UPPER SEMI CONTINUITY OF ATTRACTORS OF DELAY DIFFERENTIAL EQUATIONS IN THE DELAY

PETER E. KLOEDEN

It is shown that if a retarded delay differential equation has a global attractor \mathcal{A}_{τ_0} in the space $C([-\tau_0,0],\mathbb{R}^d)$ for a given nonzero constant delay τ_0 , then the equation has an attractor \mathcal{A}_{τ} in the space $C([-\tau,0],\mathbb{R}^d)$ for nearby constant delays τ . Moreover the attractors \mathcal{A}_{τ} converge upper semi continuously to \mathcal{A}_{τ_0} in $C([-\tau_0,0],\mathbb{R}^d)$ in the sense that they are identified through corresponding segments of entire trajectories in \mathbb{R}^d with nonempty compact subsets $I_{\tau_0}(\mathcal{A}_{\tau})$ of $C([-\tau_0,0],\mathbb{R}^d)$ which converge upper semi continuously to \mathcal{A}_{τ_0} in $C([-\tau_0,0],\mathbb{R}^d)$.

1. Introduction

Consider a retarded delay differential equation

(1)
$$\dot{x}(t) = f(x(t), x(t-\tau)), \quad t \geqslant 0,$$

in \mathbb{R}^d with a constant delay $\tau > 0$ and assume that $f \in C_b^1(\mathbb{R}^d \times \mathbb{R}^d, \mathbb{R}^d)$, where C_b^1 is the space of continuously differentiable functions from $\mathbb{R}^d \times \mathbb{R}^d$ to \mathbb{R}^d which are bounded and have bounded first derivatives. Then, for any given continuous function $\phi : [-\tau, 0] \to \mathbb{R}^d$ as initial value, the delay differential equations (1) possesses a unique solution $x(t, \phi)$ which exists for all future time (see, for example, Driver [1] or Hale and Verduyn Lunel [3]).

The solutions of initial value problems for the delay differential equations (1) can be reformulated as a semi-dynamical system or semi-flow on the Banach space C_{τ} of continuous functions $\phi: [-\tau, 0] \to \mathbb{R}^d$ equipped with the norm

$$\|\phi\|_{\tau} = \max \{\|\phi(s)\| \mid s \in [-\tau, 0]\}.$$

For any $y \in C([-\tau, \infty), \mathbb{R}^d)$ and fixed $t \ge 0$ define $y_t \in \mathcal{C}_\tau$ by $y_t(s) := y(t+s)$ for $s \in [-\tau, 0]$. Then, the initial value problem for the delay differential equations (1) with

Partly supported by the Ministerio de Educación y Ciencia project MTM2005-01412 as well by the Programa de Movilidad del Profesorado universitario español y extranjero, grant SAB2004-0146 of the above Ministerio.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/06 \$A2.00+0.00.

Received 30th December, 2005

solution $x(t, \phi) \in \mathbb{R}^d$ for $t \ge 0$ generates a semi-flow $\Phi_t : \mathcal{C}_\tau \to \mathcal{C}_\tau$ with $\phi \to \Phi_t(\phi)$ defined by

(2)
$$\Phi_t(\phi)(s) := x(t+s,\phi), \quad s \in [-\tau,0], \quad t \geqslant 0.$$

Let

(3)
$$M := \sup \left\{ \|f(x,y)\| \mid (x,y) \in \mathbb{R}^d \times \mathbb{R}^d \right\} < \infty.$$

It is easy to see that $\Phi_t(\phi)$ is Lipschitz continuous with constant M for any initial function $\phi \in \mathcal{C}_{\tau}$ and $t \geq 0$, which means the family $\{\Phi_t\}_{t \geq 0}$ defines a semi-flow on the subspace

$$\mathrm{Lip}_{\tau,L} := \Big\{ \psi \in \mathcal{C}_\tau \mid \big| \psi(s_1) - \psi(s_2) \big| \leqslant L |s_1 - s_2|, \quad s_1, s_2 \in [-\tau, 0] \ \Big\}$$

of C_{τ} for any $L \geq M$. The operator Φ_t is compact for each t > 0 by the Arzela-Ascoli theorem and the semi-flow will thus have an attractor if it has a closed and bounded absorbing set.

