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Analytical results for the propulsion
performance of a flexible foil with prescribed
pitching and heaving motions and

passive small deflection
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The propulsive performance of a flexible foil with prescribed pitching and heaving motions
about any pivot point location and passive chordwise flexural deflection is analysed within
the framework of the linear potential flow theory and the Euler—Bernoulli beam equation
using a quartic approximation for the deflection. The amplitude of the flexural component
of the deflection and its phase, the thrust force, input power and propulsive efficiency are
computed analytically in terms of the stiffness and mass ratio of the plate, frequency, pivot
point location and remaining kinematic parameters. It is found that the maximum flexural
deflection amplitude, thrust and input power are related to the first fluid—structure natural
frequency of the system, corresponding to the deflection approximation considered. The
same relation is observed for the propulsive efficiency when an offset drag is included
in the analytical expressions. These results, which are valid for small amplitude and
sufficiently large stiffness of the foil, are compared favourably with previous related results
when the foil pivots about the leading edge. The configurations generating maximum thrust
and efficiency enhancement by flexibility are analysed in relation to those of an otherwise
identical rigid foil.

Key words: flow—structure interactions, swimming/flying

1. Introduction

Flexibility is a relevant feature of the flapping appendages of natural fliers and swimmers,
which can lead to greatly improved propulsive performance. This enhancement of the
propulsive capabilities of flexible flapping foils has been analysed and explained in a
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large number of works, especially for the simplest configuration of a two-dimensional
flapping foil with chordwise flexibility, as in the pioneering experimental works of
Heathcote, Martin & Gursul (2004) and Heathcote & Gursul (2007) (see, for example, Wu
(2011), Wang & Zhang (2016) and Smits (2019) for comprehensive reviews). To the large
number of dimensionless parameters characterizing the kinematics of flapping rigid foils,
flexibility, and in general the fluid—structure interaction, adds some new ones such as the
dimensionless stiffness S, or ratio of elastic to fluid forces, and the mass ratio R, or ratio
of solid to fluid inertia, in addition to a number of geometric parameters characterizing
the deformation of the foil. Therefore, the analysis of the propulsive performance of
flexible foils becomes cumbersome, even for two-dimensional foils and once the numerical
or experimental difficulties associated with solving or measuring the fluid—structure
interaction have been circumvented, since many simulations or measurements have to be
made to cover the influence of all the parameters on the propulsive performance (see, for
example, Quinn, Lauder & Smits (2015) and Olivier & Dumas (2016) for representative
experimental and numerical studies, respectively). Thus, to dispose of analytical solutions
characterizing the fluid—structure interaction of flexible flapping foils, even for very
simplified configurations, is very helpful, both to understand the propulsive performance
of flying and swimming animals and to design and improve bio-inspired flying and
swimming robotic models. These analytical approximations have to be searched within the
framework of the two-dimensional linearized inviscid flow theory for small deformations
of the foil, pioneered by Wu (1961), who considered a flapping plate that incorporated
flexibility, allowing it to deform according to the fluid and elastic forces it experiences.
Passive flexibility changes the thrust that a flapping plate generates, and consequently its
propulsive efficiency. Particularly, compared with rigid foils, it has generally been found
from these inviscid flow theories that flexibility produces greater thrust when actuated
near a fluid-structure natural frequency, but less otherwise, with propulsive efficiency
greater than that of a rigid foil over a broad range of frequencies and stiffnesses (Katz &
Weihs 1978; Alben 2008; Michelin & Llewellyn Smith 2009; Alben et al. 2012; Floryan
& Rowley 2018, 2020).

An interesting analytical approach, within the linear inviscid limit considered in the
present work, was recently presented by Moore (2014), who considered the particular
case of a rigid foil with a prescribed heaving displacement and a passive pitching motion
about its leading edge, relating the finite torsional stiffness of the leading edge with the
kinematics of the rigid pitching motion and, hence, with the propulsive performance of
the foil. More general approaches based on Wu’s inviscid theory (Wu 1961) and the
Euler-Bernoulli beam equation for small amplitudes have appeared recently, where the
displacement of the foil and the fluid motion are decomposed into a Chebyshev series with
a large number (infinite in theory) of parameters that have to be obtained numerically
(Alben 2008; Moore 2017; Floryan & Rowley 2018; Tzezana & Breuer 2019; Floryan
& Rowley 2020). All these works considered heaving and/or pitching motions about the
leading edge of the foil and computed the thrust force from the projection of the pressure
force into the flight direction plus the leading-edge suction (Garrick 1936; Wu 1961,
1971). Here, however, we follow a simpler approach that provides analytical results by
just considering a quartic deflection of small amplitude superimposed on the heaving and
pitching motions of the foil, now about any pivot point location along the foil, not just
the leading edge. Technically, the approach may be considered as a low-order expansion,
or minimal model of a flexible foil. For this kinematics with low-amplitude flexural
motion, which structurally is valid when the stiffness of the foil is sufficiently large, we
use analytical results derived very recently for the propulsive performance of a pitching

910 A43-2


https://doi.org/10.1017/jfm.2020.1015

https://doi.org/10.1017/jfm.2020.1015 Published online by Cambridge University Press

Propulsion of a flexible flapping foil

and heaving foil with a small flexural deflection (Alaminos-Quesada & Fernandez-Feria
2020), computing the thrust force from a general vortical impulse formulation
(Fernandez-Feria 2016). These kinematic-based results are coupled with the dynamics of
the foil through the Euler—Bernoulli beam equation to compute the amplitude d,, and the
phase shift i of the flexural deflection in terms of R, S and the kinematic parameters of
the prescribed heaving and pitching motions about any given pivot point. The thrust, lift
and moment exerted by the fluid on the foil are then obtained using the analytic general
results for prescribed kinematics and deformation based on the impulse formulation
(Alaminos-Quesada & Fernandez-Feria 2020). Thus, the present paper puts in a proper
dynamical context the results in Alaminos-Quesada & Fernandez-Feria (2020), which
considered just the kinematic problem, i.e. these former results provided the propulsion
performance of a flapping foil when not only the heaving and pitching components of the
motion were prescribed (forced), but also its flexural deformation as a quadratic deflection.
Here this flexural deflection, now as a quartic polynomial approximation, is obtained
from the dynamics of the foil in terms of its structural properties (stiffness, density,
thickness, etc.) through the beam bending equation, for any given heaving and pitching
motion applied at an arbitrary pivot point. Thus, the effect of flexibility on the propulsion
performance of the foil is finally obtained in terms of the dimensionless stiffness and mass
ratio of the foil, in addition to all the kinematic parameters.

In the approximation presented in the present work, the input power is obtained directly
from the dynamic beam equation in terms of the input force and torque exerted externally
on the pivot point, plus the effect of the inertia of the foil through the mass ratio R. The
results are valid for a wide range of mass ratios, covering the typical values of both flapping
swimming and flapping flight with flexible foils.

