurs.

Definition 2.3. Let c be an integral 1–chain over G. An extremal surface for c is
an admissible surface S for c that realizes the infimum in the definition of scl(c).
If c is a rational 1–chain, an extremal surface for c is just an extremal surface for
any mc that is integral. Extremal surfaces need not exist, but when they do, scl(c)
must of course be rational.

Let C1(G) be the space of 1–chains, which is a vector space over R with basis G.
Let B1(G) ⊂ C1(G) be the subspace of boundaries of 2–chains, i.e. the kernel of
the quotient map C1(G) → H1(G; R). Let BH1 (G) be the quotient of B1(G) by the
subspaceH spanned by elements of the form gn − ng and g − hgh−1 for all g, h ∈ G,
n ∈ Z. Then the function scl is a pseudo-norm on BH1 (G). Moreover, whenever G
is hyperbolic, scl is a geniune norm on BH1 (G) [6].

Surfaces

Let Σ be a closed surface. We say that a multicurve γ :
∐
S1 → Σ is non-filling if it

is homotopic to an immersion in general position such that some component of the
complement of the image is not a disk (or equivalently, Σ contains an essential simple
closed curve disjoint from the image of γ). Correspondingly, an integral 1–chain
or group element in G = π1(Σ) is non-filling if it is represented by a non-filling
multicurve.
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Definition 2.4. A map f : S → Σ of orientable surfaces is compressible if there is
an essential simple closed curve C ⊂ S such that f(C) is nullhomotopic in Σ. If f
is not compressible it is called incompressible.

When f is compressible, one can replace an annular neighbourhood of C by
two disks and extend f over these disks, thus obtaining f ′ : S′ → Σ of smaller
complexity.

Coverings

Throughout this paper curves and surfaces typically have orientations, and by the
degree of a map we always mean the homological degree.

Suppose p : X → Y is a finite-sheeted covering of oriented manifolds. Partition
the connected components of X as X+ 	X− such that p is orientation-preserving
on X+ and orientation-reversing on X−. We define the positive degree of p to be
the number of sheets of X+ and the negative degree of p to be the number of sheets
of X−. Thus the sum of these numbers is the total number of sheets of p and their
difference is the homological degree.

Next we record some basic covering lemmas for surfaces.

Lemma 2.5. Let S be a compact connected oriented surface having p � 1 boundary
components, with S �∼= D2.

(1) For any q < p boundary components C1, . . . , Cq of S and integers
n1, . . . , nq � 1, there is a connected regular finite-sheeted cover S′ → S such
that every component of ∂S′ mapping to Ci covers with degree ni.

(2) For any integer n � 1 there is a connected finite-sheeted cover S′ → S such
that every component of ∂S′ covers its image with degree n.

Proof. For (1), let xi ∈ H1(S) be the element represented by Ci, for 1 � i � q. This
set extends to a basis {x1, . . . , xn} of H1(S), because q < p. Let N be the least
common multiple of the numbers ni. Let ϕ : H1(S) → Z/NZ send xi to N/ni for
1 � i � q (the values on the other basis elements are irrelevant). Now S′ → S is
the cover corresponding to the kernel of the composition π1(S) → H1(S) → Z/NZ.
Since ϕ(xi) has order ni in Z/NZ and the cover is regular, the boundary ∂S′

behaves as desired.
For (2), suppose first that p > 1. Choose boundary components C1, . . . , Cp−1 of

∂S and a basis {xi} of H1(S) as before. Let ϕ : H1(S) → (Z/nZ)p−1 send xi to
the ith generator (0, . . . , 1, . . . , 0) for 1 � i � p− 1. Then ϕ sends the class repre-
sented by the last boundary component of S to (−1, . . . , −1). Since every boundary
component maps to an element of order n, the cover S′ → S corresponding to the
kernel of π1(S) → H1(S) → (Z/nZ)p−1 has the desired property.

If ∂S has one component, first let S′′ → S be any connected 2–sheeted cover
(which exists since S �∼= D2). It will have 2 boundary components, each mapping
by degree 1, because χ(S′′) is even. Apply the preceding case to get S′ → S′′, and
take the composition S′ → S′′ → S. �
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It will be convenient to have a version of this lemma for disconnected surfaces.
By a finite-sheeted cover of a disconnected surface, we mean a cover for which the
number of sheets is the same over every component.

Lemma 2.6. Let S be a compact oriented surface where each component has at least
1 boundary component and no component is homeomorphic to D2. For any set of
boundary components C1, . . . , Cq of S which does not contain all the boundary
components of any component of S and integers n1, . . . , nq � 1, there is a finite-
sheeted cover S′ → S such that every component of ∂S′ mapping to Ci covers with
degree ni.