Since different delays will be considered in the sequel, we shall denote by $\Phi_t^{(\tau)}$ the semi-flow on \mathcal{C}_{τ} corresponding to the τ -delay differential equations (1), that is, with delay $\tau > 0$. A nonempty compact subset \mathcal{A}_{τ} of \mathcal{C}_{τ} is called the global attractor of the semiflow Φ_t of the delay differential equations (1) if it is invariant, that is, $\Phi_t^{(\tau)}(\mathcal{A}_{\tau}) = \mathcal{A}_{\tau}$ for all $t \geq 0$ and attracts all nonempty closed and bounded subsets B of \mathcal{C}_{τ} , that is, for every such set B and each $\varepsilon > 0$ there exists $T_{\tau,B,\varepsilon} \geq 0$ such that

(4)
$$H_{\tau}^{\bullet}(\Phi_{t}^{(\tau)}(B), \mathcal{A}_{\tau}) < \varepsilon \text{ for } t \geqslant T_{\tau,B,\varepsilon},$$

where H_{τ}^* is the Hausdorff semi-distance between closed and bounded subsets of C_{τ} . A global attractor is uniformly asymptotically stable [2] and can thus be characterised by a Lyapunov function (see Theorem 2.2 later).

Let $S_{\tau} \subset C(\mathbb{R}, \mathbb{R}^d)$ denote the set of all entire bounded solutions of the τ -delay differential equations (1), that is, those which exist and are bounded for all $t \in \mathbb{R}$. An entire solution is obviously Lipschitz continuous with Lipschitz constant M. The corresponding entire trajectories of the semi-flow $\Phi_t^{(\tau)}$ thus belong to $\operatorname{Lip}_{\tau,L}$ for any $L \geq M$ (we henceforth choose and then hold fixed such an L) and are contained in the global attractor A_{τ} of the semi-flow, if it exists. Indeed, by invariance, there exists an entire bounded trajectory through every point of an attractor A_{τ} , which is thus the image in $\operatorname{Lip}_{\tau,L}$ of all of the entire bounded trajectories of the semi-flow $\Phi_t^{(\tau)}$. Consequently, A_{τ} can be represented by or identified with a compact subset $I_{\tau_0}(A_{\tau})$ in the space C_{τ_0} for any other delay $\tau_0 \neq \tau$, where

$$I_{\tau_0}(\mathcal{A}_\tau) := \left\{ \phi \in \mathcal{C}_{\tau_0} \mid \phi(s) = x^{(\tau)}(t+s), \ \ s \in [-\tau_0, 0], \ \text{ for some } \ \ x^{(\tau)} \in \mathcal{S}_\tau \quad \text{and } \ t \in \mathbb{R} \right\}$$

2. THE MAIN RESULT

The following theorem is the main result of this paper. The underlying assumption that $f \in C_b^1$ is not a major restriction since the long term dynamics takes values in a closed and bounded subset of the function space C_{τ} , with the corresponding functions thus taking values in a closed and bounded, hence compact, subset of $\mathbb{R}^d \times \mathbb{R}^d$.

THEOREM 2.1. Suppose that the semi-flow $\Phi_t^{(\tau_0)}$ has a global attractor \mathcal{A}_{τ_0} for some $\tau_0 > 0$. Then the semi-flow $\Phi_t^{(\tau)}$ has an attractor \mathcal{A}_{τ} (possibly only local) for all $\tau > 0$ with $|\tau - \tau_0|$ sufficiently small. Moreover, the \mathcal{A}_{τ} converge to \mathcal{A}_{τ_0} upper semi continuously in \mathcal{C}_{τ_0} in the sense that

(1)
$$H_{\tau_0}^*(I_{\tau_0}(\mathcal{A}_{\tau}), \mathcal{A}_{\tau_0}) \to 0 \quad \text{as } \tau \to \tau_0.$$

The upper semi continuous convergence (1) is obviously equivalent to the upper semi continuous convergence of the compact S_{τ} to S_{τ_0} in the Hausdorff semi metric based on the metric

$$d_{unif}(x,y) := \sum_{j=-\infty}^{\infty} 2^{-|j|} \max_{-\tau_0 \leqslant s \leqslant 0} ||x(j\tau_0 + s) - y(j\tau_0 + s)||$$

on $C(\mathbb{R}, \mathbb{R}^d)$, that is, corresponding to uniform convergence on compact subsets. (The choice of the length τ_0 of the intervals here is suggestive, but not critical – it need only be finite).