The paper is organized as follows. The formulation of the problem, including the general
moments of the Euler—Bernoulli equation relating the input force and torque with the lift,
moment and flexural coefficients, is given in § 2 together with the kinematics of the foil and
the corresponding analytical expressions for the above-mentioned coefficients. Section 3
presents the analytical expressions for the first natural frequency of the system, as well as
the amplitude and phase shift of the passive flexural deformation, and the corresponding
thrust coefficient, input power coefficient and propulsive efficiency. These expressions are
used in § 4 to characterize the propulsive performance of heaving and pitching foils about
any pivot point in terms of the forcing frequency, stiffness and mass ratio of the foil, with
more detail for a purely heaving motion forced on any pivot point, not just the leading edge
as in most previous works. Finally, the conclusions are presented in § 5.

2. Formulation of the problem

We consider a two-dimensional foil of chord length ¢ immersed in an incompressible
and nearly inviscid flow with constant free-stream speed U along the x axis. We use
non-dimensional variables scaled with the half-chord length ¢/2 and the velocity U. A
harmonic heaving motion along the z axis, Ai(f), is imposed on a given point x = a of
the foil, superimposed to a pitching motion with angle «(¢) around this pivot point (see
figure 1). These motions are generated by a vertical force and a torque actuating locally
at the pivot point x = a, which in non-dimensional form are Cy; and Cyy;, respectively,
defined below and in principle are unknowns.

The amplitudes of the heaving and pitching motions are assumed small compared with
the chord length c, i.e. || < 1 and || < 1, so that the foil, and every point of the trail
of vortices that it leaves behind, may be considered to be on the plane z = 0 to a first
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U
X
Figure 1. Schematic of foil motion (non-dimensional).
approximation, with the plate extending from x = —1 to x = 1. In addition, we consider

the flexibility of the foil assuming a large stiffness, so that its deflection in relation to a rigid
foil is also very small. Thus, the motion of the plate is governed by the Euler—Bernoulli
beam equation, which in non-dimensional form can be written as (e.g. Michelin, Llewellyn
Smith & Glover 2008; Moore 2017; Floryan & Rowley 2018)

Razzs 2 92 (Sazzs

/
v + 392 ﬁ) = AC, + Crid(x —a) — 2Cy;é' (x — a), 2.1

where z(x, t) is the displacement in the z direction of the centreline of the foil (see figure 1)
and AC,(x, 1) is the pressure difference between the lower and upper sides of the foil,
Ap =p~ —pT, scaled with pU?, where p is the fluid density. To this distribution of
fluid pressure force, we have added on the right-hand side of (2.1) the aforementioned
external punctual forcing Cp;(¢f) and Cyy(f), which are the non-dimensional force and
torque per unit span, scaled with pU?c/2 and pU?c?/2, respectively, actuating locally
at x = a to generate the prescribed heaving and pitching motions, respectively, where
8(x — a) is Dirac’s delta function centred at x = a and §’ its derivative. (See appendix A
for more details.) Note that the moment is positive when counterclockwise. Finally, the
non-dimensional quantities

EWE®

R(x) = Sx) = U203 (2.2a,b)

ps ()€ (x)
PV
are the mass ratio (ratio of solid to fluid inertia) and dimensionless stiffness (ratio of elastic
to fluid forces) of the foil (e.g. Moore 2017), respectively, where pj is the foil’s density and
¢ and E its thickness and elastic modulus, respectively. These quantities are allowed to
vary chordwise, though we consider here only the case in which R and S are constants.
Equation (2.1) is valid when ¢/c < 1, |zg] < 1 and |dz/0x] < 1.

It is convenient to derive equations for the lift and the moment coefficients from the
fluid—foil interaction, defined as

CL(t) := Lo __ 1AC( 1) dx
L<>.—pU2c/2—f__1 (5, 1) d,
M(t) 1!
CM(I) L= pUZ—CZ/z = 5 /_l(x - Cl)ACp(X, [) dx, (23d,b)
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where L and M are the lift force and moment (with respect to x = @) per unit span,
respectively, by integrating equation (2.1) along the foil’s chord, and that equation
multiplied by x — a, respectively, resulting in

x=1

2 1 2
2] 0 0z
2— R dx S—- =C CrLi, 2.4
i [ reee 3|5 (552)| | —ara @.4)
8225 8225 x=1
Rz, dx — —-S— =C Cyi, (25
dt2 / (x a) Zé + [(x a) )C ( ax2 ) ax2 ]x=_1 M + Mi ( )

where the stiffness terms have been integrated by parts (note that no simplifying
assumptions about S(x) or R(x) have been made so far). The integral of (2.1) multiplied by
(x — a)* will also be of interest, which will be related to the flexural deflection of the foil:

1

3 [ 9% 3%z, 3z
2 S s
/ (x—a) Rzydx+ = |:(x—a) Bx( 3 2) —2x—a)S— 2 —I—ZSE:L:_I

dt2

4 (' 9Soz e B
- §/;1 aadx o /;1()(? Cl) ACP(X’ t)dx = CF(I). (26)

Here Cr may be termed as the flexural coefficient, since it is to the flexural motion what
Cy 1is to the pitching motion, or Cy, to the heaving motion of the foil. It must be noted
that (2.4)—(2.6) are valid for —1 < a < 1 since the point about which the delta function
is centred must be inside of the domain of integration. Thus, results given below where
a=—lora=1areinfactfora = —1+¢€ora=1 — ¢, respectively, with € < 1.
Equation (2.1), but without the terms with Cr; and Cjy, has been recently solved
numerically in the present limit of linear potential flow for a general foil’s kinematics
Zs(x, t) and constant stiffness S by Moore (2017) and by Floryan & Rowley (2018). Here
we follow a different approach by using the three moment equations (2.4)—(2.6) to obtain
the passive flexural motion of the foil at its lowest order for given heaving and pitching
motions about x = a. In a previous work (Alaminos-Quesada & Fernandez-Feria 2020)

we used a quadratic approximation for z; such as
(. ) = h(t) — (x— o) + (x—a)’d®), —1=<x<1, 2.7

to compute the coefficients Cy, Cy; and Cr in terms of the heaving, h(r), pitching, «(¢), and
flexural quadratic, d(f), motions. In this foil’s kinematics, |d|, like |k| and |«/|, are assumed
small, which would be a valid approximation for sufficiently large stiffness S of the foil.
However, for constant S, the stiffness term in (2.1) vanishes for such a quadratic deflection,
and, consequently, all the corresponding terms in the moment equations (2.4)—(2.6), so that
these equations cannot relate the quadratic deflection d with the stiffness S, if S is constant.
To circumvent this difficulty we assume a quartic approximation for the deflection to
account for the effect of S on d(¢) at the lowest order. As we shall see, this approximation
constitutes a minimal model of the flexible foil that yields quite accurately the first natural
frequency of the system, with the propulsion results agreeing quite well with previous ones
for particular values of R and a (Floryan & Rowley 2018) (namely R = 0.01 and a = —1).
In this approximation of z; as a quartic polynomial, the cubic and the quartic terms are
related to the quadratic one by the boundary conditions of a free trailing edge, namely