Proof. Let S1, . . . , Sm be the components of S. We first apply lemma 2.5(1) to
each Si to obtain an Ni-fold cover S′

i → Si with the correct degree on boundary
components. Let N = lcm(N1, . . . , Nm). Then the cover of S consisting of N/Ni
copies of Si has the desired properties. �

We are also interested in the case where we allow branched covers with prescribed
degrees on the boundaries. The flexibility of degrees on boundaries is much larger
for branched covers.

Lemma 2.7. Let S be a compact connected oriented surface having p � 1 boundary
components. Let C1, . . . , Cp be the boundary components of S, let n be a natural
number, and let λ1, . . . , λp be partitions of n. Then there is an n-fold branched
cover S′ → S such that the degrees of the components over Ci are precisely the
values in the partition λi.

Note that S′ is not necessarily connected.

Proof. We start with the cover S′′ → S where S′′ is n copies of S. Let A, B be
distinct copies of Ci in S′′. Let α, β be copies of the same small arc from a point
on Ci into the interior of S. Cut S′′ along α and β and glue the right side of β to
the left side of α and vice versa. This new surface, in a canonical way, admits a
branched cover to S where the degrees over Ci are 2, 1, 1, . . . , 1. By using this kind
of surgery to connect boundary components of S′′, it is clear that we can construct
a branched cover S′ → S where the degrees over Ci are an arbitrary partition of
n. �

3. Mapping surfaces to surfaces

Setup

Let Σ be a closed oriented surface of genus greater than one. Let γ :
∐
S1 → Σ be

a null-homologous 1–chain that does not fill Σ. We can put γ into general position
(smoothly immersed, transverse intersections, no triple points) such that at least
one complementary component is not a disk.

Let Σ0 be one such complementary component. Let B ⊂ Σ0 be an embedded
closed disk and let λ1, . . . , λk be disjoint properly embedded arcs in Σ0 − int(B)
with endpoints on ∂B such that the inclusion of B ∪⋃i λi into Σ0 is a homotopy
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equivalence. Let L ⊂ (Σ0 − int(B)) be the closure of a tubular neighbourhood of⋃
i λi, so that Σ1 = B ∪ L is compact subsurface homotopy equivalent to Σ0.
Next let μ1, . . . , μ� be disjoint properly embedded arcs in Σ − int(Σ1) with end-

points on ∂B − L such that the μi cut each component of Σ − Σ1 into a single disk
and the μi do not cross any double points of γ. We also require that the arcs μi are
transverse to the immersed submanifold γ(

∐
S1). Let M ⊂ (Σ − int(Σ1)) be the

closure of a tubular neighbourhood of
⋃
i μi, disjoint from L, so that Σ2 = Σ1 ∪M

contains no double point of γ and γ(
∐
S1) ∩M consists of fibres of M . Let D be

the closure of Σ − Σ2; this is a disjoint union of embedded closed disks. Finally,
define Σ3 = Σ − int(Σ1) = D ∪M .

Each component of
∐
S1 maps by γ to a path which alternates between embedded

oriented arcs in D, called turn arcs, and arcs crossing M . Let τ1, . . . , τm be the
turn arcs. See figure 1.

Definition 3.1 (Turn paths). A turn path is a loop S1 → D which is a concatena-
tion of paths, alternating between turn arcs and immersed paths in ∂D. Immersions
S1 → ∂D are included. We consider two turn paths to be the same if they differ by
an orientation-preserving reparametrization of S1. See figure 2.

Each component of the oriented boundary of D is a concatenation of arcs, alter-
nating between arcs in the boundary of M and arcs in the boundary of Σ1. Let
α1, . . . , αn be the arcs of ∂D which lie in the boundary of Σ1.

A turn path is taut if it uses each turn arc at most once and each arc from
{αi} ∪ {αi} at most once (where αi is the reverse of αi). Note that there are only
finitely many taut turn paths.

Definition 3.2. An admissible map f : S → Σ is taut if

(1) f : f−1(Σ2) → Σ2 is an immersion

(2) f−1(D) is a disjoint union of disks,

(3) for each component E of f−1(D), the boundary map f |∂E is a taut turn path.

The set of taut admissible maps for γ will be denoted by T (γ). The disks in (2)
and (3) will be called turn disks.

The main result of this section is the following.

