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UPPER SEMI CONTINUITY OF ATTRACTORS OF
DELAY DIFFERENTIAL EQUATIONS IN THE DELAY

PETER E. KLOEDEN

It is shown that if a retarded delay differential equation has a global attractor Ay, in
the space C([—7o, 0], RY) for a given nonzero constant delay 7o, then the equation has
an attractor A, in the space C([—,0],R?) for nearby constant delays . Moreover
the attractors A, converge upper semi continuously to A, in C ([—To, 0], IR") in the
sense that they are identified through corresponding segments of entire trajectories in
R? with nonempty compact subsets I, (A,) of C ({70, 0], RY) which converge upper
semi continuously to Ay, in C([—1o,0], R?).

1. INTRODUCTION

Consider a retarded delay differential equation
(1) £(t) = f(z(t),z(t ~ 7)), t20,

in R? with a constant delay 7 > 0 and assume that f € C}(R? x R%, R?), where C}! is the
space of continuously differentiable functions from R% x R? to R? which are bounded and
have bounded first derivatives. Then, for any given continuous function ¢ : [~7, 0] - R?
as initial value, the delay differential equations (1) possesses a unique solution z(t, ¢)
which exists for all future time (see, for example, Driver [1} or Hale and Verduyn Lunel
(3]).

The solutions of initial value problems for the delay differential equations (1) can
be reformulated as a semi-dynamical system or semi-flow on the Banach space C, of
continuous functions ¢ : [—7,0] - R? equipped with the norm

llle = max{||¢(s)[ | s € [~,0]}.

For any y € C([-7,00),RY) and fixed t > 0 define y, € C, by w(s) := y(t + s) for
s € [=7,0]. Then, the initial value problem for the delay differential equations (1) with
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solution z(t, #) € R? for t > 0 generates a semi-flow ®, : C, — C, with ¢ — ®,(¢) defined

by

2 De(4)(s) :=z(t +3,4), s€[-7,0], t>0.
Let

3) M :=sup{||f(z,)]|| (z,4) € R x R*} < 0.

It is easy to see that ®.(¢) is Lipschitz continuous with constant M for any initial function
¢ € C, and t > 0, which means the family {®;}:>¢ defines a semi-flow on the subspace

I"ip‘r',L = {d’ €Cr l Iw(sl) - ¢(32)| < L|81 - 82" 31,82 € [-T’ O] }

of C, for any L > M. The operator ®, is compact for each t > 0 by the Arzela—Ascoli
theorem and the semi-flow will thus have an attractor if it has a closed and bounded
absorbing set.

Since different delays will be considered in the sequel, we shall denote by <I>$’) the
semi-flow on C, corresponding to the 7-delay differential equations (1), that is, with delay
7 > 0. A nonempty compact subset .A, of C; is called the global attractor of the semiflow
&, of the delay differential equations (1) if it is invariant, that is, <I>§T)(.A,) = A, for all
t > 0 and attracts all nonempty closed and bounded subsets B of C,, that is, for every
such set B and each € > 0 there exists T, 5, > 0 such that

(4) H:(®(B),A,) <e for t>T, g,

where H! is the Hausdorff semi-distance between closed and bounded subsets of C,. A
global attractor is uniformly asymptotically stable [2] and can thus be characterised by
a Lyapunov function (see Theorem 2.2 later).

Let S, C C(R,R%) denote the set of all entire bounded solutions of the 7-delay
differential equations (1), that is, those which exist and are bounded for all ¢t € R.
An entire solution is obviously Lipschitz continuous with Lipschitz constant M. The
corresponding entire trajectories of the semi-flow <I>§") thus belong to Lip, , forany L > M
(we henceforth choose and then hold fixed such an L) and are contained in the global
attractor A, of the semi-flow, if it exists. Indeed, by invariance, there exists an entire
bounded trajectory through every point of an attractor A,, which is thus the image in
Lip, ;, of all of the entire bounded trajectories of the semi-flow o{". Consequently, A,
can be represented by or identified with a compact subset I, (A,) in the space Cy, for
any other delay 75 # 7, where

I,(A;) = {$ €Cry | 8(5) = 2t +3), s€[-7,0], forsome z{V €S, and te R}
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2. THE MAIN RESULT

The following theorem is the main result of this paper. The underlying assumption
that f € C} is not a major restriction since the long term dynamics takes values in a
closed and bounded subset of the function space C,, with the corresponding functions
thus taking values in a closed and bounded, hence compact, subset of R% x R9.

THEOREM 2.1. Suppose that the semi-flow <I>£’°) has a global attractor A,, for
some 7o > 0. Then the semi-flow ®™ has an attractor A, (possibly only local) for all
T > 0 with |7 — 7| sufficiently small. Moreover, the A, converge to .A1.o upper semi
continuously in Cry in the sense that

(1) H; (I,(Ar), An) 0 as 7.