8%z,/9x% = 83z,/9x> = 0 at x = 1, in addition to the conditions z; = h and 3z;/9x = —«
910 A43-5


https://doi.org/10.1017/jfm.2020.1015

https://doi.org/10.1017/jfm.2020.1015 Published online by Cambridge University Press

R. Fernandez-Feria and J. Alaminos-Quesada

at x = a already satisfied by (2.7). This yields

— B — (x— C %) — (e — a2 4O
zs(x, ) = h(t) — (x —a)a(®) + (x —a)™d(t) — (x — a) 3(1 — +(x—-a 6(1 — a)Z'

(2.8)

a)

With this approximation for z(x, ) and constant S and R, (2.4)—(2.6) become

4R [+ aie + sityd] + 25— — ¢+ cu 2.9)
3% —a)?
_2R [a'h + (1 + az) a4 sm(a)é':| 8ty cun (2.10)
3 3P0 a2

=Cr, (211)

Y 5 61, d
4R[<3+a)h+a(l—|—a)oz+s]v(a)d:|+ 3 <3+a>5(1_a)2

where a dot denotes derivative with respect to ¢ and the three functions of « multiplying d
are

11 4+ 30a® — 404> + 154*

= , 2.12
si(a) 300 —a)? (2.12)
12 4+ 93a — 60a® + 110a® — 120a* + 454°
s(a) = + 93a a” + 110a a” + 45a ’ (2.13)
90(1 — a)?
141 + 168a + 1281a* — 1120a> + 1015a* — 840a° + 31548
sp(a) = 5 . (2.14)
630(1 — a)
In what follows we assume a harmonic motion of the foil:
h(f) = Re [hoei’“] . a(f) =Re [aoei’“] . d(t) =Re [doeik’] , (2.15a—c)
where
=2 (2.16)
U '
is the reduced frequency and Re means real part. We assume that A is real and
ag = ape®,  dy = dye'?, (2.17a,b)

with ¢ the phase shift between the heaving and pitching motions of the foil, ¥ the phase
shift between the heaving and flexural motions, ag the maximum pitch amplitude of the
plate and d,,, the amplitude of the flexural component of the deflection. We work with the
complex expressions knowing that we have to take the real part of the results.

As already mentioned, for the harmonic motion of the foil with quadratic deflection,
i.e. when (2.7) with (2.15a—c) are used, the coefficients C;, Cy and Cr have been
obtained analytically in terms of A, o and d ((4.1), (4.6) and (4.8), respectively, in
Alaminos-Quesada & Fernandez-Feria (2020), with p =a and § = d in the present
notation, and now Cy, is assumed positive when counterclockwise). The addition of cubic
and quartic terms in (2.8) obviously modifies these expressions, which are obtained here
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following the same procedure developed in Alaminos-Quesada & Fernandez-Feria (2020).
By writing the foil’s deflection (2.8) as

4
2 ) =Y Zy(x", (2.18)

n=0
where

Zo(t) = h(t) + ax(t) + A(@)d(t), Z1(t) = —a(t) — B(a)d(1), (2.19a,b)
Zr(t) = D(a)d(t), Z3(t) =—E(@)d(t), Z4@) =J(a@)d(t), (2.20a-c)

with

a1 24 @ B=2a(1+-2 ¢ @
=da ) = za )
3(1—a)  6(1 —a)? l—a 3(1—a)?

pots 2y C gl 2 (1o R—
N l—a (1-a)? 31 —a) l—a)’ ~

and the corresponding foil’s velocity in the z direction as

e, ) = 42 = Zvn(nx" Va®) = Za(0) + (1 + D201 0),

0<n<3 V=2, (2.23)

these coefficients can be written as

.V VY
CL(t)y=—m (Vo + IZ + f) + C(k) (1), (2.24)
B Vi Vs Vo Wy 1 Vo 3V3 Vs
CM(I)——§|:8+E— (VO+T+8)+2(V1+7+T+7)i|

l ! Clk)Ip(t 2.25
2<2+a> () Io(D), (2.25)
Cr=n|(++a)Vi+ 20+ v+ (s +3a)vs— (2 +a?)V
F() =7 1t 1+§( h + 4)+4_1 H3a)Vs—(7+a )W
. V3 1 1 2 . 1 3 2 .
+4(V1 2)—Z(§+G>V—§(§+Q>V4i|
1 2
+ (5 +a+a )C(k)fb(t), (2.26)

where
Io@) = =7 {200 + Vi) + V20 + § Vs0) + Va0 2.27)
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is the quasi-steady circulation and
2
H ()
2 2
iH? (k) + H? (k)

Clk) = = F (k) +1iG (k) (2.28)

is Theodorsen’s function (Theodorsen 1935), with H,(lz) (z) =Jn(z) — iYn(2), n=0,1,
being Hankel’s function of the second kind and order n, related to the Bessel functions
of the first and second kind J,,(z) and Y,,(z) (Olver et al. 2010). Remember that one has to
take the real part of these expressions.

3. Analytic expressions for the deflection and the propulsive performance

To analyse the propulsion performance of a heaving and pitching plate, with given
functions A(#) and «(f), when a passive flexural motion with small amplitude d(r) is
allowed, one has just to solve (2.11) for d with Cr given by (2.26), since (2.9) and (2.10)
would provide the input force and torque, Cr; and Cyy;, needed to generate such heaving
and pitching motions, and therefore to compute the input power coefficient, as described
below.

Equation (2.11) with (2.26) can formally be written as

Fi(R, k, ho, ag, ¢, a) = F2(R, S, k, @) dy, €'V, 3.1)
so that
F Fy
dy = F_2 , Y =arg F_’z , (3.2a,b)

where the complex functions F; and F» are

i 1 1
F| = —hok? _4R <a2 + 3) ( 4)]
+

—ape?a |:4Rk2(1 +ad*) —ink(1 — a) + 7k? (a2 2)]

1Y .
+27 (a +a+ - )C(k) {1kho+aoe¢|:<a—§>1k—1:|}, (3.3)

16 1 S 1 .
F, = 4RSf(a)k2 — ? (612 + 5) m + 7 [(a + Z) (2D — Blk)

1 1
+ (Dik — 3E + Jik) + — <3a + ) (—Eik + 4J) + ( Z) (AK* + Bik)

1 2 5 . E, , JK?
+4 a’ —I— (Dk* + 3Eik) —I— Bk” + 2Dik + Ek +2Jik ) + [ &® +8 e

<a +a+ )C(k){(2A—B+D)ik—ZB+ZD—3E+%[(J—E)ik+4]]}
(3.4)

The flexural deflection amplitude d,,, obviously vanishes when the stiffness S — oo, since
F» is an affine function of S.