Proposition 3.3. Suppose f : S → Σ is an admissible map. Then there exists a
taut admissible map f ′ : S′ → Σ such that −χ(S′)/2n(S′) � −χ(S)/2n(S).

Corollary 3.4. There is an equality

scl(γ) = inf
S∈T (γ)

−χ(S)
2n(S)

.

The next lemma provides the first step towards proposition 3.3. It achieves all
the desired properties except for tautness of the turn paths in item (3).
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Figure 1. A surface Σ and its handle decomposition Σ = B ∪ (L ∪M) ∪D. The shaded
part is the subsurface Σ1 = B ∪ L. The null-homologous 1–cycle γ is shown in blue. All
self-intersections of γ lie inside D = D1 ∪D2. Outside of D, γ meets only the 1–handles
M and crosses them transversely. The arcs of γ crossing D are called turn arcs. The arcs
αi are the maximal sub-arcs of ∂D that meet ∂Σ1.

Figure 2. A taut turn path in D1 which runs over τ1, α6, τ2, and α2. Every turn path
extends to a map of a disk; in this case the disk is twisted.
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Lemma 3.5. Suppose f : S → Σ is an admissible map which is incompressible. Then
f is homotopic to an admissible map g : S → Σ such that

(1) g : g−1(Σ2) → Σ2 is an immersion

(2) g−1(D) is a disjoint union of disks,

(3) for each component E of g−1(D), the boundary map g|∂E is a turn path.

The boundary maps f |∂S and g|∂S differ only by reparametrization.

Proof. We proceed as in Step 1 of [10, Theorem 2.1]. Homotope f rel boundary to
f1 which is transverse to the disk B. We then have that each component of f−1

1 (B)
is a disk mapping homeomorphically onto B. Next, let T = S − int(f−1

1 (B)). Since
f1|∂T is transverse to the arcs λi and μi, we may homotope f1 rel ∂S ∪ f−1

1 (B)
to be transverse to these arcs. Among all maps f2 homotopic to f rel ∂S that are
transverse to B and transverse to the arcs λi and μi on S − int(f−1

2 (B)), let f2 min-
imize the complexity, which is the pair (

∣∣π0

(
f−1
2

(
B
))∣∣ , ∣∣π0

(
f−1
2

(⋃
i λi ∪

⋃
i μi
))∣∣)

ordered lexicographically.
Since f2 is incompressible, no component of f−1

2 (λi) or f−1
2 (μi) is an essential

closed curve. No component is an inessential closed curve either. Suppose C is such
a curve mapping to λi, say. For a sufficiently close arc λ′i that is parallel to λi, there
is a curve C ′ parallel to C mapping to λ′i that bounds a disk E ⊂ S, with C in the
interior of E. By re-defining the map on int(E) to map into λ′i one obtains a map
of smaller complexity; the new map is homotopic to f2 rel ∂S because π2(Σ) = 0.

Thus each component of f−1
2 (λi) is an arc with endpoints mapping to ∂λi,

and each component of f−1
2 (μi) is an arc with endpoints mapping to ∂μi ∪ {μi ∩

γ(
∐
S1)}. Note that in the second case, both endpoints cannot map to the same

point z ∈ {μi ∩ γ(
∐
S1)}, by orientation considerations. There is a consistent trans-

verse orientation on f−1
2 (μi), but f2|∂S always passes through z in the same

direction, being a positive power of γ.
Since complexity is minimized, both endpoints cannot map to the same point of

∂μi; otherwise,
∣∣π0

(
f−1
2

(⋃
i λi ∪

⋃
i μi
))∣∣ could be reduced, and then

∣∣π0

(
f−1
2

(
B
))∣∣

as well by homotopy rel ∂S to a new map which is still transverse to B ∪ {μi} ∪
{λi}. Hence the endpoints map to distinct points. The same reasoning applies to
components of f−1

2 (λi). Hence the endpoints of every arc in f−1
2 (λi) or f−1

2 (μi)
map to distinct points.

