
Annals of Glaciology 2 1981
© International Glaciological Society

BASAL STRESS CONCENTRATIONS DUE TO ABRUPT

CHANGES IN BOUNDARY CONDITIONS: A CAUSE FOR

HIGH TILL CONCENTRATION AT THE BOTTOM OF A

GLACIER

by
Kolumban Hutter

(Versuchsanstalt fur Wasserbau, Hydrologie und Glaziologie, ETH-Zentrum, CH-8092 Zurich,
Switzerland)

and Vincent O. S. Olunloyo
(Department of Mechanical Engineering, University of !lorin, lIorin, Nigeria)

ABSTRACT
The existence of cold patches at the base

of a glacier suggests that the sliding law will
depend on these patches, which will essentially
affect the viscosity constant. In a poly thermal
glacier, such as a glacier which is cold in its
lower part and temperate in its upper part, basal
boundary conditions chang~ from no-slip to vis-
cous sliding. It is anticipated that the
viscosity constant of this sliding law will dep-
end on the distance from the transition line
between cold and temperate ice.

The mixed boundary conditions, namely no-
slip where the ice is cold and viscous sliding
where it is temperate, induce large stresses and
velocity changes close to the transition line.
In fact, it is shown that, for a Newtonian
fluid and all investigated discontinuities of
boundary data, square-root singularities of the
stresses will develop at the transition line.
Asymptotic expressions for the basal stresses
are derived. The explicit forms of these
asymptotic expansions depend on the form of the
spatial dependence of the sliding law and,
furthermore, on the numerical values of the
viscosity coefficient. It is, moreover, argued
that the stress concentrations are sufficiently
pronounced to account for the removal of basal
rock especially in regions of high cleavage
concentrations, the details again depending upon
the sliding coefficients.

No mathematical details of the problem
solved are presented as attention is focused on
the physical processes.
1) INTRODUCTION

In seeking quantitative descriptions of
glacier flow, attention is generally limited to
glaciers which are either cold or temperate.
With the exception of Fowler (1979Lb]) and
Hutter and Olunloyo (1980) there are no investi-
gations known to us which deal with the state of
stress and velocity in a poly thermal environment.
Such glaciers are partly temperate and partly
cold, and, depending on which of these states
applies at the base, the ice is thought to be
either fully adhering or sliding over its bed.
It does not seem to be necessary to defend the
postulate of the existence of poly thermal
glaciers, as there is sufficient field evidence

corroborating cold ice in glaciers that are be-
lieved to be temperate at their beds. Harrison
(1972) reports that water in some bore holes
slowly freezes; Theakstone (1967) mentions that
air temperatures in a tunnel beneath 50 m of ice
near the margin of ~sterdalsisen in Norway
remained almost constant at -O.loC, and Vivian
and Bocquet (1973) state that the ice roof of
natural subglacial caverns in the Glacier
d'Argenti~re was often below the melting point.
Robin (1976) has offered a "heat pump" argument
to explain the existence ot cold patches at the
base of a temperate glacier. It appears that
spatial, as well as temporal, variations of basal
pressure cause freezing of ice to rock.
Indirect evidence in support of this is the
intermittent stick-slip motion of temperate
glaciers reported by both Theakstone (1967) and
Vivian and Bocquet (1973).

The cold patches at the base,described by
Robin (1976), are assumed to be of the extent of
the roughness amplitudes of the bed, or smaller,
and must therefore affect the viscous sliding
law supposed to apply at the smoothed-out
surface of the global flow problem; in a first
approximation, one may assume that they only
affect the constant C in the sliding law

_ m
U b - C, , (1)

where ub is the basal sliding velocity, T the
corresponding shear traction, and C and mare
constants, m having the value (n+l) (l.liboutry

21979, Weertman 1979) or n (Fowler 1979caJ),
n being the exponent in Glen's flow law. A
proper treatment would have to take into account
possible stress concentrations at the separation
lines of cold and temperate ice and would have
to include the possibility of tearing off some
rocks from below. A mathematical solution to
this problem does not seem to be in sight as it
would consist of a complex, mixed boundary-
value problem.