It is interesting to note that the algebraic function F, provides the first natural frequency
of the system, which is the only one recovered by the present approximation. In fact,
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Figure 2. Natural frequency k, obtained by minimizing |F2| as a function of R for S=10 and a =
—1 (continuous line) compared with the first natural frequency computed by Floryan & Rowley (2018)
(dashed-and-dotted line). The dashed line is ko from (3.5).

when one neglects the fluid—structure interaction, i.e. when Cr = 0, equation F» =0
provides the first resonant frequency of a plate in vacuo pivoting at x = a in the present
approximation:

L 280(1 + 3a?) S 3.5

0TV 141 + 168a + 12814 — 1120a® + 1015a* — 840a° + 315a° R’ (3-5)
For a plate pivoting at the leading edge (a = —1), this expression yields k9 ~ 0.497./S/R,
in remarkable agreement with the exact result for the first resonant frequency of a beam
clamped at x = —1, w; = /I%N/EI/(pssbc“), with A; = 1.87510, where I = ¢b/12 is the
area moment of inertia and b the span (e.g. Timoshenko, Young & Weaver 1974), which
in the present (dimensionless) notation can be written as k; = 0.50750,/S/R. When the
fluid—structure interaction is taken into account (i.e. considering the effect of Cr), F7 is
complex and does not vanish, but the frequency that minimizes |F>| provides the present
approximation for the first natural frequency of the system, k., for a given set of parameters.
Figure 2 compares this frequency k, thus obtained with the first natural frequency
computed by Floryan & Rowley (2018) from a more general theory as the mass ratio R
is varied. The frequency ko given by (3.5) is also included, which obviously is a good
approximation for large R, when the fluid—structure interaction becomes negligible. This
agreement between k, obtained here by minimizing |F>| and that obtained numerically by
Floryan & Rowley (2018) from a more general theory is a good test of the present algebraic
approximation, especially considering that peak thrust forces are produced by the flexible
foil at, or near, natural frequencies of the system, as shown by Floryan & Rowley (2018)
and corroborated by our results in § 4 below.

Once the flexural deflection is obtained, one may compute Cz and Cys using (2.24)

and (2.25). These quantities are needed to obtain Cy; and Cyy; from (2.9) and (2.10),
respectively, necessary to compute the input power coefficient,

Cp(t) = h())Cri(t) — 2a (1) Cpsi (1), (3.6)
910 A43-9
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which in turn is needed to obtain the propulsive efficiency. Note from (2.9) and (2.10) that
this expression formally coincides with the usual one, Cp = —h(?)Cp(t) 4 20 (1) Cps(2),
for R =0. (Note also that here the sign of Cjp; has been changed in relation to
Alaminos-Quesada & Fernandez-Feria (2020) and that, according to (2.8) and contrary
to the moment, the sign of « is defined positive when clockwise to follow the usual
convention in aerodynamics.)

Additionally, one may obtain the propulsion, or thrust, coefficient Cr(f) from the
resulting deflection d and the given heaving and pitching kinematics, as done above for
Cr(t), Cp(t) and Cr(?) using the quartic approximation for the deflection. In the case
of a quadratic deflection like (2.7), Cr(¢) is given by (4.5) in Alaminos-Quesada &
Fernandez-Feria (2020). For the quartic deflection (2.8) the thrust coefficient is derived
in a similar way, but the resulting expression becomes cumbersome. However, we have
compared the time-averaged thrust values obtained with both approximations for some
particular cases and found that differences are quite small, provided that the deflection d
is computed with the quartic approximation, as described above. For this reason, we use
the expressions for Cr in Alaminos-Quesada & Fernandez-Feria (2020) in all the reported
results.

The propulsive (Froude) efficiency is defined as

==, (3.7)
=z
where the bar denotes time-average over a period of the foil’s harmonic motion,
_ k t+2m/k
Cr=— Cr(1)dt, (3.8)
2m J;
and similarly for Cp.
The mean value of the thrust coefficient C7(f) can be written as
T __ th + typ0 + l‘p92 + (fhd + l‘de) Ona + tdeid, 3.9
(kho)?

with the functions #,(k), tp,(k, a, @), tp(k, a), tan(k,a, V), tpa(k, a, ¢, y) and t4(k, a)
given in Alaminos-Quesada & Fernandez-Feria (2020), but with p = a and d,,,/(1 — a)?
substituted by d,,, which are reproduced in appendix B for easy reference. In this
expression use has been made of the non-dimensional parameters

agp dm
g=20  5,=9"
Wit =

where 6 is the well-known Lighthill’s (1969) feathering parameter. For 6,4 = 0, we have
the mean thrust coefficient @(T) of a rigid foil with the same heaving and pitching motion
(Fernandez-Feria 2016, 2017).

From (2.9)—(2.10) and (2.15a—c)—(2.28) substituted into (3.6), the time-averaged power
coefficient can be written as

(3.10a,b)

P
(kho)2 = pn + pipt +Pp92 + (Phd +de9) Oha + R (Prhd +Prpd9) Ond

+ S (Psha + Pspa®) Ona. (3.11)

Where the funCtionS ph(k)’ php(ks a’ ¢)’ pp(k’ a)’ phd(k7 av w)’ ppd(ka a? ¢7 ¢)7 pl’hd(k7
a, I/I)’ prpd(k» a, d)a w)’ pshd(k, a, W) and pspd(k, a, ¢a W) are alSO giVen in appendix B
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Figure 3. Amplitude of the flexural component of the deflection (@) and its phase (b), both in relation to the
heaving motion at the leading edge (¢ = —1), as a function of reduced frequency k and stiffness S for a plate
with mass ratio R = 0.01. The dashed lines correspond to the first natural frequency of the system k, that
minimizes |F;|. The dotted lines in (a) are the first and second natural frequencies computed by Floryan &
Rowley (2018) for this case (extracted from their figure 15).

(a) In|d, /h|, S =10, a =—1 ) ¥ (deg.), S=10,a=-1
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0 -20
ST —28
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Figure 4. As in figure 3 but as a function of reduced frequency k and mass ratio R for a plate with stiffness
S = 10. The dashed lines correspond to the first natural frequency of the system k, that minimizes |F>|, while
the dashed-and-dotted line is ko (x R~1/2) given by (3.5), valid for for R > 1.