The upper semi continuous convergence (1) is obviously equivalent to the upper semi
continuous convergence of the compact S, to Sy, in the Hausdorff semi metric based on
the metric

Gunif (T, y) Z 274l _max [l2(570 + 8) = y(iro + s)|
j=—o0
on C(R,RY), that is, corresponding to uniform convergence on compact subsets. (The
choice of the length 7o of the intervals here is suggestive, but not critical — it need only
be finite).

2.1. PROOF oF THEOREM 2.1: Theorem 2.1 is essentially a consequence of the total
stability of the global attractor A,,, in particular of the fact that the uniform asymptot-
ical stability of such attractor can be characterised by a Lipschitz continuous Lyapunov
function. The proof which follows is similar to those, in different contexts, in Kloeden
and Lorenz [4, Theorem 1.1} and in Kloeden and Siegmund [6, Theorem 1].

Yoshizawa [7] provides various necessary and sufficient conditions which characterise
the uniform asymptotical stability of a compact sets in terms of Lyapunov functions for
ordinary differential equations. The following theorem is a straightforward generalisation
of Yoshizawa in (7, Theorem 22.5] to retarded delay differential equations, see also (7,
Theorem 35.2] as well as [5]. 0

THEOREM 2.2. Suppose that the solution flow <I>$T°)(¢) in Cp, of rg~delay differen-
tial equations (1) has a global attractor A,, in C,,, which is thus uniformly asymptotically
stable. Then there exists a function V : C,, — [0, 00) satisfying

(1) |V(®)-V(®)| < Lvlié —¥ll, forall,y € Cr,
(2) There exist strongly monotone increasing functions a, b : [0,00) — [0, 0)
with a(0) = b(0) = 0 and a(r) < b(r) for r > 0 such that

a(distny(9, An)) < V(9) < b(distn(d, Ar)), € Cr,

https://doi.org/10.1017/50004972700038880 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700038880

302 P.E. Kloeden (4]

(3) There exists a positive real number ¢ such that
V(@™(9)) <e™V(9), t20,4€Cn.

Here dist,($, B) denotes the distance between a point ¢ and a closed and bounded subset
B in C,,.

Consider the solution z(")(¢, ¢) € R? for t > —7 of the T—delay differential equations
(1) with initial value ¢9 € C,. If 7 < 7, extend (" (¢, ¢g) to t > —7y by defining
) (¢, do) = do(~7) for —19 < t < —7. For ¢g € C, and t > 0 define

5™ (go)(—s) =2t — 5,0), 0K 8 <7,
s0 S{™)(¢o) € Cyy for all ¢ > 0 with ST™ (o) = E™(¢o), where

do(—38) for 0< s < min{r, 7}
do(—71) for T$s<ro if T<7

EX(¢o) = {

for each ¢ € C,. Note that St(f’m) is not a semi-flow.
The following Lyapunov inequality, which will be proved in the appendix, is funda-
mental to the proof.

LEMMA 2.3. Suppose that |7 — 7| € min{r,70}. There exists a constant K
independent of T and 1y such that

@) V(S5 (90)) < € V(SI™(90) + LvK |7 = 7
for all s € [0,|7 — 7o, t > 0 and all ¢y € Lip,,, ;.
From Lemma 2.3 we have
V( ((:zf;))a(d’o)) e~ V(S(T m)(d’o)) + LvKA?
for n > 1, where A := |7 — 70| > 0 with |7 — 79| < min{7,70}. Define

2
2LyKA? 2LvK

n(A) = l-ec ¢

and
A [n(A)] := {¢ € Lip,, 1 | V() < n(A)},

Then, as in the proof of (4, Theorem 1.1] it can be shown that the closed and bounded
set Aq, [n(A)] is positively invariant and absorbing for the sequence of mappings S( ’T°),
provided A is sufficiently small, in the sense that S s 7n)(¢o )E A, [n(A ] forn > 1 and ¢,
€ C, with E™(¢g) € A [n(A)] and that for any ﬁmte Rg > 0 there exists an Ng,, o € N
such that

SSE) (o) € An [0(D)]
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for n > Ng,ra and all ¢g € C; with EP(@g) € Br,[Ar, Ro), the closed and bounded ball
of radius Ry about the compact subset A, in Lip,, ; defined by

Bry[An, Ro] i= {# € Lip 1 | distry(é, An) < Ro}.