2.1. PROOF OF THEOREM 2.1: Theorem 2.1 is essentially a consequence of the total stability of the global attractor A_{τ_0} , in particular of the fact that the uniform asymptotical stability of such attractor can be characterised by a Lipschitz continuous Lyapunov function. The proof which follows is similar to those, in different contexts, in Kloeden and Lorenz [4, Theorem 1.1] and in Kloeden and Siegmund [6, Theorem 1].

Yoshizawa [7] provides various necessary and sufficient conditions which characterise the uniform asymptotical stability of a compact sets in terms of Lyapunov functions for ordinary differential equations. The following theorem is a straightforward generalisation of Yoshizawa in [7, Theorem 22.5] to retarded delay differential equations, see also [7, Theorem 35.2] as well as [5].

THEOREM 2.2. Suppose that the solution flow $\Phi_t^{(\tau_0)}(\phi)$ in \mathcal{C}_{τ_0} of τ_0 -delay differential equations (1) has a global attractor \mathcal{A}_{τ_0} in \mathcal{C}_{τ_0} , which is thus uniformly asymptotically stable. Then there exists a function $V:\mathcal{C}_{\tau_0} \to [0,\infty)$ satisfying

- $(1) \quad |V(\phi) V(\psi)| \leqslant L_V ||\phi \psi||_{\tau_0} \quad \text{for all } \phi, \, \psi \in \mathcal{C}_{\tau_0}$
- (2) There exist strongly monotone increasing functions $a, b : [0, \infty) \to [0, \infty)$ with a(0) = b(0) = 0 and a(r) < b(r) for r > 0 such that

$$a\big(\mathrm{dist}_{ au_0}(\phi,\mathcal{A}_{ au_0})\big) \leqslant V(\phi) \leqslant b\big(\mathrm{dist}_{ au_0}(\phi,\mathcal{A}_{ au_0})\big), \quad \phi \in \mathcal{C}_{ au_0}.$$

(3) There exists a positive real number c such that

$$V(\Phi_t^{(\tau_0)}(\phi)) \leqslant e^{-ct} V(\phi), \quad t \geqslant 0, \ \phi \in \mathcal{C}_{\tau_0}.$$

Here $\operatorname{dist}_{\tau_0}(\phi, \mathcal{B})$ denotes the distance between a point ϕ and a closed and bounded subset \mathcal{B} in \mathcal{C}_{τ_0} .

Consider the solution $x^{(\tau)}(t,\phi_0) \in \mathbb{R}^d$ for $t \ge -\tau$ of the τ -delay differential equations (1) with initial value $\phi_0 \in \mathcal{C}_{\tau}$. If $\tau < \tau_0$, extend $x^{(\tau)}(t,\phi_0)$ to $t \ge -\tau_0$ by defining $x^{(\tau)}(t,\phi_0) = \phi_0(-\tau)$ for $-\tau_0 \le t \le -\tau$. For $\phi_0 \in \mathcal{C}_{\tau}$ and $t \ge 0$ define

$$S_t^{(\tau,\tau_0)}(\phi_0)(-s) := x^{(\tau)}(t-s,\phi_0), \quad 0 \leqslant s \leqslant \tau_0,$$

so $S_t^{(\tau,\tau_0)}(\phi_0) \in \mathcal{C}_{\tau_0}$ for all $t \geq 0$ with $S_0^{(\tau,\tau_0)}(\phi_0) = E_{\tau_0}^{\tau_0}(\phi_0)$, where

$$E_{\tau}^{\tau_0}(\phi_0) := \left\{ \begin{array}{ll} \phi_0(-s) & \text{for} \quad 0 \leqslant s \leqslant \min\{\tau, \tau_0\} \\ \phi_0(-\tau) & \text{for} \quad \tau \leqslant s \leqslant \tau_0 & \text{if} \quad \tau < \tau_0 \end{array} \right.$$

for each $\phi_0 \in \mathcal{C}_{\tau}$. Note that $S_t^{(\tau,\tau_0)}$ is not a semi-flow.