However, when the cold and temperate
portions of the base extend over several thick-
nesses of the glacier, the stress-concentration
problem where no-slip goes over into viscous
sliding becomes mathematically amenable to
analysis, at least approximately. This situation
corresponds to a glacier which is cold in the
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iE = -pgcOSy + ~V2V,
dY

subject to boundary conditions:

(3)

(2)

D, x :: O.
D, x > 0,u = v = 0,

u - C~dU = v = 0,ay
Equations (2) express mass balance for an incom-
pressible body and momentum balance when
convective acceleration terms are neglected.
The first of Equations (3), on the other hand,
expresses the no-s 1iP bounda ry condit ion, \~hereas
the second of (3) is the viscous sliding law.
Because of its physical significance the latter
warrants further attention.

We assume the sliding coefficient to vary
along the temperate part of the boundary,
typically as shown in Figure 2. At large values

c

c l- - &
00\

the two planes confine the fluid to the region'
Iyl~ D. We assume mixed boundary conditions,
namely no-slip for x>O and viscous sliding for
xsO. The sliding law will be taken in the form-
of Equation(l) with m=l and a coefficient C(x)
that varies with x. This x-dependence will be
further elaborated below. Let p be the density,
g the gravity constant, ~ the dynamic viscosity,
(u,v) the longitudinal and transversal velocity
components, and p the pressure. The governing
equations describing steady flow through the
above channel are given by the differential
equations (Fig.l):

~+~ = 0
dX dY ,

Fig. 1. Flow of ice down a strictly parallel-
sided slab can be modelled approximately by
treating a channel-flow problem of ice held
between two plates which are twice as far
apart as the ice strip is deep. Inclination
of the slope is y and the basal boundary
conditions are no-slip (u = v = 0) and viscous
sliding, respectively.

One question of geomorphological interest
is whether these st~esses are sufficiently high
to tear off portions of the rock base. If they
are, a partial explanation of the substantial
amount of till observed at the bottom of an ice
bore hole ( Engelhardt and others 1978) could
be explained. This, then, is the question to
which we shall address ourselves, and indeed we
shall demonstrate that the removal of rock from
the base in the above-mentioned conditions is
possible.

lower and temperate in the upper parts. Our
situation corresponds to that discussed by
MUller (1976). The reverse also occurs, and is
believed to arise more frequently; it can be
obtained from our analysis by simply selecting
the angle y as negative (this angle is described
in section 2 and Figure 1). The abrupt change in
boundary condition from no-slip to viscous slid-
ing will induce large stress and velocity
variations. The maximal stresses are to be
expected at the "discontinuity" of boundary data.

2) MATHEMATICAL PR08LEM
An infinite, parallel-sided ice slab under

plane motion is studied, the upper half of the
base of which adheres to the bed while the lower
half of the bed is subject to viscous sliding.
Of interest is the stress distribution induced
by gravity and, in particular, its behaviour
near the abrupt change of boundary data. The
exact problem based on non-linear rheology
(e.g. Glen's flow law) is hardly amenable to an
analytical solution, but by restricting atten-
tion to Newtonian behaviour approximate
solutions can be obtained with reasonable effort.
Although the Newtonian model suffers the
disadvantage of not being materially realistic
for ice, it is a useful one because it allows
the solution of a well-defined mathematical
problem free of ad hoc assumptions. The same
applies to the many other linear models intro-
duced into the ice literature (Nye 1969 and 1970,
Kamb 1970, Lliboutry 1975, Morland 197Hal and
1976 [bJ, Morri s 1979, Hutter and 01unl oyo 1980).