Now, by a further homotopy rel ∂S ∪ f−1
2 (B), the components of f−1

2 (λi) and
f−1
2 (μi) can be tightened so that each maps by an immersion; let f3 be the resulting

map. There are compatible tubular neighbourhoods on which f3 is a bundle map,
and by another homotopy to f4 (which expands along fibres of the tubular neigh-
bourhoods L and M) we can ensure that each component of f−1

4 (L) and f−1
4 (M)

maps by an immersion. Now f4 : f−1
4 (Σ2) → Σ2 is an immersion, and f4 satisfies

(1).
Next consider a component E of f−1

4 (D). Each boundary component of ∂E maps
by a concatenation of paths that alternate between turn arcs and paths in ∂D;
moreover these latter paths are part of the boundary map of f4 : f−1

4 (Σ2) → Σ2

and hence are immersions. Thus ∂E maps to D by turn paths and f4 satisfies (3).
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Next, suppose some component E of f−1
4 (D) is not a disk. Then there is a simple

closed curve C ⊂ int(E) which is essential in E. Since f4(C) is nullhomotopic in Σ,
we have that C bounds a disk E′ ⊂ S. Since π2(Σ) = 0 there is a homotopy
rel S − int(E′) from f4 to f5 such that f5(E′) ⊂ D. By performing finitely many
homotopies of this type, we arrive at g such that each component of g−1(D) is a
disk and g agrees with f4 on g−1(Σ − int(D)) = g−1(Σ2). In particular, g satisfies
(1) and (2).

Lastly, f−1
4 (∂D) ⊇ g−1(∂D) and f4 and g agree on g−1(∂D) (and on ∂S), so the

boundary paths of g−1(D) are unchanged and g satisfies (3). For the last statement,
note that f |∂S = f3|∂S and f4|∂S = g|∂S , and the change from f3|∂S to f4|∂S simply
reparametrizes along ∂S. �

The map g given by the previous lemma may be quite badly behaved on g−1(D),
with branch points, folding, twisting, etc. This will mostly not be a concern for
us; what matters most is the boundary maps on g−1(D). The next lemma achieves
tautness of these boundary maps at the expense of creating branch points over Σ1.

Lemma 3.6. Suppose g : S → Σ is an admissible map which satisfies the conclusions
of lemma 3.5. Then there is an admissible map g1 : S1 → Σ with n(S1) = n(S) and
χ(S) � χ(S1) such that

(1) g1 : g−1
1 (Σ2) → Σ2 is a branched immersion with all branch points in the

interior of g−1
1 (Σ1),

(2) g−1
1 (D) is a disjoint union of disks,

(3) for each component E of g−1
1 (D), the boundary map g1|∂E is a taut turn path,

(4) g1 is an immersion on every component of g−1
1 (Σ3) that does not meet ∂S1.

Proof. Let E be a component of g−1(D). There are two types of moves we will
use to achieve tautness in item (3). Suppose first that ∂E contains two or more
instances of the turn arc τi. Delete the interior of E, cut the midpoints of the two
instances of τi and glue the first half of one to the second half of the other and
vice versa. This splits ∂E into two components, which can be filled by two disks
mapping to D, increasing χ(S). After finitely many moves of this type, there are
no repeated instances of turn arcs in components of ∂g−1(D). The new boundary
of S still maps by positive powers of γ with degree n(S).

Now suppose that the arc α ∈ {αi} ∪ {αi} appears two or more times in ∂E.
These two occurrences are also part of ∂g−1(Σ1); denote them by α′ and α′′. Let
U be an open neighbourhood of α in Σ1 that is evenly covered by g, and let U ′, U ′′

be the corresponding neighbourhoods of α′ and α′′ in g−1(Σ1). Let β be a small
arc in U from the midpoint of α to an interior point of U . Let β′, β′′ be the lifts
of β to U ′ and U ′′ respectively. Now delete the interior of E and cut along β′ and
β′′. Rejoin the left side of β′ to the right side of β′′ and vice versa. This creates
an index two branch point in g−1(Σ1) and splits ∂E into two components, which
can be filled with two disks mapping to D. The Euler characteristic χ(S) does not
change, and neither does n(S), because this move takes place in the interior of S.
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After finitely many moves of this second type, we arrive at g0 : S1 → Σ satisfying
(1)–(3).

Let E be a component of g−1
0 (D) which does not meet ∂S. Then the map g0|∂E

is a homeomorphism to ∂D′ for some component D′ of D by (3). For each such
E, we replace g0|E by a homeomorphism E → D′ extending g0|∂E to get a new
map g1 : S1 → Σ. Note that g1 still satisfies (1)–(3). By (1) and the above, g1 also
satisfies (4). �

For the last step of the argument, we use finite covers to eliminate the branch
points over Σ1. This step depends on Σ1 having non-trivial topology. Note that
conclusions (1) and (2) of this lemma are not required for proposition 3.3 but will
be useful in a later section.