The following Lyapunov inequality, which will be proved in the appendix, is fundamental to the proof.

LEMMA 2.3. Suppose that $|\tau - \tau_0| \leq \min\{\tau, \tau_0\}$. There exists a constant K independent of τ and τ_0 such that

(2)
$$V(S_{s+t}^{(\tau,\tau_0)}(\phi_0)) \leq e^{-cs} V(S_t^{(\tau,\tau_0)}(\phi_0)) + L_V K |\tau - \tau_0|^2$$

for all $s \in [0, |\tau - \tau_0|]$, $t \geqslant 0$ and all $\phi_0 \in \text{Lip}_{\tau_0, L}$.

From Lemma 2.3 we have

$$V\left(S_{(n+1)\Delta}^{(\tau,\tau_0)}(\phi_0)\right) \leqslant e^{-c\Delta} V\left(S_{n\Delta}^{(\tau,\tau_0)}(\phi_0)\right) + L_V K \Delta^2$$

for $n \ge 1$, where $\Delta := |\tau - \tau_0| > 0$ with $|\tau - \tau_0| \le \min\{\tau, \tau_0\}$. Define

$$\eta(\Delta) := \frac{2L_V K \Delta^2}{1 - e^{-c\Delta}} \approx \frac{2L_V K}{c} \Delta$$

and

$$\Lambda_{\tau_0}[\eta(\Delta)] := \{ \phi \in \operatorname{Lip}_{\tau_0,L} \mid V(\phi) \leqslant \eta(\Delta) \},$$

Then, as in the proof of [4, Theorem 1.1] it can be shown that the closed and bounded set $\Lambda_{\tau_0}[\eta(\Delta)]$ is positively invariant and absorbing for the sequence of mappings $S_{n\Delta}^{(\tau,\tau_0)}$, provided Δ is sufficiently small, in the sense that $S_{n\Delta}^{(\tau,\tau_0)}(\phi_0) \in \Lambda_{\tau_0}[\eta(\Delta)]$ for $n \ge 1$ and $\phi_0 \in \mathcal{C}_{\tau}$ with $E_{\tau}^{\tau_0}(\phi_0) \in \Lambda_{\tau_0}[\eta(\Delta)]$ and that for any finite $R_0 > 0$ there exists an $N_{R_0,\tau,\Delta} \in \mathbb{N}$ such that

$$S_{n\Delta}^{(\tau,\tau_0)}(\phi_0) \in \Lambda_{\tau_0}[\eta(\Delta)]$$

for $n \geqslant N_{R_0,\tau,\Delta}$ and all $\phi_0 \in \mathcal{C}_{\tau}$ with $E_{\tau}^{\tau_0}(\phi_0) \in \mathcal{B}_{\tau_0}[\mathcal{A}_{\tau_0}, R_0]$, the closed and bounded ball of radius R_0 about the compact subset \mathcal{A}_{τ_0} in $Lip_{\tau_0,L}$ defined by

$$\mathcal{B}_{\tau_0}[\mathcal{A}_{\tau_0}, R_0] := \big\{ \phi \in \mathrm{Lip}_{\tau_0, L} \mid \mathrm{dist}_{\tau_0}(\phi, \mathcal{A}_{\tau_0}) \leqslant R_0 \big\}.$$

Note that

$$\Lambda_{\tau_0} [\eta(\Delta)] \subset \mathcal{B}_{\tau_0} [\mathcal{A}_{\tau_0}, a^{-1} (\eta(\Delta))]$$

by property (2) of the Lyapunov function.