Note that the first three terms constitute Theodorsen’s power coefficient for a pitching and
heaving rigid foil (Theodorsen 1935), C% = (kho)*[pn(k) + 6 pp(k, a, ¢) + 0°p,(k, a)].
The remaining terms are the contributions to the input power of the passive flexural
deformation associated with the prescribed heaving and pitching motions (i.e. terms

containing d in Cy, and Cy; in the contribution of —hCy +2aCy to Cp), and those
associated with the inertia (R) and with the flexibility (S) of the foil.

4. Results
4.1. Purely heaving motion with chordwise deflection

In the simplest case when no pitching motion is imposed on the foil (ap = 0), the
expressions (3.3)—(3.4), (3.9) and (3.11) become particularly simple. Figures 3—-5 show
dmn/hy = kOpg and ¢ as functions of § and &, R and k, and a and k, respectively, for
particular values of the remaining parameter in each case (¢ = —1, S = 10 and R = 0.01).

For sufficiently large S and k in figure 3, or sufficiently large R and k in figure 4, the
amplitude of the flexural component of the deflection d,, shows a marked maximum
that approximately follows the first natural mode of the system, which is also plotted
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Figure 5. Amplitude of the flexural component of the deflection (a) and its phase () as a function of reduced
frequency k and the location a where the heaving motion is imposed to a plate of stiffness S = 10 and mass
ratio R = 0.01. The dashed lines correspond to the first natural frequency of the system k, that minimizes |F3|.

in these figures when obtained analytically in the present approximation by minimizing
|F2(R, S, k,a)|]. This relation between resonance and the maximum of the flexural
deflection, and then with the maximum of the thrust (see below), is in agreement with
previous results of Floryan & Rowley (2018). In the present analysis, only the first natural
frequency is captured since the foil’s flexibility has only one degree of freedom, with a
quartic deflection that approximates the shape of the first mode of an Euler—Bernoulli
beam. Higher resonances are obtained by Floryan & Rowley (2018), among other authors,
following the work of Wu (1961), where a large number of degrees of freedom are
considered by expanding the deflection of the foil, and the corresponding inviscid motion
around it, in a Chebyshev series with N coefficients (see also Alben 2008; Moore 2015,
2017; Tzezana & Breuer 2019). The present is a lowest-order model to account for the
flexibility of the foil. In spite of this limitation, the great advantage of the present analysis
is that an analytical solution is obtained. This situation is somewhat analogous to that
considered by Moore (2014) for the case of a plate with infinite stiffness and finite torsional
stiffness at the leading edge, where the variable is the pitching angle ag instead of the
flexural deflection amplitude d,,, which is obtained, also analytically, in terms of the finite
torsional stiffness of the leading edge instead of the finite foil’s stiffness S considered here.
The first resonant mode of the system is, in addition, the most relevant one physically
because the following modes are activated at much higher frequencies. Moreover, as
shown by Alben (2008), the maximum possible thrust coefficient is always achieved by the
flexible foil operating at or near this first resonance. Figure 3(a) also includes the natural
frequency of the second mode of vibration extracted from figure 15 of Floryan & Rowley
(2018) (note that their f* is the present k/1), above which the present approximation is
certainly not valid.

In figure 4, the first resonance mode for large mass ratio R is proportional to R~
in accordance with k.9 given by (3.5) for constant S. Figure 5 shows that the maxima
of the flexural component of the deflection amplitude for the constant values of S and R
considered are obtained for pivots located just downstream of the mid-chord point.

Except for a pivot point close to the trailing edge, the local maxima in the amplitude
of the flexural component of the deflection roughly correspond to local maxima in thrust
and in power coefficients, since, according to (3.9)—(3.11), the thrust and power input are
quadratic and linear functions, respectively, of d,,. Although this is not always so because
the effect of the phase, figures 6 and 7, where we plot in the stiffness—frequency plane
the ratios of the time-averaged thrust and power coefficients of a flexible foil to the mean
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Figure 6. Thrust coefficient as a function of frequency k and stiffness ratio S for a heaving motion forced at
different locations a and with different mass ratios R, as labelled at the top of each panel. Lines marked with
‘0’ indicate where the flexible foil has the same thrust as the equivalent rigid foil (C‘(%). Areas with negative
thrust have been whited out. The dashed lines correspond to the first natural frequency of the system k, that
minimizes |F3|, while the dashed-and-dotted line is ko given by (3.5). The dotted line in (a) is the second
natural frequency computed by Floryan & Rowley (2018) for this case (extracted from their figure 15).

thrust and power coefficients of an otherwise identical rigid foil, respectively, clearly show
that, for the selected values of a, the maxima in C7 and Cp approximately follow the first
natural frequency, as does d,,. We select two different mass ratios, R = 0.01 and R = 1,
and three different locations of the imposed heaving motion, the leading edge (¢ = —1),
the quarter-chord point (@ = —1/2) and the mid-chord point (a = 0). Though we use iy =
0.02 in all reported computations, except otherwise specified, the results plotted in these
figures are independent of /g in the present linear theory.

In all cases plotted in figure 6, or in figure 7, there exists a region in the
stiffness—frequency plane where the thrust, or the input power, of the flexible foil is
substantially larger than that of the rigid foil counterpart. As aforementioned, these regions
are always centred around the first resonance mode of the system (plotted in figures 6 and 7
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Figure 7. As in figure 6 but for Cp. Areas with negative input power have been whited out.

with dashed lines), with the maxima in the thrust enhancement practically coinciding with
this first natural frequency, like the maxima in the amplitude of the flexural component
of the deflection. On the other hand, in most of the cases considered there exists a region
with net drag in the low-frequency and low-stiffness range.

The regions of significant thrust enhancement by flexibility in figure 6 always lie in
the large stiffness part of the plane, where the present small deflection approximation is
more likely to be valid. For the case plotted in figure 6(a) (R = 0.01 and a = —1), this
region practically coincides with that in figure 9(a) of Floryan & Rowley (2018) for the
first resonance mode of the system (remember that their reduced frequency is our k/m).
Though Floryan & Rowley (2018) obtain results valid for higher resonance modes, the
present ones are obtained analytically for given S, R and the kinematics parameters. In
figures 6(a) and 7(a) we also include the natural frequency of the second mode of vibration
for the case R = 0.01 with a = —1, extracted from figure 15 of Floryan & Rowley (2018),
above which the present approximation is not valid.

For a given pivot x = a, the region of thrust enhancement displaces to lower frequencies
and becomes somewhat narrower as the mass ratio R increases. On the other hand, as the
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Figure 8. Maxima of the thrust enhancement (a), optimal frequency (b) and thrust at the optimal frequency
(c) versus the pivot point location a for three values of the mass ratio R, when the stiffness of the heaving foil
is S = 10.

pivot point displaces downstream along the foil for given R, the magnitude of the thrust
enhancement by flexibility increases for the selected values of a in figure 6. For a = 0,
a region of net drag is also found for frequencies higher than the first natural frequency,
where the present approximation is not valid.