Lemma 3.7. Suppose g1 : S1 → Σ is an admissible map which satisfies the con-
clusions of lemma 3.6. Let r be the number of sheets of the branched cover
g1 : g−1

1 (Σ1) → Σ1. Then there is a taut admissible map g2 : S2 → Σ and a positive
integer N such that

(1) n(S2) = Nn(S1),

(2) χ(g−1
2 (Σ3)) = Nχ(g−1

1 (Σ3)) and χ(g−1
2 (Σ1)) = Nrχ(Σ1),

(3) −χ(S2)/2n(S2) � −χ(S1)/2n(S1).

Proof. Let T ′′
3 be the union of all components of g−1

1 (Σ3) which meet ∂S1. Let

d = lcm{degree of C ′ g1→ C | C ′, C are components of ∂T ′′
3 , ∂Σ3 resp.}

By lemma 2.6, there is a finite-sheeted cover T ′
3 → T ′′

3 such that every component
of ∂T ′

3 covers a component of ∂Σ3 with degree ±d under the composition T ′
3 →

T ′′
3
g1→ Σ3. (The orientation of a covering surface will be induced by the base unless

indicated otherwise.) Let Σ3,1, . . . , Σ3,� be the components of Σ3. By lemma 2.5(2),
there are connected finite-sheeted covers T ′

3,i → Σ3,i and T ′
1 → Σ1 such that every

component of ∂T ′
3,i and ∂T ′

1 covers a component of ∂Σ3 with degree ±d.
Let s+i , s

−
i be the positive and negative degrees by which g−1

1 (Σ3,i) − T ′′
3 covers

Σ3,i. Let r+ and r− be the positive and negative degrees respectively of the branched
cover g1 : g−1

1 (Σ1) → Σ1. By taking multiple copies of T ′
3,i for all i and multiple

copies of T ′
3 and T ′

1, and by orienting the copies of T ′
3,i and T ′

1 appropriately, we
can find covers h3 : T3 → T ′′

3 , h3,i : T3,i → Σ3,i, and h1 : T1 → Σ1 such that, for
some positive integer N ,

• the positive (resp. negative) degree of h3,i is Ns+i (resp. Ns−i ),

• h3 has degree N ,

• h1 has positive degree Nr+ and negative degree Nr−.

We now show that we can glue the above pieces together to get a taut admissible
surface S2. Note that every component of ∂Σ3,i is covered by ∂T ′′

3 with positive and
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negative degrees r+ − s+i and r− − s−i respectively. Thus, under g1 ◦ h3, every com-
ponent of ∂Σ3,i is covered by N(r+ − s+i )/d curves by degree d and N(r− − s−i )/d
curves by degree −d. Each component of ∂Σ3,i, under h3,i, is covered by Ns+i /d
curves by degree d and Ns−i /d curves by degree −d. Each component of ∂Σ3,i,
under h1, is covered by Nr+/d curves by degree −d and Nr−/d curves by degree d.
Thus, by gluing T1 to T3 ∪

⋃
i T3,i along the preimage of ∂Σ3 appropriately respect-

ing orientations, we obtain an oriented compact surface S2 and a map g2 : S2 → Σ,
which, by construction, is a taut admissible map.

It is clear that n(S2) = Nn(S1), so it remains to compute the Euler characteristic
of various surfaces.

χ(g−1
2 (Σ3)) = χ(T3) +

∑
i

χ(T3,i)

= Nχ(T ′′
3 ) +

∑
i

N(s+i +s−i )χ(Σ3,i)

= Nχ(T ′′
3 ) +

∑
i

Nχ(g−1
1 (Σ3,i) − T ′′

3 )

= Nχ(g−1
1 (Σ3))

χ(g−1
2 (Σ1)) = N(r++r−)χ(Σ1) = Nrχ(Σ1)

Finally, note that χ(g−1
1 (Σ1)) � rχ(Σ1) since g1 : g−1

1 (Σ1) → Σ1 is a branched
cover, and so

χ(S2) = χ(g−1
2 (Σ3)) + χ(g−1

2 (Σ1)) = Nχ(g−1
1 (Σ3)) +Nrχ(Σ1) � Nχ(S1).

�

Proof of proposition 3.3. Start with an admissible surface f : S → Σ. We may
assume that f is incompressible, since performing a compression reduces −χ(S)
without changing n(S) or the property of being admissible. Now apply lemmas 3.5,
3.6, and 3.7. �

4. Encoding surfaces

Let TP denote the set of all taut turn paths. For each taut turn path p ∈ TP, we
define the sides of p. Recall that p : S1 → D is an immersed path which alternates
between turn arcs and immersed paths in ∂D. Since the intersection of γ with Σ2

lies in M , the turn path p alternates between arcs from {τi} ∪ {αi} ∪ {αi} and arcs
in ∂M − Σ1. A side of p is an ordered pair s ∈ ({τi} ∪ {αi{∪{αi})2 such that p
traverses the first arc in the ordered pair, then a part of ∂M − Σ1, and then the
second arc in the ordered pair. For any side s, we let ms ⊆ ∂M denote the middle
arc. See figure 3. Note that since p is taut, it traverses any side at most once.