To show positive invariance it suffices to consider a single iterate $S_{\Delta}^{(\tau,\tau_0)}(\phi_0)$ for $\phi_0 \in \mathcal{C}_{\tau}$ with $E_{\tau}^{\tau_0}(\phi_0) \in \Lambda_{\tau_0}[\eta(\Delta)]$. Then

$$\begin{split} V\left(S_{\Delta}^{(\tau,\tau_0)}(\phi_0)\right) &\leqslant e^{-c\Delta} \, V\left(S_0^{(\tau,\tau_0)}(\phi_0)\right) + L_V K \Delta^2 \\ &\leqslant e^{-c\Delta} \, \eta(\Delta) + \frac{1}{2} (1 - e^{-c\Delta}) \, \eta(\Delta) \\ &= \frac{1}{2} (1 + e^{-c\Delta}) \, \eta(\Delta) \leqslant \eta(\Delta), \end{split}$$

since $V\left(S_0^{(\tau,\tau_0)}(\phi_0)\right) \leqslant \eta(\Delta)$. Hence $S_{\Delta}^{(\tau,\tau_0)}(\phi_0) \in \Lambda_{\tau_0}[\eta(\Delta)]$.

To show the absorbing property first note that there exists a $\gamma > 0$ such that

$$1 + e^{-c\gamma} = 2e^{-c\gamma/2}$$
 and $1 + e^{-c\Delta} < 2e^{-c\Delta/2}$

for all $0 < \Delta < \gamma$. Suppose that

$$\Delta = |\tau - \tau_0| < \Delta^* := \min\{\tau, \tau_0, \gamma\}$$

and consider $S_{\Delta}^{(\tau,\tau_0)}(\phi_0)$ for $\phi_0 \in \text{Lip}_{\tau,L}$ with $E_{\tau}^{\tau_0}(\phi_0) \notin \Lambda_{\tau_0}[\eta(\Delta)]$. Then

$$\begin{split} V\left(S_{\Delta}^{(\tau,\tau_0)}(\phi_0)\right) &\leqslant e^{-c\Delta} \, V\left(S_0^{(\tau,\tau_0)}(\phi_0)\right) + L_V K \Delta^2 \\ &= e^{-c\Delta} \, V\left(S_0^{(\tau,\tau_0)}(\phi_0)\right) + \frac{1}{2} \left(1 - e^{-c\Delta}\right) \, \eta(\Delta) \\ &\leqslant \frac{1}{2} \left(1 + e^{-c\Delta}\right) \, V\left(S_0^{(\tau,\tau_0)}(\phi_0)\right) \\ &\leqslant e^{-c\Delta/2} V\left(S_0^{(\tau,\tau_0)}(\phi_0)\right), \end{split}$$

since $V\left(S_0^{(\tau,\tau_0)}(\phi_0)\right)>\eta(\Delta)$. Repeating this argument,

$$V\left(S_{n\Delta}^{(\tau,\tau_0)}(\phi_0)\right) < e^{-cn\Delta/2} \, V\left(S_0^{(\tau,\tau_0)}(\phi_0)\right)$$

as long as $S_0^{(\tau,\tau_0)}(\phi_0)$, $S_{\Delta}^{(\tau,\tau_0)}(\phi_0)$, ..., $S_{(n-1)\Delta}^{(\tau,\tau_0)}(\phi_0) \notin \Lambda_{\tau_0}[\eta(\Delta)]$. Now

$$V\left(S_0^{(\tau,\tau_0)}(\phi_0)\right) \leqslant b\left(\operatorname{dist}_{\tau_0}\left(S_0^{(\tau,\tau_0)}(\phi_0),\mathcal{A}_{\tau_0}\right)\right) \leqslant b(R_0),$$

so

$$V\left(S_{n\Delta}^{(\tau,\tau_0)}(\phi_0)\right) \leqslant e^{-cn\Delta/2} b(R_0).$$

Finally, define $N_{R_0,\tau,\Delta}$ to be the smallest integer n for which

$$e^{-cn\Delta/2} b(R_0) \leqslant \eta(\Delta) < e^{-c(n-1)\Delta/2} b(R_0)$$

This proves that $\Lambda_{\tau_0}[\eta(\Delta)]$ is an absorbing set for the $S_{n\Delta}^{(\tau,\tau_0)}$.