Similar trends are found for the power coefficient shown in figure 7, which becomes
much larger than that of the rigid foil counterpart around the first resonance mode. This
is also in accordance with previous results of Floryan & Rowley (2018) for ¢ = —1 and
R = 0.01 (their figure 10(a) practically coincides with figure 7(a) around the first natural
mode of the system). _

To see these trends more clearly for the case of Cr, figure 8 shows the maxima in the
thrust enhancement, (C7/ Cg)mx, where C(% is the thrust of an otherwise identical rigid
foil, as the pivot point location is varied for a stiffness S = 10 and for three different mass
ratios, together with the corresponding values of the frequency k., which practically
coincides with k.. For R small and unity the trends are similar, but with the maxima
for each a occurring at lower frequencies as R increases, and with a marked peak at
a =~ 0.1. For R = 10 the thrust enhancement is smaller and its maximum is reached
at approximately a = 0.4, with almost no thrust enhancement for pivot point locations
upstream of the mid-chord point. B B

The propulsive efficiency does not necessarily follow the same trends of Cr and Cp
because it is the ratio of two quantities with similar qualitative behaviours, with maxima
at, or very close to, the first natural frequencies. In fact, it turns out that the efficiency
is larger at low frequencies, almost independently of the stiffness ratio, which is also the
behaviour of the rigid foil counterpart (now independently of S, of course). This trend
of the efficiency is typical of the purely heaving motion in the linearized potential limit
(e.g. Garrick’s efficiency for a rigid heaving foil tends to its maximum value unity as
k — 0). Obviously, this is not physically valid because viscous drag is neglected in the
present theory, and it is especially relevant in relation to the thrust force at low frequencies,
substantially reducing the efficiency at these small frequencies, that typically becomes
negative due to the viscous drag.

However, the inviscid results for the efficiency may conveniently be corrected at low
frequencies by just subtracting an offset drag Cpy to the thrust coefficient C7 obtained
with the linear potential theory (Mackowski & Williamson 2015; Fernandez-Feria 2017,
Floryan et al. 2017). Offset drag Cpg basically depends on the heaving amplitude /¢ and
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Figure 9. Efficiency n as a function of frequency and stiffness for a heaving foil with a = 0, R = 0.01 (a) and
R =1 (b), and using hy = 0.02 with Cpp = 0.05. The dashed lines correspond to the first natural frequency of
the system k, that minimizes |F;|, while the dashed-and-dotted line is k,¢ given by (3.5). Areas with n < —1
have been whited out.

the Reynolds number, and to a lesser degree on the pivot point location, but for the small
amplitudes and high Reynolds numbers for which the present theory is valid one may
consider a constant value. Figure 9 shows the propulsive efficiency for a foil pivoting at
the mid-chord point (¢ = 0) and two values of the mass ratio (R = 0.01 and 1) when an
offset drag Cpo = 0.05 is used with sg = 0.02. It is observed that the efficiency remains
positive at high frequencies, almost independently of the stiffness, a consequence of the
displacement to higher frequencies of the maximum efficiency by the effect of drag.
But the main effect of the offset drag on the efficiency is the appearance of a localized
maximum at lower frequencies, close to the region with maximum thrust and input power
around the first resonance mode of the system. The existence of these resonant peaks in
efficiency as a consequence of drag is explained by Floryan & Rowley (2018), though,
as for Cr and Cp, we only observe here the peak associated with the first resonant mode
due to the present flexural approximation. It must be noted that choosing a different value
of Cpy, within its physical range around the present selected value (Floryan et al. 2017),
only modifies the efficiency at very low frequencies, leaving practically unchanged the
optimal regions depicted in figure 9. If one computes the relative efficiency n — n°, where
n" is the efficiency of an otherwise identical rigid foil, one finds that the maxima always
lie in the region of negative, or very small, efficiencies, at lower frequencies than those
corresponding to the first natural mode, so that flexibility practically does not increase the
propulsive efficiency in the region of large thrust enhancement. Thus, this region of thrust
enhancement by flexibility near the first natural frequency for high enough stiffness almost
coincides with the region of maximum efficiency, but with no relevant improvement of the
efficiency in relation to a rigid foil.

Based on this, in figure 10 we plot 7 at the first natural frequency k,, which is a good
approximation to the maximum efficiency, as a function of the pivot point location a for
S =50 and several values of the mass ratio R, together with the corresponding natural
frequencies. Observed is an unphysical singularity at a =~ 0.1, also observed in figure 8
for the thrust, which is an artifact of the present linear potential model associated with a
vanishing small power coefficient. Disregarding this singularity, for R = 0.01 the model
predicts a maximum efficiency in this case (hg = 0.02 and Cpg = 0.05) of about 0.4 when
the pivot point is close to the quarter-chord (¢ = —1/2). As R increases, the behaviour is
similar, but with smaller efficiencies and a maximum attained for increasing @ when a < 0.
For a 2 0.1, the efficiency is negative or very small. In fact, the singularity roughly marks
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Figure 10. Efficiency at k = k, as a function of the pivot point location (a) and the corresponding &, (b) for
S = 50 and three values of R, for a purely heaving motion with 4y = 0.02 and Cpy = 0.05.

the pivot point location downstream of which the flexible heaving foil is not efficient for
propulsion.

This behaviour is corroborated for all values of the stiffness S in figure 11, which shows n
at k = k, in the S—a plane for R = 0.01 and R = 1, together with the corresponding values
of k.. For —1 < a < 0, the maximum efficiency for constant R is attained at values of the
stiffness S that decrease almost linearly with a. Curiously, this linear band of maximum
efficiency in the S—a plane practically corresponds to a constant value of k,. For R = 0.01,
the maximum of n within this band is reached for a pivot point close to the the mid-chord
with § ~ 10 (disregarding the singularity at a &~ 0.1 mentioned above, which has been
whited out in figure 11, together with negative values of the efficiency), while for R = 1
the maximum is attained for a pivot point approaching the leading edge for a value of
S larger than 100. In fact, a local maximum of 7 exists at a = —1 for both values of R
at sufficiently high values of S (larger than 100). Given its physical relevance within the
present approach, valid for large S, this local maximum is characterized in figure 12. This
figure shows that the maximum efficiency for a foil pivoting at the leading edge in the
present case is approximately 0.44, attained for R >~ 10 and S ~ 430 with an operating
frequency k ~ 3.13. Figure 11 also shows that for a = 0.1 the efficiency is negative or
very low, as already discussed in relation to figure 10 for S = 10, except for small S for
which the present theory is not valid.