~pecifically, consider slow flow of a
Newtonian viscous fluid held between two parallel
planes whose inclination angle is y and which are
at a distance 2D apart (Fig.l). Let (x,y) be a
Cartesian coordinate system; x is midway between
the two planes and y perpendicular to it, so that

-----------------
IXI

Fig. 2. A typical assumed variation of the
viscosity coefficient in the basal sliding law.
At the transition point where temperate ice
becomes cold C=Co is minimal and may even
have the value Co= O. This would then corres-
pond to a continuous transition from no-slip to
viscous sliding.

of lxi, effectively for Ixl> 6, where 6 is a
transition length, the sliding coefficient is
nearly constant with a value approaching Coo as
~I+ 00. For 0 ~Ixl~ 6, C depends on x, starting
at x = 0- with a value Co and then monotoni ca 11y
increasing, approaching the value Coo effectively
at x = -6. We regard this variation as a
reasonable model for the description of the
transition from viscous sliding to no-slip.
Close to x = 0 a decrease of C with decreasing
Ixl is most likely to occur since the number of
cold patches will increase as the cold portion
of the base is approached. We assume that the
transition depth 6 must be small compared with
the glacier thickness D; it is, however,
physically not clear whether Co differs from
zero or must vani sh. Fowl er' s work (1979 [aJ)
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(4)

(7)

(5)

as X ~ 0+,f ~1)/2
E a I .x:

1)=-) I) 2

8 as x ~ 0+,ao
s(x,l ) (6)

b~llx[-~ x ~ a -as ,
2

f(x,l)

1- Co S ResidueCoo

0.0 3.181 1 0.000 2
0.1 3.179 3 -0.000 3
0.2 3.177 7 0.000 2
0.3 3.176 0 -0.000 7
0.4 3.174 6 0.000 0
0.5 3.173 3 -0.000 3
0.6 3.172 0 0.000 3
0.7 3.170 7 -0.000 4
0.8 3.169 6 0.000 a
0.9 3.168 5 -0.000 2
1.0 3.167 5 0.000 a

in which f stands for either shear stress, over-
burden, or longitudinal stress 8 , E , and L •
Notice that I) may have the value -l,Yso thatXthe
stresses may have a square-root singularity.
Indeed, calculations show that the shear stress
is regular as x = 0- is approached from the
temperate side, but becomes singular when x = 0+
is approached from the cold side. The singulari-
ty is of square-root type and can be integrated.
When integrated to lowest order one obtains

presentations for small Ix[ can be found with
reasonable effort. The expressions have the
general form

with coefficients which are functions of C , Coo'
and o. Detailed analysis shows that b~l 0
is finite and differs from zero for al12values of
ColCoo in the interval [0,1]. Consequently the
square-root singularity persists even in case the
coefficient function C(x) is continuous at x = o.

Explicit calculations are too elaborate for
arbitr~ry values of the transition length 0, but
become much simplified when 0 = n-1. This value
corresponds to a transition length which is about
one-third of the glacier thickness. This should
be borne in mind. The basal shear stress reads

TABLE I. COEFFICIENT S AS A FUNCTION OF
CO

THE PARAMETER (1- Coo) AND RESIDUE
INDICATING THE ACCURACY OF THE ROOT

where S is a function of CQ and Coo and car. be
read off from Table I. ThlS table shows the
product CooS as a function of (Co- Coo); see also
Figure 3. It should also be noticed that in the
limit Co = Coo~ 00 Equation (7) breaks down and
results must be obtained from the earlier
investigation (Hutter and Olunloyo 1980).

suggests that Co should vanish, and he claims
that in this case both stresses and velocities
remain bounded at the point of discontinuity of
boundary data. Hutter and Olunloyo (1980), on
the other hand, have shown that for Co = Coo~ 00

(corresponding to perfect slip), the stresses
show half-order singularities at the point x = O.
It is thus expected that the details of the
stress and velocity distributions will depend on
the transition properties of the sliding law in
the neighbourhood of the transition point
"temperate-cold". As a consequence, the failure
criterion for the rock beneath will also depend
on the pertinent details of the sliding law.