Hence the semi-flow $\Phi_t^{(\tau)}(\phi_0)$ will be contained in a corresponding positive invariant, closed and bounded subset \mathcal{B}_{τ} of \mathcal{C}_{τ} for all $t \geq N_{R_0,\tau,\Delta}\Delta$. Since the operators $\Phi_t^{(\tau)}$ are compact for t > 0, the semi-flow $\Phi^{(\tau)}$ has an attractor (possibly only local) \mathcal{A}_{τ} in \mathcal{B}_{τ} .

By invariance, for any $\phi_0 \in \mathcal{A}_{\tau}$ and T > 0, there is a $\psi_0 \in \mathcal{A}_{\tau}$ such that $\Phi_T^{(\tau)}(\psi_0) = \phi_0$. Taking

$$T = n\Delta \geqslant \max\{\tau, \tau_0, N_{R_0, \tau, \Delta}\Delta\},$$

it follows that

$$S_{n\Delta}^{(\tau,\tau_0)}(\psi_0) \in \Lambda_{\tau_0}[\eta(\Delta)],$$

which means that

$$\operatorname{dist}_{\tau_0}\left(S_{n\Delta}^{(\tau,\tau_0)}(\psi_0),\mathcal{A}_{\tau_0}\right)\leqslant a^{-1}\left(\eta(\Delta)\right)$$

for any $\psi_0 \in \mathcal{A}_{\tau}$. Since $S_{n\Delta}^{(\tau,\tau_0)}(\psi_0)$ corresponds in $\operatorname{Lip}_{\tau_0,L}$ to part of an entire solution of the τ -delay differential equations through $\phi_0 = \Phi_T^{(\tau)}(\psi_0) \in \mathcal{A}_{\tau}$, this implies that

$$H_{\tau_0}^*(I_{\tau_0}(\mathcal{A}_{\tau}), \mathcal{A}_{\tau_0}) \leqslant a^{-1}(\eta(\Delta)) \to 0 \text{ as } \Delta \to 0,$$

0

which completes the proof of Theorem 2.1.

3. Appendix: Proof of Lemma 2.3

Consider the semi-flow representation $\Phi_t^{(\tau_0)}(S_t^{(\tau,\tau_0)}(\phi_0))$ solution of the τ_0 -delay differential equations starting at $S_t^{(\tau,\tau_0)}(\phi_0)$, where $\phi_0 \in \text{Lip}_{\tau,L}$. Then

$$\begin{split} V\left(S_{s+t}^{(\tau,\tau_{0})}(\phi_{0})\right) &\leqslant V\left(\Phi_{s}^{(\tau_{0})}\left(S_{t}^{(\tau,\tau_{0})}(\phi_{0})\right)\right) + \left|V\left(S_{s+t}^{(\tau,\tau_{0})}(\phi_{0})\right) - V\left(\Phi_{s}^{(\tau_{0})}\left(S_{t}^{(\tau,\tau_{0})}(\phi_{0})\right)\right)\right| \\ &\leqslant e^{-cs} \left|V\left(S_{t}^{(\tau,\tau_{0})}(\phi_{0})\right) + L_{V} \left\|S_{s+t}^{(\tau,\tau_{0})}(\phi_{0}) - \Phi_{s}^{(\tau_{0})}\left(S_{t}^{(\tau,\tau_{0})}(\phi_{0})\right)\right\|_{\tau_{0}} \\ &\leqslant e^{-cs} \left|V\left(S_{t}^{(\tau,\tau_{0})}(\phi_{0})\right) + L_{V}K|\tau - \tau_{0}|^{2}. \end{split}$$

Here we have used the exponential decay of the Lyapunov function along the semi-flow $\Phi^{(\tau_0)}$ and the Lipschitz property of the Lyapunov function on C_{τ_0} . In the last line we have used the following lemma,

LEMMA 3.1. Suppose that $|\tau - \tau_0| \leq \min\{\tau, \tau_0\}$. There exists a constant K independent of τ and τ_0 such that

(3)
$$\left\| S_{s+t}^{(\tau,\tau_0)}(\phi_0) - \Phi_s^{(\tau_0)} \left(S_t^{(\tau,\tau_0)}(\phi_0) \right) \right\|_{\tau_0} \leqslant K |\tau - \tau_0|^2$$

for all $s \in [0, |\tau - \tau_0|], t \ge 0$ and all $\phi_0 \in \text{Lip}_{\tau, L}$.