Let S denote the set of all ordered pairs of arcs from {τi} ∪ {αi} ∪ {αi} which
are a side for some taut turn path p. Note that S does not contain all ordered pairs.
E.g., S cannot contain any pairs of the form (αi, αj) since a taut turn path maps
as an immersion to ∂D. E.g., any pair (τi, τj) ∈ S must have one arc oriented into
M and one oriented out from M on the same side of M .
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Figure 3. Two examples of dual pairs of sides (s, ŝ). Geometrically, each side encodes a
portion of the boundary of a possible turn disk (shaded grey in the figure) mapping to D.

For any side s ∈ S, there is a unique side ŝ ∈ S such that ms, mŝ and two unique
arcs from (γ ∪ ∂Σ1) ∩M bound a subrectangle of M . Call ŝ the dual side of s, and
let Ms ⊆M be the bounded subrectangle. Note that, here, we are using the fact
that M contains no self-intersections of γ. Also, note that Ms = Mŝ. See figure 3
again.

The encoding

Let V = RTP ⊕ R2 with coordinates {xp}, {r+, r−}. We define a function

v : T (γ) → V

as follows. Let f : S → Σ be a taut admissible map. For each p ∈ TP, define xp(S) to
be the number of components E of f−1(D) such that f |∂E = p. Let S1 = f−1(Σ1).
As mentioned above, since f(∂S) ∩ Σ1 = ∅, the map f |S1 : S1 → Σ1 is a covering
map. Define r+(S) to be the positive degree of f |S1 and r−(S) the negative degree.
Finally let v(S) = ((xp(S)), r+(S), r−(S)).

Matching equations

The vector v(S) will satisfy two kinds of equations. Broadly speaking, for each turn
path p with a side s, there must be a corresponding turn path p′ (possibly equal
to p) with a matching dual side ŝ. Moreover, r+ and r− should match with the
number of αi’s and αi’s appearing in turn paths of S. We define some linear maps.
For each side s ∈ S, we define ds : V → R as

ds((xp), r+, r−) =
∑
p has s

xp.

For each α ∈ {αi} ∪ {αi}, define dα : V → R as

dα((xp), r+, r−) =
∑
α is a

subarc of p

xp.
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For each τi, define dτi
: V → R by

dτi
((xp), r+, r−) =

∑
τi is a

subarc of p

xp.

Lemma 4.1. Let (f, S) be a taut admissible surface. Then, ((xp), r+, r−) = v(S)
satisfies the following matching equations:

(1) ds((xp), r+, r−) = dŝ((xp), r+, r−) for all s ∈ S.

(2) dαi
((xp), r+, r−) = r+ for all i.

(3) dαi
((xp), r+, r−) = r− for all i.

(4) dτi
((xp), r+, r−) = dτj

((xp), r+, r−) for all i, j.

Proof. Let M ′ be a component of M and let N ′ be a component of N = f−1(M)
mapping to M ′. By tautness, the map f : N ′ →M ′ is an immersion. Since M ′ is
simply connected, N ′ is compact, and ∂S maps exclusively to γ, the surface N ′ is
a topological rectangle with two edges mapping to ∂D and two edges mapping to
(γ ∪ ∂Σ1) ∩M . The map f |N ′ may be orientation reversing or preserving.

Let E′, E′′ be the two components of f−1(D) bordering N ′. Then N ′ borders
E′, E′′ of E in the middle of sides in f |∂E′ , f |∂E′′ . Since f is an immersion from
f−1(Σ2) to Σ2 and from ∂S to Σ (as a 1-manifold), the map f |∂E′ (resp. f |∂E′′) is
determined near the intersection of ∂N ′ and ∂E′ (resp. ∂N ′ and ∂E′′). Thus, f |N ′

determines precisely one side each of the turn paths f |∂E′ , f |∂E′′ and those sides
must be dual. Conversely, the side of f |∂E′ at ∂E′ ∩ ∂N ′ determines the image of
f(N ′) and the side of f |∂E′′ at ∂E′′ ∩ ∂N ′ which must be dual. Since f |∂E is taut
for any component E of f−1(D), each arc τi, αj , αj is traversed at most once and
thus each side appears in f |∂E at most once. Thus, ds(v(S)) is the total number of
times s appears as a side in f , and the above argument shows this is equal to the
total number of times ŝ appears as a side in f which is dŝ(v(S)).