4.2. Purely pitching motion with chordwise deflection

For a foil with mass ratio R undergoing a purely pitching motion of small amplitude a
about a pivot point location a, the effect of flexibility on the propulsive performance is
qualitatively similar in the stiffness—frequency plane to that described above for a heaving
motion with the same a and R. The pitching motion just generates smaller maxima of the
flexural deflection amplitude than that from the equivalent heaving motion, in relation to
their rigid foil counterparts, and consequently less thrust enhancement by flexibility.

As an example, figure 13(a) shows, in the stiffness—frequency plane, the ratio of the
time-averaged thrust of a flexible foil to the mean thrust coefficient of an otherwise
identical rigid foil for R = 0.01, a = —1 and ag = 2°, though the plotted results are
independent of the pitching amplitude ag. The region of substantial thrust enhancement
by flexibility is similar to that in figure 9(b) of Floryan & Rowley (2018) around the first
resonance mode of the system (which is also plotted as a dotted line). Figure 13(b) shows
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Figure 11. Efficiency at k = k, (a,c) and the corresponding &, (b,d) in the stiffness—pivot point location plane
for a purely heaving motion with sy = 0.02 and Cpg = 0.05, for R = 0.01 (a,b) and R = 1 (c,d). Areas with
negative efficiency have been whited out.
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Figure 12. Maxima in the efficiency versus the mass ratio for a heaving motion pivoting at the leading edge
(a) and the corresponding values of the stiffness and frequency (b). Here hg = 0.02 and Cpg = 0.05.

the propulsive efficiency for the same case, but now using an offset drag Cpg = 0.05. As
in the case of purely heaving motion, there is a region of maximum efficiency close to the
thrust enhancement region around the first natural mode.

Figure 14 shows the propulsive efficiency at k = &, as a is varied for § = 10 and several
values of R, together with the corresponding values of k,.. It is observed that the efficiency
predicted by the model becomes singular in certain narrow intervals of a containing a = 0
that depends on R and S; within these ranges of a the present approximation with a small
quartic deflection is not valid. For pivot locations upstream of these singular intervals,
the efficiency reaches a maximum that decreases with increasing R at practically the
same value of a (~ 0.17 in the plotted cases). For pivot locations downstream of the
singular narrow region, the efficiency is negative or very low. Therefore, the singularity
marks again the pivot point locations downstream of which the propulsive efficiency of
the flexible (now pitching) foil becomes poor. The difference from the heaving foil case
discussed above is that now there exists a narrow region of pivot point locations that
depends on S and R, instead of being an almost constant pivot point location (a ~ 0.1)
as S and R are varied.
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Figure 13. Thrust coefficient (a) and efficiency (b) as a function of frequency k and stiffness ratio S for a
pitching motion about the leading edge (¢ = —1) with R = 0.01 (a9 = 2° and Cpg = 0.05). The lines marked
with ‘0’ in (a) indicate where the flexible foil has the same thrust as the equivalent rigid foil (C";). Areas with
negative thrust have been whited out in (@), while values less than —2 are whited out in (). The dashed lines
correspond to the first natural frequency of the system k&, that minimizes |F>|, while the dashed-and-dotted line
in (a) is ko given by (3.5). The dotted lines are the second natural frequency computed by Floryan & Rowley
(2018) for this case (extracted from their figure 15).
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Figure 14. Efficiency at k = k, (a) and the corresponding k, (b) versus a for a pitching motion with ap = 2°
and Cpo = 0.05, for § = 10 and three values of R.

Indeed, this is observed in figure 15, which shows the effect of the stiffness S on the
efficiency at k = k, for the case with R = 0.01 in figure 14. The singular regions and those
with negative efficiency have been whited out in the a—S plane. As the pivot location
moves from the leading edge to the singularity close to the mid-chord point, the maxima
in the efficiency are attained at decreasing values of S, starting close to 100 for a = —1.
For pivot point locations downstream of the singular region, the efficiency is negative or
very low for all the range of values of S considered. Figure 16 shows the evolution with
the mass ratio R of the maximum in the efficiency when the pivot point is at the leading
edge (a = —1), together with the corresponding values of S and k..

4.3. Pitching and heaving motion about the leading edge
Finally, as an example of combined pitching and heaving motions we only present results

for the case in which they are forced at the leading edge (a = —1), and just to see how an
appropriate addition of pitching to a heaving motion may significantly increase both the
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Figure 15. Efficiency at k = k, (a) and and the corresponding frequencies (b) in the stiffness—pivot point
location plane for a purely pitching motion with ap = 2° and Cpg = 0.05 for R = 0.01. Areas with negative or
singular efficiency have been whited out.
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Figure 16. Maxima in the efficiency versus the mass ratio () and the corresponding values of the stiffness
and frequency (b) for a pitching motion about the leading edge with ap = 2° and Cpy = 0.05.

thrust and the propulsive efficiency of the foil, additionally to that caused by flexibility
discussed above, as is well known for rigid flapping foils (Anderson et al. 1998).

To that end we select the case with the highest propulsive efficiency for a heaving foil
with R = 0.01 when hy = 0.02, Cpg = 0.05 and a = —1, which according to figure 12
is approximately 40 % when k >~ 6.9 and S about 130. Figure 17 shows the thrust and
efficiency enhancement in relation to the corresponding heaving-only foil, C7/C7y;, and
n — np, respectively, when pitching motions of increasing amplitude ap and phase shift ¢
are added.

Any amount of pitching, even of infinitesimal amplitude, increases the thrust generated
by the foil provided that its phase shift ¢ in relation to the heaving motion is appropriate.
For small ay, this happens in this case when 90° < ¢ < 270°, with the thrust enhancement
maximized at ¢ &~ 180°. In relation to the efficiency, figure 17(b) shows that there exists
a threshold in the pitch amplitude above which the efficiency improves in relation to the
heaving-only motion. For the present case with very small /g, this minimum amplitude
is also very small, about 0.2°, generating thrust enhancement for a phase shift ¢ of about
204°. As the amplitude ap increases, the optimal phase shift for efficiency enhancement
increases, approaching 360° (i.e. 0°) for sufficiently high amplitude.
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Figure 17. Thrust (a) and efficiency (b) enhancement by adding a pitching motion about the leading edge
(a = —1) of amplitude ap and phase shift ¢, in relation to the thrust and efficiency of the heaving-only motion,

Crp =~ 0.378 and nn == 0.4, respectively, with hg = 0.02 and Cpg = 0.05, for a foil with R = 0.01 and S = 130,
and a reduced frequency k = 6.9. The contour values in (b) are for (n — n;) x 100.