Mathematically, the boundary value problem
set forth by Equations (2) and (3) can be shown
to be reducible to a problem of the Wiener-Hopf
type (Hutter and 01un10yo 1980), and it is in
the form of the latter that an approximate
solution can be found. Symmetry of the mathema-
tical formulation about y = a is obtained by
having identical boundary conditions on y = ± D,
by redefining pressure to incorporate transverse
components of the gravity forces, and by imposing
zero transverse velocity and'zero shear traction,
but not zero normal traction, on the surface
y = O. This is not entirely realistic as shear
and normal tractions should vanish on the true
free surface, but, for perfect slip on the
temperate side, calculations indicate that
p on y = a is small and does not affect the
singularity.The details of the construction of
the solution of the Wiener-Hopf problem are very
elaborate (as shown by Olunloyo and Hutter,
unpublished). In the following section the most
important results pertinent to the problem at
hand will be discussed.

3) BASAL STRESSES NEAR THE POINT OF ABRUPT
CHANGES OF BOUNDARY DATA

A possible mathematical representation for
the dimensionless viscosity coefficient in the
sliding law as depicted in Figure 2 is

ICoo- (Coo-Co) expHxl/o), x < 0,
c(x) = .

a , x 2 O.

In this equation the various forms of Care Inade
dimensionless with DI(2~)so that Cdim = CD 1(2~)
Similarly, x and 0 are dimensionless lengths
based on D, the glacier thickness. With
Cdim = ub/Tb and with ub = 100 m a-I, Tb = 105Pa,
D= 102m and ~=105Pa, a reasonable value for C
is about 2.

The Wiener-Hopf problem based on Equations
(2), (3) and (4) was solved by approximating the
kernel of the Wiener-Hopf equation. Two approxi-
mations have been found. The first is valid,
provided that Co= C ~ 00 and when the boundary
condition at the temperate side is that of
perfect slip (Hutter and 01un10yo 1980). The
other applies for viscous sliding according to
the functional representation of Equation (4)
and holds for any finite value of Cooand any
va1ue of ColCoo in the interva 1 [0, lJ.

Let LX ' Ly, 0 be dimensionless normal
and shear stresses at the base, respectively,
which have no dimensions with respect to the
basal shear stress pgD sin y of the strictly
parallel-sided slab. Hence, orders of magnttu-
des to be expected for L ,Ly and 0 in a
strictly parallel-sided ~lab are 10 and 1,
respectively. For the special case that
Co = Coo~ 00 the functions LX(X) , Ey(X)' and
0(x) have been evaluated. For the more
general relationship of Equation (4) explicit
formulas for the basal stresses are probably
difficult to find, but asymptotic re-

31

https://doi.org/10.3189/172756481794352252 Published online by Cambridge University Press

https://doi.org/10.3189/172756481794352252


Hutter, Olunloyo: Basal stress concentrations

3.182 4

1.00.5

3

r
~ 2

o
o

1.0o

3.166

3.178

C!l.3.174

3.110

t

Fig. 3. Functional dependence of the coefficient
S as a function of (1-;: ).

where D_3(.) is the parabolic cylinder function.
Of particular interest is the coefficient of the
x-I/2 term in Equations (7) and (8) because it
determines the dominant parts of the stresses
o and I. Values for this coefficient are
plottedXas shown in Figure 4. This graph is for
the coefficient of Ix which is twice as large as
the corresponding coefficient for 0. The singular
behaviour expressed by square-root singularities
occurring in Equations (7) and (8) points at a
possibility of failure or removal of basal rock;
in fact, square-root singularities are also
expected in the principal stresses at the base
so that from a theoretical point of view both ice