For the second equality, first note that r+(S) equals the positive degree of the map
f : f−1(αi) → αi where we view f−1(αi) as a subarc of the boundary of f−1(Σ3).
This is equal to the number of times that the boundary of f−1(D) traverses αi, and
since f is taut, this is dαi

(v(S)). The argument for the third equation is similar.
Again by tautness, dτi

(v(S)) = n(S) for all i, and the last equality holds. �

Degree and Euler characteristic

Recall from the preceding proof that dτi
(v(S)) = n(S) for each turn arc τi and all

taut admissible surfaces S. Thus we have the factorization

T (γ) v→ V
dτi→ R

of the degree function n(S) through v via any of the linear maps dτi
.

The Euler characteristic χ(S) also factors through v in a similar fashion. First
we need a formula for χ(S) based on the combinatorics of turn disks.
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Definition 4.2. For p ∈ TP let

κ(p) = 1 − 1
2
(# sides of p).

Let Fχ : RTP ⊕ R2 → R be the linear map

Fχ((xp), r+, r−) =
( ∑
p∈TP

κ(p)xp
)

+ χ(Σ1)(r++r−).

Lemma 4.3. If S is a taut admissible surface, then χ(S) = Fχ(v(S)).

Proof. Given a taut admissible surface f : S → Σ, the subsurface S3 = f−1(Σ2 −
int(Σ1)) consists of turn disks mapping to D and 1-handles mapping by immersions
to M where each 1-handle attaches to the middle arcs of a dual pair of sides. It is
clear then that

χ(S) =
( ∑
p∈TP

κ(p)xp(S)
)
.

Let S1 = f−1(Σ1). By definition of taut surface, S1 maps to Σ1 by an immersion and
since S1 ∩ ∂S = ∅, the map is a covering map. Therefore χ(S1) = χ(Σ1)(r+(S) +
r−(S)). Since S = S1 ∪ S3 and S1, S3 meet along full boundary components of S1

and S3, we have χ(S) = χ(S1) + χ(S3) and the lemma follows. �

Remark 4.4. Having explained our encoding of surfaces, we can relate this encod-
ing to that used to determine stable commutator length in a free group. Our 1–chain
γ lies in the union of the Di and bands M . If we collapse each Di to a point and the
bands in M to edges, we obtain a 1–chain in a graph. However, only the turn paths
which traverse no αi correspond to turn circuits as defined in [1], and of course,
there is nothing analogous to the role of Σ1 and its matching equations with turn
paths.

5. Reassembly

Given a taut admissible surface, we associate the vector v(S) which encodes it and
satisfies matching equations. Now, we would like to show that we can construct a
taut admissible surface with the right Euler characteristic and degree (n(S)) from
a vector satisfying the matching equations. In general, it’s not clear that this is
possible for arbitrary positive integral vectors satisfying the matching equations.
However, it is possible after multiplying the vector by a sufficiently large integer.
In fact, we make the statement for positive rational vectors.

Lemma 5.1. Suppose a nonzero, nonnegative vector ((xp), r+, r−) ∈ QTP ⊕ Q2 sat-
isfies the matching equations (1)–(4) in lemma 4.1. Then, there is a taut admissible
surface S such that

χ(S)
n(S)

=
Fχ((xp), r+, r−)
dτ1((xp), r+, r−)

.
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Proof. We can, without loss of generality, assume that the vector is integral. The
basic idea is as follows. We take xp turn disks for each p whose boundary will map to
the turn path p. We then attach 1-handles to dual sides. This surface, call it say S3,
then has boundary components some of which map to powers of components of γ
and some to components of ∂Σ3 with varying degrees. We then want to glue in a
(probably disconnected) surface to latter boundary components which will map to
Σ1 by a covering map. The difficulty is that the part of ∂S3 mapping to ∂Σ3 = ∂Σ1

may not extend to a covering map of Σ1 depending on the topology of Σ1 and the
degrees of the maps from components of ∂S3 to components of ∂Σ1. Lemmas 2.7
and 3.7 will fix this problem at the cost of scaling ((xp), r+, r−) by some positive
integer.