5. Concluding remarks

We derive analytical expressions for the propulsive performance of a two-dimensional
foil with prescribed pitching and heaving motions about arbitrary pivot points when a
quartic chordwise deflection is allowed to accommodate passively to the fluid—structure
interactions. The formulation is limited to high Reynolds numbers (inviscid flow), small
amplitudes of the foil motion (no flow separation) and large stiffness combined with
low-to-moderate reduced frequencies and mass ratios, so that only the first resonant mode
of the system is activated. The formulation incorporates the effect of the inertia of the
solid foil on both the thrust and input power, and therefore on the propulsive efficiency,
directly from the Euler-Bernoulli beam equation, an effect that becomes relevant when
the mass ratio is not small. Thus, the results are valid for modelling both swimming and
flying applications of flapping foils.

The present formulation uses a slightly modified form of the purely kinematic results
in Alaminos-Quesada & Fernandez-Feria (2020) for a quadratic deflection to compute the
flexural deflection amplitude and its phase in terms of the solid foil properties, namely
its dimensionless stiffness and mass ratio, in addition to all the kinematic parameters
associated with the forced heaving and pitching motion applied at an arbitrary pivot
point. The maximum flexural deflection amplitude is found to be attained at, or near, the
first natural frequency of the system, which is also obtained here algebraically, being the
only natural frequency recovered in the present approximation. At this frequency, which
depends on the stiffness, mass ratio and the location of the pivot point, the thrust and power
input also reach their respective maximum values, approximately, though not necessarily
the propulsive efficiency. These results are in agreement with previous numerical results
for purely heaving and pitching motions about the leading edge (@ = —1) for low mass
ratios (R = 0.01) reported by Floryan & Rowley (2018), though the formulation by those
authors accounts for the whole series of natural frequencies of the system, depending
on the number of terms retained in the Chebyshev expansion. In this sense, the present
approach is equivalent to the lowest order of this expansion formulated through the
first three moments of the Euler—Bernoulli beam equation, thus constituting a minimal
model of the flexible foil. Though the limitation to (small-amplitude) quartic deformations
restricts the theory to include only the first resonant frequency of the system, as shown by
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Alben (2008) from a similar linear potential flow theory, the maximum possible thrust
coefficient is always achieved by the flexible foil operating at or near this first resonance.
The cases of purely heaving and purely pitching motions are analysed with detail in
the present work, characterizing the parametric ranges generating maximum thrust and
maximum propulsive efficiency enhancement as the stiffness of the foil is varied, including
the effect of the pivot point location for a wide range of mass ratios.

Though results are presented for a foil with uniform thickness, chordwise rigidity
and density, the analytical results are easily generalized to account for any chordwise
distribution of the non-dimensional stiffness S(x) and the mass ratio R(x) using
(2.4)—(2.6). More complicated motions of the foil, with additional kinematic parameters,
could also be considered within the present approach by including additional moments
of the Euler—Bernoulli equation, though then the resulting analytical expressions, if
attainable, would become much more involved and probably would not have any advantage
over the method based on Chebyshev expansions.
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Appendix A. Equation (2.1)

As commented on just below the Euler—Bernoulli beam equation (2.1), in addition to the
usual continuous pressure distribution considered in the references given above it, we
have included terms modelling localized force and torque at the pivot point x = a through
Dirac’s delta function and its derivative. Though we have not seen this equation written
down in that way previously, modelling a punctual force through Dirac’s delta function § is
a normal practice in dynamics. Likewise, a punctual (clockwise) torque can be modelled
by its derivative §’. Since these functions satisfy the properties (the second one just by
integrating by parts, see e.g. Lighthill (1958))

/00 S§(x —a)F(x)dx = F(a), foo 8 (x —a)F(x)dx = —F'(a), (Ala,b)

one readily recovers the right-hand sides of (2.4) and (2.5).

Appendix B. Functions for the time-averaged coefficients

B.1. Thrust coefficient
The functions 1,(k), tnp(k,a, @), tp(k,a), tha(k, p, V), tpalk,a,p,¢,vy) and t4(k, p)
appearing in the time-averaged thrust coefficient (3.9) are the following:

(k) = —=2G,(k), (B1)
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thp(k, a, ¢) = [(3 — 4a)Gik — 2F ] cos(9) + (2G1 — Fik) sin(¢),

tp(k,a) =2(1 —a)k |:.7'-1 — (% — a) g1k1| ,

ta(k, @) = k(1 — a)> {4?1 (% - a) — Gik[1 +2(a — l)a]} ,

tha(k, a,¥) =4 { (a - %) (91 - %) sin(y)

+ |:]:1 (% —a) —Gik (a2 — %a—l— %):| cos(w)},

tpd(k’ a, ¢’ w) = k{|:4 (_§a2 + ga — 1) fl

3,22 7 1 N
+4k( a+4a 4a+2)gl:|cos(d) )

+ a(l — a)(2G1 — Fik) sin(¢ — ¥)} .

(B2)

(B3)

(B4)

(B5)

(B6)

Here F (k) and G (k) are the real and imaginary parts of Theodorsen’s function (2.28) and

L ik

—e
Cik) = k = Fi(k) +iG; (k).
1(k) HO G + 5O @) 1(k) +1G1 (k)

B.2. Power coefficient

(B7)

The the funCtionS ph(k)’ php(ka a7 ¢)7 pp(k, a)9 phd(ks a’ w)f ppd(ks a’ d)’ W)’ prhd(ks a7 ¢)7
Proatk, a, &, V), psak, a, ) and pga(k, a, ¢, W) appearing in the power coefficient

(3.11) are the following:
ph=1F,

Php =T |:<2a]:k -G - g) cos(¢) + (Gk — F) sin(¢):| ,

1 1 1/1
pp=TEk|:(a2—Z).7:k—<a+§)g+5(§—d)k )

2 2 8

_ ]f(B+ %)} cos(lﬁ)—HT[gk(g —§+ 3(E8_J) —A

2 _
_ K (A+§+§) —.7-'<B—D+ 3(E2 J)ﬂsin(i/f),

1 B D 3(E-J)
mi={(ary)FH(a-5+3-57)

1 3(E-J)
+(a+§>g<—B+D— 5 )

Phd=JT|:.7:k(A—§+2_3(E_J))_Q(B_D+3(E—J)>

(B8)

(B9)

(B10)

(B11)
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k 1 B 3E D J
3 (G-0) () -3 -3 feose -0
1 B D 3(E—-J) 1 3(E-J)
=+ ni(a—l—E)gk( —E—FE—T)-F((I-FE)}—(B—D"FT)
23_E3_JE[(A2£ EE]}- ) BI2
to gt t5|e +4+8)+8+16 sin(¢p — ), (B12)
Prid = —2Kk>sy(a) sin(¥), (B13)
Prpd = 2K sy (a) sin(¢p — V), (B14)
_ 8 sin(yr)
Pshd = 31— (B15)
_ Baksin(¢ — )
Pspd—w, (B16)

where s;, s, A, B, D, E and J are the functions of a defined in (2.12)—(2.13) and
(2.21a,b)—(2.22a—c).
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