PROOF: Let x(t) be the solution of the τ -delay differential equations and y(t) be the solution of the τ_0 -delay differential equations for an initial value which is the same on the interval $[-\min\{\tau,\tau_0\},0]$, so in particular x(0=y(0)). Subtracting interval versions of the differential equations gives

$$x(t) - y(t) = \int_0^t \left(f(x(s), x(s-\tau)) - f(y(s), y(s-\tau_0)) \right) ds$$

and hence

$$\left|x(t)-y(t)\right|\leqslant L_f\int_0^t\left(\left|x(s)-y(s)\right|+\left|x(s-\tau)-y(s-\tau_0)\right|\right)ds,$$

where L_f is the Lipschitz constant of the vector field function f.

Assume that $\tau_0 \leqslant \tau$ (otherwise interchange the roles of x and y in what follows). Then

$$\begin{aligned} |x(t) - y(t)| &\leq L_f \int_0^t |x(s) - y(s)| \, ds + L_f \int_0^t |x(s - \tau) - y(s - \tau_0)| \, ds, \\ &\leq L_f \int_0^t |x(s) - y(s)| \, ds + L_f \int_0^t |x(s - \tau_0) - y(s - \tau_0)| \, ds \\ &+ L_f \int_0^t |x(s - \tau) - x(s - \tau_0)| \, ds, \\ &\leq L_f \int_0^t |x(s) - y(s)| \, ds + L_f \int_0^t 0 \, ds + L_f \int_0^t |x(s - \tau) - x(s - \tau_0)| \, ds, \\ &\leq L_f M |\tau - \tau_0|^2 + L_f \int_0^t |x(s) - y(s)| \, ds \end{aligned}$$

for $0 \le t \le |\tau - \tau_0|$.

Here we have used the facts that $x(s-\tau_0)=y(s-\tau_0)$ for $0\leqslant s\leqslant \tau_0$ and

$$\big|x(s-\tau)-x(s-\tau_0)\big|\leqslant L|\tau-\tau_0|$$

for all $s \ge 0$ and initial values $\phi_0 \in \text{Lip}_{\tau,L}$. The latter follows from the inequality

$$\left|x(s-\tau)-x(s-\tau_0)\right|=\int_{s-\tau_0}^{s-\tau}\left|f\left(x(s),x(s-\tau)\right)\right|ds\leqslant M|\tau-\tau_0|\leqslant L|\tau-\tau_0|$$

for all $s \ge \tau$ and by the L-Lipschitz property of ϕ_0 for $0 \le s \le \tau$ (we omit the details).

An application of the Gronwall inequality and the reinterpretation of the solutions as elements of the space C_{τ_0} yield the asserted inequality (3).

REFERENCES

- [1] R.D. Driver, Ordinary and delay differential equations, Applied Mathematical Sciences 20 (Springer-Verlag, Heidelberg, 1977).
- [2] J.K. Hale, Asymptotic behavior of dissipative dynamical systems (Amer. Math. Soc., Providence, R.I., 1988).
- [3] J.K. Hale and S.M. Verduyn Lunel, Introduction to functional differential equations (Springer-Verlag, Heidelberg, 1993).
- [4] P.E. Kloeden and J. Lorenz, 'Stable attracting sets in dynamical systems and in their one-step discretizations', SIAM J. Numer. Anal. 23 (1986), 986-993.
- [5] P.E. Kloeden and J. Schropp, 'Stable attracting sets in delay differential equations and in their Runge-Kutta discretizations', *Numer. Funct. Anal. Optim.* (to appear).
- [6] P.E. Kloeden and S. Siegmund, 'Bifurcations and continuous transitions of attractors in autonomous and nonautonomous systems', J. Bifur. Chaos. Appl. Sci. Engg. 15 (2005), 743-762.
- [7] T. Yoshizawa, Stability theory by Lyapunov's second method, Publication of the Mathematical Society of Japan 9 (The Mathematical Society of Japan, Tokyo, 1966).

FB Mathematik Johann Wolfgang Goethe Universität D-60054 Frankfurt am Main Germany e-mail: kloeden@math.uni-frankfurt.de