Note that
An [7(4)] C B [An, a7 (n(4))]

by property (2) of the Lyapunov function.
To show positive invariance it suffices to consider a single iterate S(Ar’m)(%) for
o € C; with E®(¢o) € Ar,[n(A)]. Then

V(SS™(40)) < €72 V(S5™ (¢o)) + Ly KA?
< eBn(a) + 5(1 - e ) n(a)

_ %(1 +e2)n(A) < n(8),

since V (S5 (¢0)) < n(A). Hence S$™ (¢o) € An [0(A)].
To show the absorbing property first note that there exists a v > 0 such that

14 e = 2¢1/2 and 14 e A < 2e7cA/2
for all 0 < A < «y. Suppose that
= |r — 1| < A* := min{7, 70,7}
and consider 5™ (o) for ¢o € Lip, ; with EP(o) ¢ Ar[n(A)]. Then
V(SE™ (g0)) < 72 V(ST™ () + LVKA2
2V (S5 (40)) + 3 (1-72) n(A)

1

<Lrven v (sEmie)

< ey (S((,T’m)(fﬁo)) )

since V (S(()T’m)(cﬁo)) > 1(A). Repeating this argument,
174 (SS,ZTO)(¢0)) < e—an/2 174 (S((,T’m)(iﬁo))
as long as 55" (¢0), S5 (o), - ., SaT)A(d0) ¢ Ar,[n(A)]. Now

V(57 (g0)) < b{distey (S (90), 4n) ) < b(R0),
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so
V(S3i”(90)) < €™/ b(Ry).
Finally, define Ng, - o to be the smallest integer n for which

e-an/z b(Ro) < U(A) < e-c(n-l)A/2 b(Ro)

This proves that A, [n(A)] is an absorbing set for the ST
Hence the semi-flow <I>(T)(¢o) will be contained in a corresponding positive invariant,
closed and bounded subset B, of C; for all t 2> Ng, aA. Since the operators <I>( ) are
compact for ¢ > 0, the semi-flow &) has an attractor (possibly only local) A, in B;.
By invariance, for any ¢¢ € A, and T > 0, there is a ¥y € A, such that <I>¥ ) (o) = ¢o.
Taking
T = nA 2 max{r, 7o, Ngor,aA},

it follows that
ST (o) € A [n(B)],
which means that

distr, (S5 (%0), An) < a1 (n(A))

for any o € A;. Since S,(:Z")(wo) corresponds in Lip, ; to part of an entire solution of
the 7-delay differential equations through ¢y = @g )(¢o) € A,, this implies that

H; (I (A;), Ap) < a7'(n(A)) =0 as A0,

which completes the proof of Theorem 2.1. ]

3. APPENDIX: PROOF OF LEMMA 2.3

Consider the semi-flow representation ™ (S{"™(¢)) solution of the 7o—delay dif-
ferential equations starting at S,(T’“’)(qbo), where ¢o € Lip, ;. Then

V(S5P (#0) < V(@) (SI™(90)) + |V (ST (60)) - V (852 (S5 (0)) ) |

e V(7™ (g0)) + Lv ||S

ST (80) = ¥ (ST (@)

< e V(ST™ (¢g)) + Ly K|r — 2.

Here we have used the exponential decay of the Lyapunov function along the semi-flow
®(™) and the Lipschitz property of the Lyapunov function on Cy,. In the last line we have
used the following lemma,
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LEMMA 3.1. Suppose that |t — 1} < min{r,7}. There exists a constant K
independent of T and 74 such that

© ST (o) = (ST (4| < Kl = ol

for all s € [0, |r — Tol],t 2 0 and all ¢, € Lip, ;.

PROOF: Let z(t) be the solution of the r-delay differential equations and y(t) be
the solution of the 7p-delay differential equations for an initial value which is the same on
the interval [— min{7,7},0], so in particular z(0 = y(0). Subtracting interval versions
of the differential equations gives

2(0) =50 = [ (£(a(5)als =) = £(4(6),v(s = ))) ds

and hence
50 = v&] < Ly [ (1ots) ~ w0+ [alo =) = u(s = o)) s,

where Ly is the Lipschitz constant of the vector field function f.
Assume that 7p € 7 (otherwise interchange the roles of z and y in what follows).
Then

[26) = u(0] < Ly [ fas) = w(s)| ds+ Ly [ (s =)~ (s = o] s,
< Lf/o |:z:(s) - y(s)|ds+L,/otlz(s —7) ~y(s— To)lds
+L; /t|z(s — 1) — z(s — m)| ds,
t t 0 t
< L,/o |1:(.s:)—-y(s)|d3+L,/o 0ds+Lf/0 |z(s — 7) — z(s — )| ds,

t
< LiM|r - 2 + L,/ |z(s) — y(s)| ds
0

for0 <t < |r— 7ol
Here we have used the facts that z(s — 7¢) = y{(s — 7o) for 0 < s < 79 and

|z(s -7)—z(3 - ‘ro)l < Lt — 7

for all s > 0 and initial values ¢y € Lip, ;. The latter follows from the inequality

|z(s — 1) — 2(s — 7o) =/

—To

=T

f(z(s),z(s — T))l ds < M|t — 75| < L|7 — 7o

for all s > 7 and by the L-Lipschitz property of ¢ for 0 < 7 (we omit the details).
An application of the Gronwall inequality and the remterpretatlon of the solutions
as elements of the space C,, yield the asserted inequality (3). 0
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