For each turn path p ∈ TP, we let Ep be an oriented disk and fp : Ep → D a
map such that f∂Ep

= p (where ∂Ep has its boundary orientation). If p does not
traverse any turn arcs, then p : S1 → ∂D is an immersion; in this case, we insist fp is
a homeomorphism. Note that if p traverses αi’s, then fp is orientation-reversing. For
each side s ∈ S, we let Ns be an oriented disk which is a copy of Ms and fs : Ns →
Ms the canonical homeomorphism. We orient Ns as follows. If s has a turn τi, then
we orient Ns so that the boundary orientation is consistent with the orientation of
τi. If s has an αi, then we orient Ns such that fs is orientation-preserving and if s
has an αi, then we orient Ns such that fs is orientation-reversing.

Now, we construct our initial surface. We take xp copies of Ep and
ds((xp), r+, r−) copies of Nt. (Recall that Ms = Mŝ and thus Ns = Nŝ. By the
matching equations, we are taking a well-defined number of copies of Ns.) We
attach the Ep together using the Ns in the obvious way such that fp and fs extend
to a map on the oriented surface constructed. Call this surface S3 and the map f3.
Some boundary components of S3 map to γ and others to ∂Σ3 = ∂Σ1. By the
matching equations, the positive degree of the map ∂S3 to any component of ∂Σ3

is r+ and the negative degree is r−. By applying lemma 2.7 separately to the posi-
tive and negative degrees, there is a branched cover S1 → Σ1 such that the degree
partition over any component of ∂Σ3 is precisely the negative of that of S3. By
gluing boundary components of S3 to S1 which map to the same component of ∂Σ3

with matching degrees (i.e. equal but opposite), we obtain a surface S′ and a map
g′ : S′ → Σ satisfying the hypotheses of lemma 3.6.

By lemma 3.7, there is a positive integer N and a taut admissible surface g : S →
Σ satisfying n(S) = Nn(S′) = Ndτ1((xp), r

+, r−) and χ(g−1(Σ3)) = Nχ(S3) and
χ(g−1(Σ1)) = N(r+ + r−)χ(Σ1). We then have

χ(S) = χ(g−1(Σ3)) + χ(g−1(Σ1)) = Nχ(S3) +N(r++r−)χ(Σ1)

= NFχ((xp), r+, r−).

The lemma follows. �

6. Linear programming and scl

We are now ready to prove that the stable commutator length of the nonfilling
1-chain is the solution of a linear programme. We define the region R ⊆ RTP ⊕ R2

to be the subset defined by the following linear equations and inequalities.
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• the matching equations from lemma 4.1

• dτ1((xp), r
+, r−) = 1

• xp � 0 for all p ∈ TP and r+ � 0 and r− � 0

Lemma 6.1. The stable commutator length of γ is equal to

inf
{
−1

2
Fχ((xp), r+, r−) | ((xp), r+, r−) ∈ QTP ⊕ Q2 ∩R

}
(6.1)

Proof. Recall from corollary 3.4 that

scl(γ) = inf
S∈T (γ)

−χ(S)
2n(S)

.

Let S be a taut admissible surface. Then, by lemma 4.1, v(S) ∈ ZTP ⊕ Z2 satisfies
the matching equations. Moreover, n(S) = dτ1(v(S)) and, by lemma 4.3, χ(S) =
Fχ(v(S)). By linearity, dτ1(v(S)/n(S)) = 1 and

− χ(S)
2n(S)

= −1
2
Fχ(v(S))
n(S)

= −1
2
Fχ

(
v(S)
n(S)

)
.

Thus, scl(γ) � (6.1). On the other hand, by lemma 5.1, for any vector ((xp), r+, r−)
satisfying the matching equations and dτ1((xp), r

+, r−) = 1, there is a taut
admissible surface S such that

− χ(S)
2n(S)

= −1
2
Fχ((xp), r+, r−)
dτ1((xp), r+, r−)

= −1
2
Fχ((xp), r+, r−).

Thus (6.1) � scl(γ). �

We are now ready to prove the main theorem.

Proof of theorem 1.1. Since v(S) ∈ R for any taut admissible surface S, the region
R is non-empty. Since R is defined by equations and inequalities with rational
coefficients, R ∩ QTP ⊕ Q2 is dense in R. By lemma 6.1 and the fact that stable
commutator length is nonnegative, −1/2Fχ is bounded below on R. Since R is
finite-dimensional and defined by finitely many equations, minimizing the linear
function −1/2Fχ on R is a linear programme and therefore has an optimal solution
at a vertex of R. Since R is defined by equations with rational coefficients, all
vertices are rational points, and so by lemma 6.1, scl(γ) is rational. �

Remark 6.2. The proofs of theorem 1.1 and lemma 5.1 also establish that γ has
an extremal surface.
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