For the longitudinal normal stress and the
overburden pressure, the singular behaviour is
more sensitive to variations in boundary data
than is the case for the shear tractions. When
the perfect slip condition is applied at the
temperate side, both stress components I and Iy
are singular at x = 0 with square-root sTngula-
rities. On the other hand, when the viscous
sliding law (1) is used, the singularity in the
longitudinal stress Lx persists while overburden
pressure is now finite. This is an indication
that with a decrease in singUlarity in boundary
data smoother stress fields should be obtained.
To be sure, asymptotic representations for Ix
and Iy are

,2 r
foregoing expan-

I H r I -I
II,2 = ~ ± L(~)2 +
and upon substitution of the
sions. The dominant term is
II 2 - ~t0 Ixl-~ as x ~ Of., = i. '_~ '

Fig. 4. Plot of the coefficient of the singular
term in the stress expansion as given in the
Equations (7) and (8).

It is interesting to observe that the principal
stresses are singular on both sides of the
discontinuity of boundary data. In contrast to
the stresses, forces remain finite, however,
because it is possible to integrate the
singularities. Therefore integrating the
stresses over a small length E yields (in
physical dimensions):'
PI = 2'2~g\sinYIDb~~(§)~

and rock must fail if a failure criterion under
tensile stress is assumed. Asymptotic expres-
sions for the principal stresses Ii and I2 can be
obtained by using the formula

as a typical value for the tensile force acting
perpendicularly to a possible failure plane.
This tensile force arises for both positive and
negative slope y but acts on planes of different
orientations in these instances.

A typical value for b0, is about 1 or 2 so
that with p=9xl02 kg m-3• -~ g=9.8 m S-2, siny =
10-2, D=102m and E=lO-lm, PI,2xl03 N. Hence the
average maximal tensile stress acting on an
element of 10-2m2 area in a possible failure
plane is about al = 2xl05 Pa. This is in
the order of the failure strength of ice under
uniaxial tension and is probably also suffici-
ently high for rocks, provided they contain a
sufficient amount of microcracks. Of course, on
a smaller scale. mean stresses are larger.

(8)

(9)

1
8 + O(x2) as

+
Co:> CgJ-Co 1 S

-2(ill - IB+. ) I'liiil - Co' as

"xl;;. 1)= cot y

and
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4. SOME FINAL REMARKS
The purpose of the above linear analysis

is twofold: first, it can be used to substanti-
ate the supposition that stress concentrations
at the melting point of the base in a polyther-
mal glacier are sufficiently high to tear off
from the base rock pieces as seen in field
observations; second, the analysis gives infor-
mation about the nature of this stress
concentration, as it depends on the variation
of the sliding coefficient C. We reported that
for the sliding law obeying Equation (4) stress
singularities persist even when c(x) is
continuous (but not differentiable) at x = O.
This does not imply that stresses which are
large but bounded at x = 0 cannot exist, but
that bounded stress would require a smoother
transition of the sliding coefficient from
cold to temperate sides. Morland (private
communication) suggests such a smoother
transition by requiring a viscous sliding condi-
tion to be valid everywhere at the boundary,
whereby the sliding coefficient C would.
approach infinity as the te~perate side is
approached. We have not analysed this
case, and the problem is a global one, "local"
stresses in the basal layer are likely to be
concentrated, and induce bed failure. This
points clearly at the difficulty associated with
the sliding condition. Nothing is known at
present about the sliding law close to the cold-
temperate transition zone and the associated
stress concentrations.

Removal of rock from the base can also be
explained by mechanisms other than stress
concentration2 due to abrupt changes in boundary
data only. Rothlisberger and Iken (1981)give such
an alternative based on a regelation argument
when basal cavities are formed. Their model
explains how pieces of basal rock, that have
already broken loose, are transported by the ice;
our model suggests why the basal rock fractures
into pieces.

Finally it should be mentioned that our
calculations can only be regarded as approxima-
tions because effects of regelation and non-
linearities of the creep behaviour have been
omitted. It is unlikely that these effects can
be included in a quantitative analysis. Yet we
think that our model gives orders of magnitude
correctly.
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